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Figure 1: Examples alternatives to texture mapping: (a) volume-encoded uv-maps [Tarini 2016],
(b) octree textures [Lefebvre et al. 2005], (c) Ptex [Burley and Lacewell 2008] (©Walt Disney Animation
Studios), (d) brickmaps [Christensen and Batali 2004], (e) polycube-maps [Tarini et al. 2004], (f) gi-
gavoxels [Crassin et al. 2009], (g) invisible seams [Ray et al. 2010], (h) perfect spatial hashing [Lefebvre
and Hoppe 2006], (i) mesh colors [Yuksel et al. 2010], and (j) tiletrees [Lefebvre and Dachsbacher 2007].

ABSTRACT
The intrinsic problems of standard Texture Mapping, regarding UV-maps and seams, are well-
known, but often considered unavoidable. In this course we will discuss various radically different
ways to rethink texture mapping that have been proposed over decades, each offering different
advantages and trade-offs.
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1 INTRODUCTION
In computer graphics, texture mapping is the fundamental means by which high-frequency signals
such as diffuse colors, normals, and other shading parameters are defined over 3D surfaces. The
principle is to store surface details in 2D high-resolution texture images, and then define a mapping
from the 3D surface to the 2D image, assigning a uv coordinate to each mesh vertex. This approach
is ubiquitously adopted by virtually all computer graphics applications and implemented on all
available graphics hardware, from high-end to smartphone GPUs.
However, texture mapping has a number of fundamental issues. Creating uv-maps is time

consuming and involves extensive manual effort. Distortions and seams introduced by mapping
complicate texture authoring, filtering, and procedural synthesis. The final result is optimized for a
specific mesh and it does not necessarily work through LoDs. Any change to the geometry or the
connectivity implies updating the uv-mapping and textures. As a consequence, texture mapping
continues to occupy a substantial portion of artist time, which dominates the cost of AAA video
game production.
Since the early days of texturing, there has been a constant research effort to alleviate or even

bypass traditional texture mapping limitations (Figure 1). Unfortunately, the ubiquitous adoption of
texture mapping implies that it is seldom questioned as the method of choice, and both authoring
pipelines and rendering engines have been shaped around its intrinsic limitations, thereby making it
harder for alternatives to be adopted. Yet, the industry recently started to recognize the advantages
of alternative approaches to texture mapping, in particular the Ptex method [Burley and Lacewell
2008] is becoming increasingly popular.
The objective of this course is to make the audience more familiar with such alternative ap-

proaches and their advantages and trade-offs regarding versatility, ease of authoring, storage cost,
rendering quality and performance, and implementation difficulty. We believe the course to be
both timely and necessary: several advances in GPU technologies has made alternative texturing
approaches computationally very efficient and the industry has shown a renewed interest in moving
beyond texture mapping. Furthermore, the algorithms and data-structure used by some alternative
approaches extend beyond texturing, towards solid modeling, volume rendering, and simulations
on surfaces (e.g. dynamic texturing).

2 OVERVIEW
We begin with discussing the limitations and strengths of standard 2D texture mapping, which
is ubiquitously used for virtually all computer graphics applications. This approach stores UV
coordinates as attributes on the vertices of a mesh and they are interpolated inside faces, mapping
the surface over one or multiple rasterized texture image(s). Then we explain the criteria we used
for evaluating alternative methods to texture mapping.

Perfecting Traditional UV-maps. We present methods that address specific shortcomings of the
standard 2D texture mapping approach by carefully using it in specific ways. This Section covers
the following techniques:
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Invisible seams [Ray et al. 2010] provide a method that aligns the seams on a texel grid in
texture space, making them consistent with bilinear filtering, thereby hiding the filtering artifacts
near seams that appear with traditional texture mapping.

Seamless toroidal/cylindrical textures [Tarini 2012] avoid vertex duplication at seams and
eliminate filtering artifacts near seams for some specific classes of maps.

Seamless texture atlases [Purnomo et al. 2004] produce texture atlases that prevent filtering
artifacts near seams. They also support down-sampling for mip-mapping and mesh simplification.

Connectivity-based Representations. These methods use the inherent parameterization of the
model, instead of defining a separate parameterization for mapping. The topology of the meshmodel
is used directly for defining the texture data on each primitive. These approaches substantially
improve the texture authoring process, but they require 3D painting tools. This Section covers the
following techniques:

Ptex [Burley and Lacewell 2008] is used and promoted by Disney Animation and Pixar studios.
It effectively assigns a separate texture map to each quad-shaped faces of a mesh. This structure
eliminates the need for defining uv-mapping, and it is primarily designed for quad meshes. Texture
filtering across faces is handled by accessing the mesh topology.

Mesh colors [Yuksel et al. 2010] are closely related to p-tex and similarly used in produc-
tion [Lambert 2015]. Extending the concept of vertex colors with additional samples inside mesh
faces and on edges, mesh colors provide a topological dual of p-tex in terms of color sample place-
ment. This provides better support for triangular meshes and correct handling of extraordinary
vertices. It also eliminates the need for accessing the topology information during texture filtering.

Mesh color textures [Yuksel 2016] aim to utilize the existing texture filtering hardware on
current GPU for sampling/filtering mesh colors. It achieves this by effectively converting mesh
colors to a representation similar to standard 2D textures. As a result, the authoring benefits of
mesh colors can be used without any visible overhead at render time (as compared to standard 2D
textures).

Sparse Volumetric Textures. These techniques associate the texture data directly using the volume
embedding the 3D model, bypassing the need of constructing or storing any mapping. A naïve
implementation of this approach would require a large space, which would be cubic with the
resolution of the sampling. Several countermeasures are adopted to avoid this problem using sparse
volumetric data structures. This Section covers the following techniques:

Adaptive texturemaps [Kraus and Ertl 2002] provide a GPU-based method for locally adjusting
the texture resolution depending on the texture content and adaptive texture boundaries.

Octree textures [Benson and Davis 2002; Lefebvre et al. 2005] encode a volumetric texture using
an efficient octree hierarchy that is used for texturing surfaces without the need for a uv-map.

Brick maps [Christensen and Batali 2004] were developed for storing precomputed global
illumination in arbitrary scenes. They extend the concept of octree textures by introducing voxel
blocks with efficient caching that make them suitable for handling extremely large scenes. An
implementation of brick maps is included in the RenderMan software.

Perfect spatial hashing [García et al. 2011; Lefebvre andHoppe 2006] also provides a volumetric
encoding of texture values to efficiently store the color values in a hash table that is accessed using
3D positions of the surface. Construction of the hash functions is time consuming but automatic.
Cache coherency is an issue.

Gigavoxels [Crassin et al. 2009] are designed for efficiently rendering large volumetric data sets
using a sparse 3D structure for texture storage.
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Volume-based Parameterizations. These techniques construct a mapping from the 3D model space
to a 2D texture space. This Section covers the following techniques:

TileTrees [Lefebvre and Dachsbacher 2007] also extend octree textures by storing 2D texture
tiles on the surfaces of octree nodes. They can efficiently adapt to the given object shape and require
much fewer octree levels for representing high-resolution textures.

PolyCube-maps [Tarini et al. 2004] generalize the concept of cube-maps that provides a tighter
enclosure for the target surface. They are GPU-friendly and produce a cut-free parameterization
over a polycube surface that can be used for texturing.

