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Fig. 1. Example curves generated from the same control points using our formulation with (a) Bézier interpolation function, (b) circular interpolation
function, (c) elliptical interpolation function, and (d) hybrid (circular-elliptical) interpolation function. All curves have guaranteed C2 continuity
and local support, but they produce different shapes from the same control points. The purple lines indicate the curvature of the curves.

We present a class of non-polynomial parametric splines that interpolate

the given control points and show that some curve types in this class have

a set of highly desirable properties that were not previously demonstrated

for interpolating curves before. In particular, the formulation of this class

guarantees that the resulting curves have C2
continuity everywhere and

local support, such that only four control points define each curve segment

between consecutive control points. These properties are achieved directly

due to the mathematical formulation used for defining this class, without

the need for a global numerical optimization step. We also provide four

example spline types within this class. These examples show how guaran-

teed self-intersection-free curve segments can be achieved, regardless of the

placement of control points, which has been a limitation of prior interpolat-

ing curve formulations. In addition, they present how perfect circular arcs

and linear segments can be formed by splines within this class, which also

have been challenging for prior methods of interpolating curves.
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1 INTRODUCTION
Polynomial parametric splines have served us well in computer

graphics. Among them, approximating splines (such as B-splines

and NURBS) have been particularly popular, as they can provide

important properties like C2
continuity and local support, and they

are not prone to producing unintended cusps and self-intersections.

However, approximating splines do not go through the control

points, which is a highly desirable property for some applications

and it is completely essential for others, such as the interpolation

of animation keyframes.

Interpolating polynomial parametric splines, on the other hand,

do go through the control points and thereby allow specifying exact

positions on the curve. Yet, most interpolating splines are notori-

ously difficult to control, because the curve segments that connect

consecutive control points can include unintended features like

cusps and self-intersections that can be hard to avoid in practice.

These problems are often exacerbated with C2
continuous inter-

polation, which typically requires higher-order polynomials with

each control point affecting a larger portion of the curve. Recent

work addressed these long-standing problems that plagued interpo-

lating splines by introducing costly numerical optimizations [Yan

et al. 2017] with control points having global support (i.e. each con-

trol point affects the entire curve). Unfortunately, this approach

not only leads to complex formulations for curves, but can also be

computationally expensive for some applications, and it is entirely

impractical when a large number of curves are involved, such as

hair modeling applications. Also, it makes it difficult to form linear

segments and, since these curves provide onlyG2
continuity, they

are not applicable when C2
continuity is needed.

In this paper, we present a class of interpolating splines with

a different mathematical foundation. The splines in this class are

formed by a trigonometric interpolation of an arbitrarily chosen

interpolation function that connects three consecutive control points.
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The underlying formulation of this class provides a simple mech-

anism for constructing custom curve types that can inherit the

properties a given application needs by simply picking a suitable

interpolation function. Most importantly, regardless of the chosen

interpolation function, all curves in this class satisfy the following

crucial properties:

• Guaranteed C2
(thereby curvature) continuity everywhere,

• Local support with each curve segment being controlled by

only four nearby control points, and

• Direct evaluation from control points without solving a global

optimization problem.

We demonstrate the effectiveness of this formulation by pre-

senting example interpolation functions (Fig. 1). We show that by

appropriately choosing the interpolation function we can guarantee

cusp-free and self-intersection-free curve segments between control

points. Note that the only type of interpolating polynomial splines

that can provide such a guarantee are the ones with onlyC1
continu-

ity or with global numerical optimizations (achievingG2
continuity).

We also show that it is possible to define an interpolation function

such that the resulting curves can represent perfect circular (and

elliptical) arcs, which has been a challenge for most interpolating

splines. In addition, unlike polynomial curves with global support,

it is easy to form perfectly linear segments with all example interpo-

lation functions we present, since all curves in this class have local

support. Furthermore, as the interpolation functions we present are

continuous and do not involve solving an optimization problem that

can lead to numerical instability, continuous control point motion

leads to continuous curve deformation. Moreover, we show that it

is possible to design an interpolation function with well-defined

bounds (i.e. distance to the control polygon) and, while the convex

hull property does not apply to interpolating splines
1
, we explain

that bounds of the curve segments between control points can be

defined using the bounds of the interpolation function.

