
Fast Real-time Caustics

from Height Fields

Cem Yuksel and John Keyser
Texas A&M University

Motivation

Motivation

Motivation

� Caustics are important

no caustics with caustics

Motivation

� Caustics are important

� Caustics are SLOW!

� Current real-time systems

� Fake caustics� Fake caustics

� No caustics

� Real-time caustics

� Only in tech demos

� We need a FAST technique!

Previous Work

� Monte Carlo path tracing

[Kajiya 1986]

� Wavefront propagation

[Mitchell and Hanrahan 1992][Mitchell and Hanrahan 1992]

� Backward ray tracing

[Arvo 1986]

� Photon mapping

[Jensen 1996]

Photon mapping – Image courtesy of Henrik Wann Jensen

Previous Work

� Caustics maps

[Szirmay-Kalos et al. 2005]

[Wyman and Davis 2006]

[Shah et al. 2007]

[Wyman 2008]

Hierarchical caustic maps – Image courtesy of Chris Wyman

Previous Work

� Caustic textures

[Stam 1996]

� Beam Tracing

[Heckbert and Hanrahan 1984][Heckbert and Hanrahan 1984]

[Watt 1990]

[Nishita and Nakamae 1994]

[Iwasaki et al. 2001]

[Ernst et al. 2005]

Interpolated Warped Volumes – Image courtesy of Ernst et al.

Previous Work

� Rendering Water Caustics – GPU Gems

[Guardado and Sanchez-Crespo 2004]

Hierarchical caustic maps – Image courtesy of Guardado and Sanchez-Crespo

Our Solution

� Fast real-time caustics

� From a height field surface

� Onto a planar surface

Caustics Computation

� Starting from the caustic-receiving surface

� Flat plane

� A caustic map that is mapped onto this plane

Caustics Computation

� For each pixel, sum refracted radiances toward the pixel

Caustics Computation

� Accurate as long as R is large enough

� Less accurate when the height field has

� Large and

� High frequency deformations� High frequency deformations

� Too small R � Underestimation

� Most simulations require very small R

The Two-Pass Algorithm

� Similar to separable convolution filtering

� Pass 1: caustics in X direction

� Pass 2: caustics in Y direction

The Two-Pass Algorithm

� Pass 1:

X direction

Y direction

The Two-Pass Algorithm

� Pass 1:

n

X direction

Y direction

n

The Two-Pass Algorithm

� Pass 1:

X direction

Y direction

The Two-Pass Algorithm

� Pass 1:

n

X direction

Y direction

n

The Two-Pass Algorithm

� Pass 1:

n

X direction

Y direction

n

The Two-Pass Algorithm

� Pass 1:

n

X direction

Y direction

n

The Two-Pass Algorithm

� Pass 1:

n

X direction

Y direction

n

The Two-Pass Algorithm

� Pass 1:

X direction

Y direction

The Two-Pass Algorithm

� Pass 1:

X direction

Y direction

The Two-Pass Algorithm

� Pass 1:

The Two-Pass Algorithm

� Pass 2:

� Accumulate caustic values at different textures

Implementation

� The whole computation is in Fragment Shaders

� Repeated computations in Pass 1

� Refracted ray directions

� Speed-up� Speed-up

� Introduce an additional pass before Pass 1

� Precompute refracted ray directions

� Pseudo codes for Pass 1 and Pass 2 are in the paper.

Implementation
void Pass1(out Pass1Out Out,

in float2 P_G : TEXCOORD0,

in float2 P_C : TEXCOORD1,

uniform sampler2D heightField)

{

// initialize output intensities

float intensity[N];

for (int i=0; i<N; i++) intensity[N] = 0;

// initialize caustic-receiving pixel positions

float P_Gy[N];

for (int i=-N_HALF; i<=N_HALF; i++) P_Gy[i] = P_G.y + i;

// for each sample on the height field

for (int i=0; i<N; i++) {

// find the intersection with the ground plane

float3 pN = P_C + (i - N_HALF) * xDirection;

float2 intersection = GetIntersection(heightField, pN);

// ax is the overlapping distance along x-direction

float ax = max(0, 1 - abs(P_G.x - intersection.x));

// for each caustic-receiving pixel position

for (int j=0; j<N; j++) {

// ay is the overlapping distance along y-direction

float ay = max(0, 1 - abs(P_Gy[j] - intersection.y));

// increase the intensity by the overlapping area

intensity[j] += ax*ay;

}

}

// copy the output intensities to the color channels

Out.color0 = float4(intensity[0], intensity[1], intensity[2], intensity[3]);

Out.color1 = float3(intensity[4], intensity[5], intensity[6]);

}

Implementation
void Pass2(out float4 color : COLOR,

in float2 P_G : TEXCOORD0,

uniform sampler2D inColor0,

uniform sampler2D inColor1)

{

float val = 0;

val += tex2D(inColor0, P_G + float2(0, -3)).r;

val += tex2D(inColor0, P_G + float2(0, -2)).g;

val += tex2D(inColor0, P_G + float2(0, -1)).b;

val += tex2D(inColor0, P_G).a;

val += tex2D(inColor1, P_G + float2(0, 1)).r;

val += tex2D(inColor1, P_G + float2(0, 2)).g;

val += tex2D(inColor1, P_G + float2(0, 3)).b;

color = val;

}

Results

Final Points

� Advantages
� Works fast!

� Does not require high-res water surface

� Sequential texture access – cache friendly

� Limitations� Limitations
� Water surface must be a height field

� Receiving surface must be a plane

� Underestimation when R is too small

� Non-planar receivers?
� Can be approximated as planar

� Better than no caustics or “fake” caustics

Questions?

Fast Real-time Caustics from Height Fields
Cem Yuksel and John Keyser

Texas A&M University

no caustics with caustics