Volume-encoded uv-maps [Tarini 2016] define the uv-mapping as a trilinearly interpolated
low-resolution 3D lattice, instead of a per-vertex assignment of uv coordinates. This requires
only basic HW support and is almost as efficient as plain texture mapping, and supports different
tessellations, including LoDs, but does not bypass the need for of uv-map creation.
The course will provide the details of the alternative methods to texture mapping listed above,

discuss their similarities and differences, and present their advantages and limitations. Our aim is
to provide the knowledge needed for determining the best candidate for replacing texture mapping
for any application, which we expect to be different based on the constraints of the application.



5/28/2017

1

Marco Tarini

Università dell’insubria, Varese

ISTI-CNR, Pisa

marco.tarini@isti.cnr.it

Rethinking Texture Mapping

Cem Yuksel

University of Utah

cem@cemyuksel.com

Sylvain Lefebvre

INRIA

Sylvain.Lefebvre@inria.fr

Texture Mapping

• Texture mapping is the fundamental means by which high-
frequency details (such as color) are defined on surfaces.

Densely Sampled Signal

(“Texture”)

Digital Surface Detail-rich renderings

+ =
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3 TEXTURE MAPPING
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Texture Mapping

• Requires defining a mapping from the model space to the 
texture space.

mapping

Model Space Texture Space

Texture Mapping

• Mapping introduces seams

and it is labor intesive.

Separate the model into parts

Map each part to the texture space

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA



5/28/2017

3

Texture Mapping

• Model editing after texture painting is problematic.

Redo separation?

Redo mapping?

Repaint texture?

Texture Mapping

• Seams introduce filtering artifacts.

High-resolution texture
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Texture Mapping

• Artifacts are more pronounced at higher mip-map levels.

Low-resolution mip-map level

Texture Mapping

• Carefully painting around seams can hide artifacts, but not 
completely eliminate them.

High-resolution texture
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Texture Mapping

• Seam artifacts still appear in mip-map levels.

Low-resolution mip-map level

Texture Mapping

• Without mip-mapping, seam artifacts can be mostly hidden.

Some example

seam artifacts
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Texture Mapping

Displacement maps

• Seams cause cracks!
Eliminating these cracks 

requires carefully adjusting 

the mapping, so that the 

texture filtering results on 

either side of the seam are 

identical, which is often 

impossible with standard 

2D textures.

Cracks!

Texture Mapping

• Vertex attributes along seams must be duplicated

D

B

A

E

C

uC,vC

uB,vB

uA,vA

uD,vD

uE,vE

seam
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B
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Texture Mapping

• Mapping is mesh dependent

???

mapping

mapping

???

Attempts to automatize mapping

• While there are methods for automated mapping, in practice 
mapping requires substantial manual effort.

Not covered in 

this course
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Problems of Texture Mapping

• Defining mapping is labor-intensive
– Cannot be fully automated

– Time consuming even for experts

– Beyond the ability of most non-experts

• Local resolution adjustment is problematic
– Locally changing the resolution requires (partial) remapping

• Model editing after texture painting is problematic
– Changes to the model may require (partial) remapping

• Seams introduce artifacts
– Inconsistencies on either side of a seam reveal the seam and cause cracks in 

displacement mapping

Problems of Texture Mapping (cont.)

• Additional storage cost
– UV mapping data per vertex

– Duplicated vertex data along seams

– Wasted space due to imperfect packing and borders around seams

• Mesh dependency
– It is not easy to use the same texture on a different tessellation of the same model, 

which would be particularly useful for LoD.
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Course Outline

9:00 Introduction: Limitations of Traditional Texture Mapping 

9:15 Perfecting Traditional UV-maps
Invisible Seams, Seamless Toroidal/Cylindrical Textures, Seamless Texture Atlases

9:30 Connectivity-based Representations
Ptex, mesh colors, mesh color textures

9:45 Sparse Volumetric Textures
Adaptive Texture Maps, Octree/N3 Textures, Brick Maps, Perfect Spatial Hashing, 

Gigavoxels

10:05 Volume-based Parameterizations
Tiletrees, PolyCube Maps, Volume-encoded UV-Maps

10:20 Conclusion and Questions
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Evaluation

• Applicability
Supported surface representations or model types

• Usability
Permitted mapping/painting operations

• Quality
Texture filtering quality

• Performance
Storage, access, and computation overhead

• Implementation
Development effort needed

Evaluation: Applicability

• Meshes

• Point Clouds

• Implicit Surfaces

• Shape/Topology Limits
Any restrictions on the surface shape or mesh topology

• Subdivisions
Higher resolution tessellations of a mesh

• Tessellation Independence
Lower resolution tessellations and/or remeshing support
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Evaluation: Usability

• Automated Mapping
Can a “good” mapping to the texture space be automatically generated?

• Manual Mapping
Manually generating/editing the mapping to the texture space

• Model Editing after Painting
Changing the model topology after mapping/painting

• Resolution Readjustment
Changing the local texture resolution after the texture is (partially) painted

• Texture Repetition
The ability to use the same texture (color) data on multiple parts of the model

• 2D Image Representation
Support for editing the texture using existing 2D image editing/painting tools

Evaluation: Quality

• Magnification Filtering
Bilinear filtering quality

• Minification Filtering
Trilinear filtering (Mip-map) quality

• Anisotropic Filtering
Anisotropic filtering quality

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre
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Evaluation: Performance

• Storage Overhead
The additional data needed beyond the texture (color) data

• Vertex Data Duplication
The need to specify multiple mapping for some vertices

• Access Overhead
Indirections needed for accessing the texture data

• Computation Overhead
Additional computation needed for accessing/filtering the texture

• Hardware Filtering
Can existing texture filtering hardware on GPUs be used?

Evaluation: Implementation

• Asset Production
Development work needed for the asset production tools, such as texture 

painting and automated mapping

• Rendering
Implementation work needed for developing texture sampling/filtering

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA
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Standard 2D Textures
Applicability

Polygonal Meshes Yes

Point Clouds Single color per point

Implicit Surfaces With implicit mapping

Shape/Topology Limits None

Subdivisions Yes

Tessellation Independence As long as seams are preserved

Usability

Automated Mapping Limited

Manual Mapping Often needed

Model Editing after Painting Problematic

Resolution Readjustment Problematic

Texture Repetition Yes

2D Image Representation Yes

Filtering Quality

Magnification Filtering Yes, with seam artifacts

Minification Filtering Yes, with seam artifacts

Anisotropic Filtering Yes, with seam artifacts

Performance

Vertex Data Duplication Yes

Storage Overhead 2D mapping (uv x vert) & wasted text. space

Access Overhead None

Computation Overhead None

Hardware Filtering Yes

Implementation

Asset Production Huge array of sophisticated tools exist

(uv-mapping+texture authoring)

Rendering GPU support: hard-wired, highly complex 

& optimized texture fetch mechanism

good

dubious

bad
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4 PERFECTING TRADITIONAL UV-MAPS



It might seem this is hopeless, but invisible seams is actually a technique that can 

remove the seams entirely while not changing the standard pipeline at all.

Let’s have a closer look at the issue to understand the core idea. 

This is a sphere textured with a typical approach. The rendering uses nearest mode 
to clearly see the big texels. 

If we look closely where the charts meet on the surface, you will see that not only 
the colors disagree, but the grids are misaligned. This is why even if we tried to 
match the colors, the seam would still be there (unless, again, if the color is 

constant!).