Contributions: Unlike similar curve formulations in prior work,

we show that our formulation can lead to curve types with important

properties, such as guaranteed self-intersection-free segments, in ad-

dition to having local support, C2
continuity everywhere, bounded

distance to the control polygon, and the ability to form perfectly

linear and circular/elliptical segments, all of which are satisfied in

higher dimensions as well. To our knowledge, no prior curve for-

mulation can satisfy this set of properties. As such, two of the curve

types we represent in this paper are strong alternatives to replace

existing curve formulations for various graphics applications, pro-

viding interpolating curves with the set of properties mentioned

above. Though the significance of some of these properties can be

application-dependent, we do not specifically target a particular

application for our evaluations in this paper.

2 RELATED WORK
There is a large body of work in computer graphics on interpolating

curve constructions [Hoschek and Lasser 1993]. Here we briefly

discuss some of the more common representations.

1
Any formulation for interpolating splines must produce curves that are not bounded

by the convex hull of the control polygon, unless the curve has only C0
continuity.

Catmull-Rom splines [Barry and Goldman 1988; Catmull and

Rom 1974], combining Lagrange interpolation with B-spline basis

functions, are one of the most popular formulations for interpolat-

ing curves. Subdivision curves [Deslauriers and Dubuc 1989; Dyn

et al. 1987] can be used for representing interpolating curves as

well, and it is possible to approximate circles [Sabin and Dodgson

2005]. Interpolating B-splines can be formed by solving a tridiago-

nal system of equations [Farin 2002]. None of these formulations,

however, can guarantee cusp-free curves with C2
continuity, and

cusps and self-intersections appear when the distances between

control points have a significant enough variation. In the case of

C1
Catmull-Rom curves, however, centripetal parameterization can

uniquely guarantee no self-intersections within curve segments

between consecutive control points [Yuksel et al. 2009b, 2011].

Due to the difficulties of avoiding unintended self-intersections

with interpolating curves, Bézier curves, which only interpolate the

first and the last control points, are more commonly used in practice.

In particular, cubic Bézier curves with four control points are ubiq-

uitous in computer graphics applications. While most applications

allow the user to specify all Bézier control points, C2
splines with

monotonic curvature can be formed by restricting the locations of

internal control points [Higashi et al. 1988]. Class A Bézier curves

[Farin 2006; Mineur et al. 1998] achieve monotonic curvature by

limiting the degree of freedom. Log-aesthetic curves [Miura and

Gobithaasan 2014; Miura et al. 2013; Yoshida et al. 2009; Yoshida and

Saito 2017] and clothoids [Havemann et al. 2013; McCrae and Singh

2009; Schneider and Kobbelt 2000] produce curves with monotonic

curvature, which is desirable in some design applications, but their

generation involves iterative optimization processes for placing the

internal Bézier control points. Moreover, depending on the configu-

ration of the interpolated control points, minor variations in control

point positions can lead to discontinuous changes in the gener-

ated curve. Recently, κ-curves [Yan et al. 2017] were introduced for

generating piecewise-quadratic Bézier curves with automatically-

placed Bézier control points using an iterative global optimization

process. κ-curves have G1
continuity at inflection points and G2

continuity everywhere else, and the local curvature maxima are

at control points. While control points have global support with

κ-curves, they tend to have more significant influence in a smaller

region. Nonetheless, global support makes it difficult to form per-

fectly linear segments with these curves. Though κ-curves appear
to be effective in simple 2D drawing applications, they are not as

suitable for some other applications, since they cannot provide C2

continuity and require a relatively expensive global optimization.

An extension of this approach uses a rational quadratic Bézier for-

mulation to form circular segments [Yan et al. 2019]. In comparison,

the curve formulation we present in this paper ensures C2
continu-

ity everywhere, provides local support, and allows direct evaluation

from the control points without solving a global optimization prob-

lem. Other properties of the curves in this new class depend on the

chosen interpolation function.

