# On the Parameterization of Catmull-Rom Curves

Cem Yuksel Scott Schaefer John Keyser Texas A&M University





- Important Properties
  - Interpolate control points
  - Local support
  - Piecewise polynomial representation



- Important Properties
  - Interpolate control points
  - Local support
  - Piecewise polynomial representation



# Catmull-Rom Curves P<sub>1</sub> P<sub>0</sub> P<sub>2</sub>



 $C_{12} (P_{0,1,2,3}, t_{0,1,2,3})$ 





- Parameterization
  - Uniform:

$$t_{i+1} = t_i + 1$$

- Chordal:

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|$$

- Parameterization
  - Uniform:
    - $t_{i+1} = t_i + |\mathbf{P}_{i+1} \mathbf{P}_i|^0$

- Chordal:

 $t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^1$ 

• Parameterization

$$t_{i+1} = t_i + |\mathbf{P}_{i+1} - \mathbf{P}_i|^{\alpha}$$

• Parameterization

$$t_{i+1} = t_i + \left| \mathbf{P}_{i+1} - \mathbf{P}_i \right|^{\alpha}$$



• Parameterization

$$t_{i+1} = t_i + \left| \mathbf{P}_{i+1} - \mathbf{P}_i \right|^{\alpha}$$



On the Parameterization of Catmull-Rom Curves



On the Parameterization of Catmull-Rom Curves

#### **CUSPS & SELF-INTERSECTIONS**























On the Parameterization of Catmull-Rom Curves

#### **DISTANCE BOUND**



• Distance to the infinite line



• Distance to the infinite line  $P_1$  h  $P_2$   $d_1$   $d_2$   $P_3$ 













• Distance to the end points



$$l \leq \frac{d_2 \sqrt{r^2 - r^{4\alpha}}}{3 r^{\alpha} (1 + r^{\alpha})}$$





On the Parameterization of Catmull-Rom Curves

#### **INTERSECTION-FREE CURVES**









• Avoid self-intersections

– Centripetal parameterization

- Avoid adjacent segment intersections – Control polygon angle >  $\pi/3$
- Avoid non-adjacent segment intersections

   Bounding box

On the Parameterization of Catmull-Rom Curves

#### DISCUSSION

- Distance to Control Polygon
  - Uniform is closer for longer segments
  - Chordal is closer for shorter segments



- Edge Direction
  - Chordal has extreme sensitivity to short edge directions

- Edge Direction
  - Chordal has extreme sensitivity to short edge directions



- Edge Direction
  - Chordal has extreme sensitivity to short edge directions



- Edge Direction
  - Chordal has extreme sensitivity to short edge directions



- Curvature
  - Centripetal *tends* to have higher curvature at control points.



- Curvature
  - Centripetal *tends* to have higher curvature at control points.



- Curvature
  - Centripetal *tends* to have higher curvature at control points.



- Curvature
  - Centripetal *tends* to have higher curvature at control points.





Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009





Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009





Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," Siggraph Asia 2009



# Summary

• Parameterization of Catmull-Rom curves

 $0 \leq \alpha \leq 1$ 

- Cusps and self-intersections
- Distance bound
- Intersection-free curves

• C<sup>1</sup> Catmull-Rom curves only!

On the Parameterization of Catmull-Rom Curves

#### **QUESTIONS?**