Now, this second case shows you a very special mapping, called grid preserving. 

As you can see the colors mismatch but now the texel grid on both sides do match! 
This is revealed by the fact that the square boundaries perfectly align across the 
seam.

This third case shows what happens if you now match the colors on both sides. No 
seam! It is still there in fact, but because everything matches perfectly now – colors 
and alignment – the rendering perfectly agrees on both sides, making the seam 

effectively invisible.

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre

4.1 Invisible seams



And here is what happens through bilinear filtering. Still no visible seam!
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Here at the top left you can see two triangles along the surface. The blue square is 

an interpolation cell, that is, four texels in between which we’d like to interpolate 
color.

Now, the center drawing is the texture space. This particular mapping is grid 
preserving. What does this mean? It mean that I can take this green triangle on the 
left and translate it next to the right one. When doing this, we note two important 

things: First, the edges align perfectly, and second the translation is an integer 
vector, here (+5,+1).

This is why the interpolation cells actually perfectly align on both sides of the seam. 
Note that in general, a grid preserving mapping also allows (and requires) 90 
degree rotations.

Because  the interpolation cells match, it is enough to make sure the colors are the 
same. On one side the colors are inside the triangle, so we can expect these have 
been painted along the surface. On the right side they are outside of the triangle, so 

we can simply duplicate the color there. 

After doing this, you can now see the interpolation cells. Note the dashed line, 

which is the edge of the triangles. The colors match perfectly along it, this is why no 
seam will be visible.
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So what invisible seams does is to first compute a grid preserving parameterization. 

This is a difficult problem, directly related to quadrangulation, but there is now quite 
a state of the art with good methods out there. Nevertheless, this is not something 
easy to implement, especially in a robust manner.

Once this is done, the approach regroups triangles into charts, and then propagates 
colors so that interpolation across boundaries match exactly – as I have just 
described.
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Here is how it looks. On the left the rendering, on the right the automatically 

generated grid preserving mapping. You can see that the charts are not painting-
friendly, which is one limitation.
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There are additional benefits. MIP-mapping is supported, as well as multi-

resolution, which comes from the fact that the grids align.
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To conclude, invisible seams is a way to make rendering seams truly invisible, that 

supports MIP-mapping and multi-resolution and is backward compatible with 
whatever supports texture mapping.
Unfortunately it is quite hard to implement, manual construction of grid preserving 

mapping is impossible without computational support, and as a consequence 
painting directly in the texture becomes quite difficult.
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4.2 Seamless Toroidal/Cylindrical Textures
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Oldest trick in the book!

Seams: invisible
Built in support in any GPU
Easy HW implementation.

Effortless.
The most common way of having a seam in a texture… which almost doesn’t count 
as a seam!

The perfect UV param (when it applies, which is not too often)

15
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*Almost* doesn’t count.

You still have to duplicate vertices:
complicate data strcutres.
Hinders procedurality: e.g. you cannot create U coords on the fly.

But, there is a simple little known technique to do this.

See: Cylindrical and toroidal parameterizations without vertex seams M 

Tarini

Journal of Graphics Tools 16 (3), 144-150

It is a short paper, just use it if it fits your needs.

16
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Let’s see how this work

17
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This triangle here needs RED VERTEX to be at 1.1

18
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But this other triangle B here needs the *same* vertex to be at 0.1

19
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[Animation on slide – doesn’t read well on printed slide]

If you used always used U coords in 0..1, any triangle spanning across the left-right 
seam would get wrong interpolated U values, like here

20
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[Animation on slide – doesn’t read well on printed slide]

But what if you used this other interval: U inside [-0.5, +0.5].
(it is easy to go from the prev interval to this, with this formula)
Now that triangle now works, thanks to the wrapping built in in the fetch 

mechanism. 
But, now, a triangle spanning the original mid point of the texture gets the wrong 
interpolated position.

22
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So this triangle requires t

23
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So this triangle needs the original cords u1

26
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but this requires the modified coord u2.

Can we make all happy?

27
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We could use the geometry shader to choose which way to go for each triangle, but

the Geom Shader is often very costly. We don’t need it!
So here’s the trick.
In the vertex shader (first green arrow), you compute u2 from u1. 

Both gets interpolated by the rasterizer (vertical arrow).
Last problem: in the fragment shader, you get two (potentially different) values u1 
and u2.

We know one is right. The other might be wrong (see the two slides above)
How do you pick the right one?
This is seemingly impossible for the fragment shader to tell… 

But: the answer is: it is always the one (u1 or u2) which is travelling less fast in 
screen space.
The triangle “spanning the texture in the wrong direction” is always the one “taking 

the longest route”.
(this assumes a triangle is never larger than HALF the entire texture space, which is 
more than reasonable).
So, you want to pick the other one.

You want to pick the u1 or u2 value… which is associated to the smallest (in 
module) SCREEN SPACE DERIVATIVE.
Recall that 

28
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Screen space derivatives!

DEMO

Screen space derivatives!

DEMO
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Seamless Toroidal/Cylindrical Textures
Applicability

Polygonal Meshes Quads & triangles

Point Clouds No

Implicit Surfaces No

Shape/Topology Limits ONLY TORUS/CYLINDER TOPOLOGY

Subdivisions Yes

Tessellation Independence Yes

Usability

Automated Mapping Limited, usually easy

Manual Mapping Not much customizability

Model Editing after Painting No

Resolution Readjustment Problematic

Texture Repetition Yes (multiple rounds around cyl possible)

2D Image Representation Yes, complete

Filtering Quality

Magnification Filtering Yes

Minification Filtering Yes

Anisotropic Filtering Yes

Performance

Vertex Data Duplication No!

Storage Overhead 2D mapping (uv)

Access Overhead None

Computation Overhead Extremely small (1 extra interpolant)

Hardware Filtering Yes

Implementation

Asset Production Automated mapping

Rendering Simple UV manipulation

good

dubious

bad
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Seamless Texture Atlases

[Purnomo 2004]

Seamless Texture Atlases

• Begins with quadrangulation

– Split the input mesh into sets of polygons that are flattened 
onto square-shaped regions on the uv-map

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre

4.3 Seamless Texture Atlases
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Seamless Texture Atlases

• The texels for quad regions (charts) are packed into a texture

• The mip-map levels are stored within the same texture

• A lookup table stores locations of each chart for each mip-map 
level

Seamless Texture Atlases

• Alternatively, hardware mip-map storage can be used

• A lookup table stores locations of each chart

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA
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Seamless Texture Atlases

• Half a texel boundary needed around each chart

• Texture coordinates must be scaled according to the texel size 
of the mip-map level.