Our curve construction is similar in spirit to the formulation

of Overhauser [1968] that linearly blends two parabolas with G1

continuity. This approach was also used for blending circular arcs

and lines [Pobegailo 1992; Wenz 1996] and higher degree poly-

nomial curves to achieve C2
continuity [Wiltsche 2005]. An al-
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ternative formulation uses B-spline basis functions for blending

Lagrange [Röschel 1997] or Hermite [Gfrerrer and Röschel 2001]

interpolants. More recently, Juhász and Róth [2014] extended the

blending formulation for inserting additional control points to pro-

duce a trigonometric curve that interpolates the given control points

with the desired degree of continuity. More similar to our formu-

lation, Szilvási-Nagy and Vendel [2000] and Séquin et al. [2005]

independently proposed interpolating circular arcs with a trigono-

metric blending function, identical to ours, and Sun and Zhao [2009]

presented a similar formulation with rational quadratic Bézier in-

terpolation that can form conic sections. Pobegailo [2013] proposed

an alternative blending formulation using Bernstein polynomials.

Unfortunately, none of these curve types that provideC2
continuity

prevent self-intersecting curve segments. Thus, they inherit this

crucial limitation that plagued interpolating curve formulations and

hindered their use in practice. The curve types we present in this

paper show that these ideas can be extended to form interpolating

curves with self-intersection-free segment by carefully choosing an

interpolation function.

3 THE SPLINE FORMULATION
The interpolating spline formulation we describe in this paper relies

on interpolation functions. The role of an interpolation function

is to define a curve that goes through three consecutive control

points. Let Fi be an interpolation function defining a curve that

goes through control points pi−1, pi , and pi+1. The interpolation
functions are constrained so that

Fi (0) = pi−1 , Fi ( π
2
) = pi , Fi (π ) = pi+1 . (1)

The curve segment Ci that interpolates the control points pi and
pi+1 is constructed by blending these two interpolation functions

Fi and Fi+1. We use trigonometric interpolation for our blending

function, such that

Ci (θ ) = cos
2θ Fi (θ + π

2
) + sin2θ Fi+1(θ ) , (2)

where θ ∈ [0, π
2
] is a normalized parameter value.

We show that this curve formulation guarantees C2
continuity

regardless of the chosen interpolation function, starting with C0
.

By definition, Fi+1 interpolates control points pi and pi+1 as well.
Therefore, Ci provides an interpolating curve formulation with C0

continuity, since Ci ( π
2
) = Ci+1(0) = pi+1.

For C1
continuity, we must test the derivative of this curve

C′
i (θ ) = 2 cosθ sinθ

(
Fi+1(θ ) − Fi (θ + π

2
)
)

+ cos2θ F′i (θ +
π
2
) + sin2θ F′i+1(θ ) , (3)

where C′
i = dCi/dθ and F′i = dFi/dθ denote the first derivatives.

Note that the first term is zero at the end points of the curve seg-

ment and the derivatives at the control points only depend on the

derivative of one interpolation function, such that C′
i (0) = F′i (

π
2
)

and C′
i (
π
2
) = F′i+1(

π
2
). Thus, C′

i (
π
2
) = C′

i+1(0) = F′i+1(
π
2
).

For C2
continuity, we must also check the second derivative of

the curve,

C′′
i (θ ) = 2

(
cos

2θ − sin
2θ
) (

Fi+1(θ ) − Fi (θ + π
2
)
)

+ 4 cosθ sinθ
(
F′i+1(θ ) − F′i (θ +

π
2
)
)

+ cos2θ F′′i (θ +
π
2
) + sin2θ F′′i+1(θ ) . (4)

At the control points the first term of this equation is zero by defini-

tion (since Fi ( π
2
) = Fi+1(0) and Fi (π ) = Fi+1( π

2
)), and the second

term is zero as well. Therefore, the second derivative at the ends of

the curve segment depends on only one of the interpolation func-

tions, such that C′′
i (0) = F′′i (

π
2
) and C′′

i (
π
2
) = F′′i+1(

π
2
). Thus, as long

as the interpolation functions within the range θ ∈ [0, π
2
] have C2

continuity, the resulting curve is also C2
continuous.