Mip-map level 0 Mip-map level 1 Mip-map level 2

7
 t

e
x
e

ls

3
 t

e
x
e

ls

1
 t

e
x
e

l

Seamless Texture Atlases

• Hardware bilinear filtering

• Indirection using a lookup table

• Requires quadrangulation and automated mapping per chart
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Seamless Texture Atlases
Applicability

Polygonal Meshes Yes

Point Clouds No

Implicit Surfaces No

Shape/Topology Limits None

Subdivisions Yes

Tessellation Independence No

Usability

Automated Mapping Limited

Manual Mapping Extra difficult

Model Editing after Painting Problematic

Resolution Readjustment Per patch only

Texture Repetition Per patch only

2D Image Representation Poor

Filtering Quality

Magnification Filtering Yes

Minification Filtering Yes, with custom mip-map construction

Anisotropic Filtering Yes, with seam artifacts

Performance

Vertex Data Duplication Yes

Storage Overhead 2D mapping & indirection per chart

Access Overhead 1 indirection

Computation Overhead Indirection

Hardware Filtering Yes

Implementation

Asset Production Quadrangulation, automated mapping, and 

3D painting

Rendering Simple UV manipulation & indirection

good

dubious

bad
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RETHINKING TEXTURE MAPPING

Connectivity-based Representations

Ptex – Per-Face Textures

• [Burley and Lacewell 2008]

Images © Walt Disney Animation Studios
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Ptex – Per-Face Textures

• [Burley and Lacewell 2008]

Images © Walt Disney Animation Studios

Ptex – Per-Face Textures

• Separate 2D texture per face

• No need for UV-mapping!

• Filtering near edges requires colors of neighboring faces

• Stores an adjacency list per face

texels color data locations

an example
quad face

colors of
neighboring
faces
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Ptex – Per-Face Textures

• Adjacency data per face

– 4 neighboring face IDs

– 4 edge indices

• Example: 0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

face 0 face 1

face 2 face 3

Adjacent Faces Adjacent Edges

face 0 2,1,-1,-1 2,3,x,x

face 1 3,-1,-1,0 2,x,x,1

face 2 -1,3,0,-1 x,3,0,x

face 3 -1,-1,1,2 x,x,0,1

Ptex – Per-Face Textures

• Naturally supports quads

• Triangle texels are packed as quads

triangle texels

0 1 2 3
15 11 7

4 5 6
14 10

8 9
13

12

0 1 2 3

15

11

74 5 6

14

108 9

1312

odd texels are flipped
around one edge

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

packed as quad
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Ptex – Per-Face Textures

• Custom texture filtering (for filtering across edges)

• Multiple indirect lookups using the adjacency list

• Problems with extraordinary vertices

Ptex – Per-Face Textures
Applicability

Polygonal Meshes Quads & triangles (packed as quads)

Point Clouds No

Implicit Surfaces No

Shape/Topology Limits Problems with extraordinary vertices

Subdivisions Yes

Tessellation Independence No

Usability

Automated Mapping N/A

Manual Mapping N/A

Model Editing after Painting Yes

Resolution Readjustment Yes

Texture Repetition Only for identical topology

2D Image Representation Poor

Filtering Quality

Magnification Filtering Yes (seams only near extraordinary vertices)

Minification Filtering Yes, up to single color per quad

Anisotropic Filtering Possible with custom filtering

Performance

Vertex Data Duplication N/A

Storage Overhead Neighborhood data & face resolution

Access Overhead Indirections

Computation Overhead Custom filtering

Hardware Filtering No

Implementation

Asset Production 3D painting

Rendering Custom filtering

good

dubious

bad
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Mesh Colors

• [Yuksel et al. 2008] [Yuksel et al. 2010]

Mesh Colors

• Extends vertex colors by adding edge colors and face colors.

• No need for UV-mapping!
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Mesh Colors

• Conceptually similar to Ptex

Ptex
All texels are inside the face.

Mesh Colors
Texels on the edges and vertices are shared.

Mesh Colors

• Conceptually similar to Ptex

Ptex
All texels are inside the face.

Mesh Colors
Texels on the edges and vertices are shared.
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Mesh Colors

• Custom texture filtering

• No indirect lookups and no adjacency list

• No problems with extraordinary vertices

Mesh Colors
Applicability

Polygonal Meshes Quads & triangles

Point Clouds Single color per point

Implicit Surfaces No

Shape/Topology Limits None

Subdivisions Yes

Tessellation Independence No

Usability

Automated Mapping N/A

Manual Mapping N/A

Model Editing after Painting Yes

Resolution Readjustment Yes

Texture Repetition Only for identical topology

2D Image Representation No

Filtering Quality

Magnification Filtering Yes

Minification Filtering Yes, up to vertex colors

Anisotropic Filtering Yes (with custom filtering)

Performance

Vertex Data Duplication N/A

Storage Overhead face resolution

Access Overhead None

Computation Overhead Custom filtering

Hardware Filtering No

Implementation

Asset Production 3D painting

Rendering Custom filtering

good

dubious

bad
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Mesh Color Textures

• [Yuksel 2016]

Mesh Color Textures

• Convert mesh colors to 2D textures

• Duplicate vertex and edge colors

• Add interpolated colors along diagonally placed edges

Vertex Color

Edge Color

Face Color

Interpolated

Unused

-- Legend --

c0 c1

c2 c3

c3 = c1 + c2 – c0
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Mesh Color Textures

• Mipmap levels (l)

• 4D texture coordinates (u
s
, u

d
)

• 2D texture coordinate for level l is ul = u
s

/ 2l + u
d

Level 3

Level 2

Level 1

Level 0

2l +1
pixels

Mesh Color Textures

• Hardware texture filtering

• Mip-map levels are stored in separate textures

• 2 texture calls for trilinear filtering

• Minimal computation overhead

– Pick mip-map level

– Convert 4D texture coordinate to 2D

– Lerp results
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Mesh Color Textures
Applicability

Polygonal Meshes Quads & triangles

Point Clouds Single color per point

Implicit Surfaces No

Shape/Topology Limits None

Subdivisions Yes

Tessellation Independence No

Usability

Automated Mapping N/A

Manual Mapping No need

Model Editing after Painting Yes

Resolution Readjustment Yes

Texture Repetition Only for identical topology

2D Image Representation Poor

Filtering Quality

Magnification Filtering Yes

Minification Filtering Yes

Anisotropic Filtering Yes (seam artifacts on current hardware)

Performance

Vertex Data Duplication Yes

Storage Overhead 4D mapping & wasted space

Access Overhead None

Computation Overhead UV calculation

Hardware Filtering Yes

Implementation

Asset Production 3D painting

Rendering Simple UV calculation

good

dubious

bad
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We will now discuss a set of methods that share a common idea: defining texture 

information in a volume surrounding the surface.
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6 SPARSE VOLUMETRIC TEXTURES
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Here you can see on the left a textured surface, and on the right the set of voxels 

which encode the colors.
Of course only few voxels are actually useful: those that intersect the surface. Thus 
storing the full volume would be a bad idea: a vast percentage of  memory would be 

wasted on voxels which are never accessed.

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA



3

Several schemes have been proposed to encode such sparse textures for 

computer graphics applications. We will discuss adaptive texture maps, octree 
textures and its variants, as well as spatial hashing.
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One of the first techniques to try to skip over never accessed data are the Adaptive 

Texture Maps of Kraus and Ertl.
The idea is to introduce an indirection in the texture. The indirection table is a 
regular grid that covers the texture space. Each cell can be either empty, or it 

contains the coordinates of a tile. During texture lookup, if the grid cell is empty a 
background color is returned – but usually these cells are never accessed. If the 
grid cell is not empty, then the lookup coordinate is transformed into a coordinate in 

the packed tile map, where the actual texture lookup is performed. 

There are several benefits: there is less memory waste, and it is also possible to 

scale up or down each individual tile, for instance lowering the resolution in regions 
having smooth color variations. It is even possible to do instancing, by reusing a tile 
in several entries of the indirection map.

Of course this idea extends to 3D as well.
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6.1 Adaptive Texture Maps



Adaptive texture maps are a simple but efficient way to skip empty space in 

textures, and provides additional flexibility such as local resolution adjustment.
However, even though they require a single indirection, this requires a custom 
shader to correctly perform interpolation and MIP-mapping.

Also, in volumes, the single indirection does not allow a tight fit around the surface, 
meaning that a lot of empty space is still stored.
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Octree texture focus exactly on this issue, by generalizing to multiple lookups.

Here you can see on the lest a colored 3D model, and on the right the octree that 
encodes the color content. You can see how the structure densify around the 
surface until it reaches the desired voxel resolution. 

Colors are stored in the octree leaves, but also in internal nodes for MIP-mapping.
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6.2 Octree Textures, Brickmaps, N 3 Trees, and Gigavoxels



(animation)

Here is how the lookup is performed. The root node is in red, and the lookup point 
is the white circle. The coordinates of the lookup point are first expressed as 
coordinates within the root node. On the right, you can see the 3D texture that 

stores the actual tree nodes, which we call the node pool. 

Each node is a small 2x2x2 brick, that stores coordinates to its child nodes within 

the node pool, or colors. Having the coordinate of the lookup point within the root, 
we read the coordinates of its child node. 
We then compute the coordinates of the lookup point within the child done, and 

access it in the node pool. This gives us a new child node coordinate, that we 
access similarly. This time a color is retrieved: we reached the bottom of the octree.

This is a very simple process to implement. The main drawback is that it requires 
several dependent lookups, log(N) of them with N the texture resolution.
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This idea has been generalized to subdivide the node into more than 2x2x2. This 

allows a tradeoff between memory and access depth. Indeed the octree provides 
the tighter fit, but reaching the bottom of a 4096 cube tree require 12 lookups. 
Instead, using 8x8x8 subdivisions will require only 4 lookups – but will use more 

memory.

Another extension of this idea is to store density in space for volume rendering. 

This has been done by Gigavoxel, which also introduces  an efficient stackless
traversal and proposes to generate volume data on-the-fly, only when needed for 
rendering.
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To recap, octrees and their generalizations have the following advantages:

- They require no uv and are very simple to build – nowadays this an be done 
directly on the GPU

- They afford for simple local resolution adjustment: just subdivide more locally!

However they have one major drawback, which is that they require a rather 
expensive access with multiple dependent texture lookups. Note that this will run at 
hundreds of frame per seconds on a modern GPU, but that remains significantly 

more expensive that regular texture mapping. Another issue is that filtering, in 
particular interpolation, requires more accesses, as the shader as to implement it 
with up to eight lookups.

Volume approaches also suffer from a thin sheet limitation: it is not possible to give 
different colors to surfaces in close proximity ; even though some works suggest 

using the normal to distinguish between different directional colors.

Finally, like all volume techniques, this requires authoring to be done with a 3D 
texture painting tool.
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The main issues with the octree textures we have seen before is that they are 

hierarchies: Storing the structure of the hierarchy requires additional memory, and 
accessing it requires extra time.
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6.3 Perfect Spatial Hashing
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Instead, spatial hashing stores only the used pixels (or voxels) in a compact hash 

table.
The location of a pixel within the table is given by a hash function applied to its 
coordinates.

In addition it is possible to find minimal perfect hashes. A minimal hash is one 
where the hash table is full. In other words there are no unused slots. 

One important point is that the hash function itself needs to be encoded and this 
may take up a significant amount of memory. So a key question is how this does 

compare to the pointers of a hierarchy. Well it turns out that the overhead can be 
much smaller, as small as 1.44 bits per entry.
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The idea of a perfect spatial hash is to encode the hash function using a small 

auxiliary table, called the offset table. This is inspired by previous work for hashing 
dictionaries of strings.

The hash function can be very simple. It starts by accessing the offset table. The 
access is done using warp around adressing, so many pixels will be mapped to the 
same location.  

The retrieved offset is then added the coordinates of the pixel, and the offset
address is used to access the hash table again with modulo addressing. 

The challenge of course is to create an offset table so that the resulting hash 
function is perfect.

As it turns out, it is possible to create a simple hash function that is well suited for 
GPU evaluation. It contains no branch instructions and enables efficient SIMD 
execution. It requires only four instructions in most cases, and, on average, only 4 

bits per entry. This is more than the theoretical lower bound of 1.44 bits but is still a 
much smaller overhead than with hierarchies.
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This process I just described in 2D is easily extended to 3D. Runtime access has 

the exact same cost as GPUs perform vector arithmetic.
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Filtering can also get tricky, and the most efficient approach is to encode blocks of 

texture data as opposed to single values. This results in higher memory usage 
however.

16
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MIP-mapping is supported by flattening the pyramid in a single sparse texture, 

using the level identifier to compute the new coordinates.
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Interpolation can be done in the shader with multiple accesses. This is a bit 

unfortunate, because now we have up to 16 accesses in 3D (eight times the two 
required for nearest mode access)
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Instead, one possible approach is to use blocking. The idea is to store into the hash 

small texture blocks, instead of single colors. The boundary color is duplicated 
between neighboring blocks. The advantage is that native trilinear interpolation can 
be used, and we are back to two lookups. However, this incurs a large memory 

overhead.

Btw, this approach can also be used with octrees.
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Here you can see a result. In this example the dragon is textured with a sparse 1k 

cubed volume. 
Using a blocked hash for native trilinear interpolation, the texture fits in 77 MB, 
including MIP-mapping – this is shown on the left. On the right, without the blocking 

the storage is down to 17MB.
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Perfect spatial hashing solves one of the key issues of hierarchies, the multiple 

dependent accesses, while preserving a tight storage.
It requires only one indirection for nearest mode lookups, but unfortunately things 
become less elegant with interpolation, which either incurs an access overhead, or 

a memory overhead.
The construction process of perfect spatial hashing is easy to implement, however it 
can take a long time as it is based on a stochastic exploration.
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Perfect Spatial Hashing 5/28/2017

Siggraph 2006
1

We will now discuss a set of methods that share a common idea: defining texture 

information in a volume surrounding the surface.
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7 VOLUME-BASED PARAMETERIZATIONS



The main motivation of the tiletree is that, when texturing a surface with a volume, 

some additional samples are stored. For instance, in this figure, the piece of surface 
is near horizontal, and clearly only the top (pink) samples would be enough to 
define a color field – of course the bottom ones would be fine as well, but the point 

is that we do not need both.
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7.1 TileTrees



(animated)

So what the tile tree does is to use a volume hierarchy – a shallow octree – to 
position 2D tiles around the surface. Then the tiles are looked up from the surface, 
by a simple projection. 

This is illustrated on the right, for a side view. The arrows are showing how the 
surface projects onto the tiles.
Here you can see for volume cells, and this red interval is a 2D tile, and this is 

another, and here you can see which part is actually used, while this other is not.
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Now, instead of storing an actual mapping, the idea is simply use the normal – so 

obviously this requires normal to be defined along the surface. The mapping is thus 
implicit, and the projection is performed along the axis that is most aligned with the 
normal. This can be +/- X, +/-Y or +/- Z.

During construction, the algorithm ensures that all required tiles are there.
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This approach is surprisingly powerful, here you can see a number of configurations that 

are supported.

5
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However it does break in some cases, such as this double bump. So what happens in such 

a case?

6
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This is why there is a hierarchy. In such a case the cell is subdivided to allow for additional, 

smaller tiles to be positioned.

7
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Another case for subdivision is when the tile is not well covered: this would be wasteful. 

8
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So, here is the result for a torus. On the left a visualization of the tiletree in space ; on the 

right the texture storing all the tiles.

9
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The lookup process is fairly simple: first locate the cell enclosing the point, then select a 

face using the normal, project the point onto it and finally access the tile map using 
standard texture accesses. It gets more involved to properly define filtering across tile 
boundaries, but that can be done. The final shader is about 30 lines, with 10 texture 

lookups when the hierarchy has three levels.

10
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Here is a more complex result, and the same dragon as before.

As you can see, this uses 11.3 MB versus 17 MB for the perfect hash without blocking. This 
means that in this case it provides a more compact representation with less overhead for 

the filtered access.

11
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To recap, the tiletree is another technique that requires no UV. The lookup is fairly 

simple, and builds upon 2D filtering in the tilemap, but requires several accesses. 
One drawback is that the construction process is more difficult to implement than an 
octree or a hash map. It computes faster than a hash but still slower than an octree. 

The access overhead, even if smaller especially with interpolation, remains much 
more expensive than a standard texture map. Also keep in mind the comparison is 
subtle because there is a memory-access tradeoff.
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Polycube-Maps

• [Tarini et-al 2014]

The Goal

• Texture mapping

– seamless

– hardware supported

– low distortion

– general object
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Texture Atlas
(multi-chart approach to parameterization)

+ =

2D texture image textured bunny3D mesh

images courtesy of Lévy, Sylvain, Ray and Maillot , SIGGRAPH 02

disk-like patches
texture charts

u

v

• Typically used for environment mapping

Cube-Maps

images from Bubble demonstration program, nVidia

environment 

texturemesh
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Abusing Cube-Maps

• What if we store surface color in a cube-map?

+ =

mesh
with per-vertex 

3D texture coord. (u,v,w)
cube-map textured apple

u

v

w

object spacetexture spaceobject space

Abusing Cube-Maps

• What if we store surface color in a cube-map?

+ =

mesh
with per-vertex 

3D texture coord. (u,v,w)
cube-map textured apple

object spacetexture spaceobject space
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texturetexturetexturetexture
fromfromfromfrom

chart Achart Achart Achart A

texturetexturetexturetexture
fromfromfromfrom

chart Bchart Bchart Bchart B

• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels 

• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels 

texturetexturetexturetexture
fromfromfromfrom

chart Achart Achart Achart A

texturetexturetexturetexture
fromfromfromfrom

chart Bchart Bchart Bchart B
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• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels 

• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels 
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• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels  

• cube-map
– seamless

– a triangle can span multiple 

faces

– mesh independent

– mipmapping ok

– no packing: no wasted texels

– no boundaries, no artifacts

– texel neighbors always 

defined

– does not (~spheres only!)

• texture atlas
– seams

– a triangle cannot span 

multiple charts

– mesh dependency

– mipmapping difficult

– chart packing: wasted texels

– artifacts at boundaries

– no defined neighbors 

for boundary texels 

– works (is general)
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What to Keep 

from CubeMaps

• Per-fragment

• Hardware 
implemented

interpolated coordinates

in 3D texture space

…

from 

rasterizer

F
R

A
G

M
E

N
T

 S
H

A
D

E
R

coordinates 

in 3D texture domain
(a 2-manifold similar to the mesh)

coordinates

in 2D texture domain

projection

2D texture

fetch…

mapping

• Texture 
defined in 3D 
BUT
stored in 2D

• Cube-Maps work well only for sphere-like objects

Going Beyond Apples

≈

sphere-like mesh cubic texture domain

texture spaceworld space
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• But for more general objects?

?

Going Beyond Apples

≈

texture spaceworld space

arbitrary meshes cubic texture domain

• But for more general objects?

?

Going Beyond Apples

≈

texture spaceworld space

arbitrary meshes cubic texture domain

[Praun Hoppe SIGGGRAPH 2003]

...huge distortions,

incompatible topology
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Going Beyond Apples

• But for more general objects?

≈

texture spaceworld space

arbitrary mesh coarse mesh

far too 
complex 

(GPU)

Introducing Polycubes

Po·ly·cube: n. (Geom.) A solid composed 

by multiple unit cubes attached face to face
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• Polycube should roughly resemble the mesh 

mesh polycube

Choosing a Polycube

texture spaceworld space

dual grid

Partition of Texture Space

polycube

2D analogue

case A

case B
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partition of the

parameter space

back to 3D

case 3 case 4-a case 4-b case 5 case 6-a case 6-b

partition of the

parameter space

back to 3D

dual 
cells

case 3

case 4-a

case 4-b

case 5
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Partition of the Parameter Space

case 3

case 4-a

case 4-b

case 5

dual 
cells

stored in texture 
RAM as:

a packed texture image

texture space

(3D!)

the polycube

PolyCube-Maps in a Nutshell

object space

plus a tiny structure 

to store polycube layout
the mesh

(with per-vertex text. coord)

u

v

w

not necessarily

on the polycube

surface: project

map to 2D

a fragment

with interpolated

texture coord

final texel value

for the fragment
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Examples of poly-cubic 

parameterizations

texture space

polycube-map

world space

in texture RAM

uv

w

object

Examples of poly-cubic 

parameterizations

texture space

polycube-map

world space

u

v

w

object

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA



5/28/2017

14

Examples of poly-cubic 

parameterizations

texture space

polycube-map

world space

u

v

w

object

Examples of poly-cubic 

parameterizations

texture space

polycube-map

world space

object

uv

w
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An example application: 

same texture for different LOD

G
e

o
m

e
tr

y
 2

G
e

o
m

e
tr

y
 1

G
e

o
m

e
tr

y
 3

+

+

+

=

=

=

u

v

w

the same 
polycube-map

texture

How to build a

Polycube-Map (for a given mesh)

• Not automatic, to 

this point

– get a suitable 
polycube

– warp it around
the mesh

– project mesh over it

– unwarp 

– global optimization
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Global optimization

projection
(not optimized)

mean value MIPS ext. MIPS

Discussion

Pros
• truly seamless texture 

mapping

• no patch boundaries

• no color bleeding

• very low distortion

• nearly optimal texture 

packing

• bilinear filtering possible

• mipmapping possible

• mesh independency

Cons
• long fragment program

– ~60 GPU instruction long

– could be improved, with  little branching 
support

• 3 t-coords per vertex
– instead of 2

Limits
• cannot handle arbitrary 

shape/topology complexity
– e.g. a tree

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre
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Polycube-Maps
Applicability

Polygonal Meshes Yes

Point Clouds Single color per point

Implicit Surfaces No

Shape/Topology Limits Topology must be reproduced

with low res polycube

Subdivisions Yes

Tessellation Independence Yes

Usability

Automated Mapping Limited

Manual Mapping Extra task: polycube.construction

Task removed: cut identification

Model Editing after Painting No

Resolution Readjustment Possible: add cubes

Texture Repetition Possible: see WANG TILES+PCM

2D Image Representation Poor

Filtering Quality

Magnification Filtering Yes

Minification Filtering Yes, up to cube face size

Anisotropic Filtering No (lacks tangent directions)

Performance

Vertex Data Duplication None 

Storage Overhead 133% storage for texture coords (u,v,w)

Access Overhead 1 indirection

Computation Overhead Limited (5 cases, fits in a ~30 line fragment 

prog)

Hardware Filtering Yes

Implementation

Asset Production 3D painting & polycube generation

Rendering Custom texture access

good

dubious

bad
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Volume-Encoded 
UV-maps

[Tarini 2016]

Volume Encoded  UV-map

Surface Surface Surface Surface SSSS Texture Texture Texture Texture SpaceSpaceSpaceSpace

[0,1][0,1][0,1][0,1]××××[0,1][0,1][0,1][0,1]Box Box Box Box ⊆⊆⊆⊆ ℝℝℝℝ3333

f
UVUVUVUV----mapmapmapmap

represented as…represented as…represented as…represented as…

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre

7.3 Volume-encoded UV-Maps



Encoding  f

u,v
u,v

u,v

u,v

(u,v)

(u,v) (u,v)

(u,v) (u,v)

(u,v)

(u,v)

(u,v)

u,v

store in smallstore in smallstore in smallstore in small
3D texture3D texture3D texture3D texture

Evaluating f

vec2 texture_coord_for_p( vec3 p )

{

p ← p · scale + p0 ;

return text_fetch_3d( p );

}

object spaceobject spaceobject spaceobject space

go to [0,1]go to [0,1]go to [0,1]go to [0,1]3333

trilinear HW interpolationtrilinear HW interpolationtrilinear HW interpolationtrilinear HW interpolation

Minimal ALU Minimal ALU Minimal ALU Minimal ALU 

Single indirectionSingle indirectionSingle indirectionSingle indirection

Hardwired GPUHardwired GPUHardwired GPUHardwired GPU

Cache coherentCache coherentCache coherentCache coherent
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No vertex duplicatesNo vertex duplicatesNo vertex duplicatesNo vertex duplicates
No perNo perNo perNo per----vert UV vert UV vert UV vert UV coordscoordscoordscoords

LOD1 LOD2

LOD3 LOD4
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arbitrary remeshing
(here, quads)
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LOD1LOD1LOD1LOD1

LOD3LOD3LOD3LOD3

LOD2LOD2LOD2LOD2
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Range scans

Scan1Scan1Scan1Scan1 Scan2Scan2Scan2Scan2 Scan3Scan3Scan3Scan3

+ + +  …    =

CombinedCombinedCombinedCombined

Try
our
demo!

google for:
Volume Encoded Volume Encoded Volume Encoded Volume Encoded 
UVUVUVUV----mapsmapsmapsmaps

SIGGRAPH ’17 Courses, July 30 - August 03, 2017, Los Angeles, CA, USA



Encoding  f

u,v
u,v

u,v

u,v
u,v

Regular Volumetric 
Sampling

+
Trilinear Interpolation

=

too simple??

UUUU----V V V V coordscoordscoordscoords

On volume.volume.volume.volume.

Low Low Low Low freq.freq.freq.freq.

SignalSignalSignalSignal

On sufacesufacesufacesuface....

High freq.High freq.High freq.High freq.

Regular 
Sampling

Rethinking Texture Mapping Marco Tarini, Cem Yuksel, and Sylvain Lefebvre



8x4x4 4x2x2
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k = 2
0 1 2 3

u,v u,v u,v u,v u,v u,v u,v

k = 3

A A

B

B

==
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Volumetric UV-Maps: Cuts

Volumetric UV-Maps: Cuts
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Adding discontinuities

texture_coord_for_p( vec3 p )

{

p ← p · scale + p0 ;

return text_fetch_3d( p );

}

p ← p  + ⌊ p /  k   ⌋ ;

Minimal ALU Minimal ALU Minimal ALU Minimal ALU 

Single indirectionSingle indirectionSingle indirectionSingle indirection

Hardwired GPUHardwired GPUHardwired GPUHardwired GPU

Cache coherentCache coherentCache coherentCache coherent

Cuts are Volumetric too!
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Using Vol-Encoded UV-maps

text_coord_for_p( vec3 p )

{

p ← p · scale + p0 ;

p ← p  + ⌊ p /  k   ⌋ ;

return text_fetch_3d( p );

}

Final 2D texture access
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Bilinear Interpolation
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Texture Repeat

ConstructionConstructionConstructionConstruction
ofofofof

Volume Encoded UVVolume Encoded UVVolume Encoded UVVolume Encoded UV----mapsmapsmapsmaps
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Volume-Encoded UV-maps: construction

Standard UV-map

Volume-Encoded UV-maps: construction

Standard UV-map
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Volume-Encoded UV-maps: construction

Standard 
UV-map

Vol-Encoded
UV-map
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Over Range scans

Scan1Scan1Scan1Scan1 Scan2Scan2Scan2Scan2 Scan3Scan3Scan3Scan3

+ + +  …    =

CombinedCombinedCombinedCombined

Over a point cloud
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u,v

(the variables)

UV function: objectives

Box in ℝBox in ℝBox in ℝBox in ℝ3333 Texture Texture Texture Texture SpaceSpaceSpaceSpace

[0,1][0,1][0,1][0,1]××××[0,1][0,1][0,1][0,1]

f : ( x , y , z ) → ( u , v )

GOOD

UV MAP

Restriction on Restriction on Restriction on Restriction on SSSS ::::
Near Near Near Near S S S S ::::

Away from Away from Away from Away from S S S S ::::

Low Distortion Low Distortion Low Distortion Low Distortion 
No overlapNo overlapNo overlapNo overlap
Good / Few cutsGood / Few cutsGood / Few cutsGood / Few cuts
Good CoverageGood CoverageGood CoverageGood Coverage

SSSS
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UV function: objectives

Box in ℝBox in ℝBox in ℝBox in ℝ3333 Texture Texture Texture Texture SpaceSpaceSpaceSpace

[0,1][0,1][0,1][0,1]××××[0,1][0,1][0,1][0,1]

f : ( x , y , z ) → ( u , v )

Restriction on Restriction on Restriction on Restriction on SSSS ::::
Near Near Near Near S S S S ::::

Away from Away from Away from Away from SSSS :::: we don’t carewe don’t carewe don’t carewe don’t care

SSSS

UV function: objectives

Box in ℝBox in ℝBox in ℝBox in ℝ3333 Texture Texture Texture Texture SpaceSpaceSpaceSpace

[0,1][0,1][0,1][0,1]××××[0,1][0,1][0,1][0,1]

f : ( x , y , z ) → ( u , v )

Restriction on Restriction on Restriction on Restriction on SSSS ::::
Near Near Near Near SSSS ::::

Away from Away from Away from Away from SSSS ::::

~ ~ ~ ~ constantconstantconstantconstant
for displacementsfor displacementsfor displacementsfor displacements
orthogonal to orthogonal to orthogonal to orthogonal to SSSS

SSSS
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Orthogonality of  f to  S

Surface Surface Surface Surface SSSS

TextureTextureTextureTexture

Orthogonality of  f to  S

Surface Surface Surface Surface SSSS

TextureTextureTextureTexture
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Orthogonality of  f to  S

Surface Surface Surface Surface SSSS

TextureTextureTextureTexture

Construction: Single Patch / Global

Box in ℝBox in ℝBox in ℝBox in ℝ3333
Texture Texture Texture Texture SpaceSpaceSpaceSpace

f : ( x , y , z ) → ( u , v )SSSS

GOOD

UV MAP

Low Area Distortion Low Area Distortion Low Area Distortion Low Area Distortion 
Low Angle DistortionLow Angle DistortionLow Angle DistortionLow Angle Distortion
No Local OverlapsNo Local OverlapsNo Local OverlapsNo Local Overlaps
No Global OverlapsNo Global OverlapsNo Global OverlapsNo Global Overlaps
Good CoverageGood CoverageGood CoverageGood Coverage
Good Good Good Good / / / / Few Few Few Few cutscutscutscuts

On On On On SSSS :::: Near Near Near Near SSSS ::::

~ constant constant constant constant 
in in in in normal normal normal normal 
directionsdirectionsdirectionsdirections
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Construction 1/2: Single Patch

Box in ℝBox in ℝBox in ℝBox in ℝ3333
Texture Texture Texture Texture SpaceSpaceSpaceSpace

f : ( x , y , z ) → ( u , v )SSSS

GOOD

UV MAP

Low Area Distortion Low Area Distortion Low Area Distortion Low Area Distortion 
Low Angle DistortionLow Angle DistortionLow Angle DistortionLow Angle Distortion
No Local OverlapsNo Local OverlapsNo Local OverlapsNo Local Overlaps
No Global OverlapsNo Global OverlapsNo Global OverlapsNo Global Overlaps
Good CoverageGood CoverageGood CoverageGood Coverage
Good Good Good Good / / / / Few Few Few Few cutscutscutscuts

On On On On SSSS :::: Near Near Near Near SSSS ::::

~ constant constant constant constant 
in in in in normal normal normal normal 
directionsdirectionsdirectionsdirections

Construction 1/2: Single Patch

Jf p = ( �� p , �� p  )

(u,v)

(u,v) (u,v)

(u,v) (u,v)

(u,v)

(u,v)

(u,v)

linear with the vars!

    n     x  �� p = �� p  
p

n

�� p  x      n     = �� p  
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Construction 1/2: Single Patch

Box in ℝBox in ℝBox in ℝBox in ℝ3333
Texture Texture Texture Texture SpaceSpaceSpaceSpace

f : ( x , y , z ) → ( u , v )SSSS

GOOD

UV MAP

Low Area Distortion Low Area Distortion Low Area Distortion Low Area Distortion 
Low Angle DistortionLow Angle DistortionLow Angle DistortionLow Angle Distortion
No Local OverlapsNo Local OverlapsNo Local OverlapsNo Local Overlaps
No Global OverlapsNo Global OverlapsNo Global OverlapsNo Global Overlaps
Good CoverageGood CoverageGood CoverageGood Coverage
Good Good Good Good / / / / Few Few Few Few cutscutscutscuts

On On On On SSSS :::: Near Near Near Near SSSS ::::
Low Area Distortion Low Area Distortion Low Area Distortion Low Area Distortion 

Low Angle DistortionLow Angle DistortionLow Angle DistortionLow Angle Distortion

No Local OverlapsNo Local OverlapsNo Local OverlapsNo Local Overlaps
~ constant constant constant constant 
in in in in normal normal normal normal 
directionsdirectionsdirectionsdirections

~ constant constant constant constant 
in normalin normalin normalin normal
directionsdirectionsdirectionsdirections

Construction 1/2: Single Patch

    n     x  �� p = �� p  

p

n

�� p  x      n     = �� p  

Jf p = ( �� p , �� p  )

linear with the vars!
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Energy for Single Patch Construction

Jf p = ( �� p , �� p  )
linear with the vars!

    n     x  �� p = �� p

p

n �� p  x      n     = �� p  

�� p  x  �� p = n ∙ ��

Energy for Single Patch Construction

Jf p = ( �� p , �� p  )

    n     x  �� p − �� p

p

n �� p  x      n     − �� p  

�� p  x  �� p − n ∙ ��

 ‖
2

2
 ‖

 ‖
2

2
 ‖

 ‖
2

2
 ‖

linear with the vars!
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Construction 2/2: Global

Box in ℝBox in ℝBox in ℝBox in ℝ3333
Texture Texture Texture Texture SpaceSpaceSpaceSpace

f : ( x , y , z ) → ( u , v )SSSS

GOOD

UV MAP

Low Area Distortion Low Area Distortion Low Area Distortion Low Area Distortion 
Low Angle DistortionLow Angle DistortionLow Angle DistortionLow Angle Distortion
No Local OverlapsNo Local OverlapsNo Local OverlapsNo Local Overlaps
No Global OverlapsNo Global OverlapsNo Global OverlapsNo Global Overlaps
Good CoverageGood CoverageGood CoverageGood Coverage
Good Good Good Good / / / / Few Few Few Few cutscutscutscuts

On On On On SSSS :::: Near Near Near Near SSSS ::::

No Global OverlapsNo Global OverlapsNo Global OverlapsNo Global Overlaps

Good CoverageGood CoverageGood CoverageGood Coverage

Good / Few cutsGood / Few cutsGood / Few cutsGood / Few cuts

~ constant constant constant constant 
in in in in normal normal normal normal 
directionsdirectionsdirectionsdirections

Construction 2/2: Global

x2
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Construction 2/2: Global

(u,v)

(u,v) (u,v)

(u,v) (u,v)

(u,v)

(u,v)

(u,v)

(u,v)

T

T

T

T

T

T

TT

T

Construction 2/2: Global
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Texture Authoring: business as usual

Texture Authoring: business as usual
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Texture Authoring: business as usual

VeUV with Tangent Space Normal Mapping
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VeUV with Skinning 

Direct Texture Painting
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Limitation

• Not one solution for all cases

• Too tiny features � local loss of injectivity

Conclusions

A new UVUVUVUV----map representation map representation map representation map representation (volumetric!) 

Equivalent to traditional per-vertex one…

…but :

• applicable to most surface representations 
(not just 2manifold meshes)

• no vertex replications (in polygonal mesh)

• often << space (but not always)

• independent on the meshing!

• texture + UVtexture + UVtexture + UVtexture + UV----map can be shared by different map can be shared by different map can be shared by different map can be shared by different LoDsLoDsLoDsLoDs
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VeUV with Invisible Seams ?

• The two techniques can in theory be combined!

Vol Encoded UV-maps

Applicability

Polygonal Meshes Quads & triangles

Point Clouds Yes

Implicit Surfaces Yes

Shape/Topology Limits Thin parts get the same color

Subdivisions Yes!

Tessellation Independence Yes!

Usability

Automated Mapping Limited

Manual Mapping ~ as customizable as standard

3D Editing after Painting No

Resolution Readjustment Problematic

Texture Repetition Yes

2D Image Representation Yes

Filtering Quality

Magnification Filtering Yes, with seam artifacts

Minification Filtering Yes, with seam artifacts

Anisotropic Filtering No

Performance

Vertex Duplication None

Storage Overhead can much better or much worse

Access Overhead 1 indirection (trinliearly interpolated)

Computation Overhead Tiny program in vertex fragment 

(a pair of instructions)

Hardware Filtering Yes

Implementation

Asset Production Small impact, most existing tool reusable

Rendering Simple indirection

S
a
m

e
 s

to
ry

 

a
s
 s

ta
n
d
a
rd

!

good

dubious

bad
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