While C2
continuity is important in practice for defining smooth

curves, a higher degree of continuity is seldom needed. Nonetheless,

it is possible to extend this formulation to achieve C3
continuity if

desired, but this requires additional restrictions on how the interpo-

lation functions can be defined. The third derivative of the curve

can be written as

C′′′
i (θ ) = 8 cosθ sinθ

(
Fi (θ + π

2
) − Fi+1(θ )

)
+ 6

(
cos

2θ − sin
2θ
) (

F′i+1(θ ) − F′i (θ +
π
2
)
)

+ 6 cosθ sinθ
(
F′′i+1(θ ) − F′′i (θ +

π
2
)
)

+ cos2θ F′′′i (θ +
π
2
) + sin2θ F′′′i+1(θ ) , (5)

The first and the third terms of this equation are zero at the ends

of the curve segment. However, for the second term to be zero, the

first derivatives of the interpolation functions must align at the two

ends of the curve. The interpolation function examples we discuss

in the next section do not enforce this additional condition, so they

do not provide C3
continuity.

Note that the blending formulation in Equation 2 is simply a

linear interpolation (using trigonometric weights) of two functions.

Therefore, if the representation of the interpolation function is affine

invariant, the resulting curve is affine invariant as well. Furthermore,

if the functions Fi and Fi+1 have well-defined bounds,Ci is bounded
by their combination (i.e. the bounding box of the two bounding

boxes, the convex hull of the two convex hulls, or the maximum of

the two distances to the control polygon). The bounds for Ci can
also be computed for a specific θ value by simply interpolating the

bounds of the interpolation functions using Equation 2.

This formulation leads to a class of interpolating splines with each

spline formulation in this class using a different interpolation func-

tion. Regardless of the chosen interpolation function, the resulting

curves are guaranteed to be C2
continuous. Since the interpolation

functions only consider three consecutive control points, the curves

have local support and they do not require a global optimization

step. Other properties of the curve types within this class depend

on the chosen interpolation function.

4 EXAMPLE INTERPOLATION FUNCTIONS
It is easy to imagine various types of interpolation functions that

can be used with the formulation described above. Indeed, since

the only requirement on the interpolation function is that it goes
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(1-t )      + t

pi+1

pi

pi–1

F (t)i

bi,1

bi,0= bi,2=

pi+1bi,1i i

(1-t )       + tpi–1 bi,1i i

Fig. 2. The construction of the Bézier interpolation function.

through three consecutive control points, unusual formulations that

have not been previously used for defining splines can be utilized as

interpolation functions. In this section we provide some examples

that demonstrate the effectiveness of our spline formulation. Note

that since three points in space define a plane, the interpolation

functions can be formulated in 2D, but the control points and the

curve segments formed by Equation 2 can have any dimensions.

4.1 Bézier Interpolation Function
The first interpolation function Fi we present is a typical spline

formulation, using a quadratic Bézier curve that interpolates three

consecutive control points pi−1, pi , and pi+1. A quadratic Bézier

is defined by three control points bi,0, bi,1, and bi,2 and it goes

through the first and the last one. Therefore, the placement of these

two control points is trivial, such that bi,0 = pi−1 and bi,2 = pi+1,
as shown in Fig. 2. The middle control point bi,1 must be chosen

such that the curve goes through pi . Let ti ∈ [0, 1] be the normalized

parameter value for the Bézier curve at pi . Then, using quadratic

Bézier formulation, we can write

bi,1 =
pi − (1 − ti )

2 bi,0 − t2i bi,2
2(1 − ti )ti

. (6)

Note that any choice for ti forms a valid interpolation function;

therefore, ti can be chosen arbitrarily.

We favor picking the ti that places the local maximum of curva-

ture at pi . The corresponding ti value can be calculated by solving

the cubic equation

∥pi+1 − pi−1∥2 t3i + 3 (pi+1 − pi−1) · (pi−1 − pi ) t2i
+ (3pi−1 − 2pi − pi+1) · (pi−1 − pi ) ti − ∥pi−1 − pi ∥2 = 0 , (7)

which has a single root in [0, 1] for any placement of the control

point positions pi−1, pi , and pi+1 [Yan et al. 2017].

This particular choice for ti bounds the distance between the

curve and the control polygon, such that the distance between curve

segment Ci and the line that connects its end points hi is bounded
by hi/di ≤ 1/8, where di = ∥pi+1 − pi ∥. A proof of this property is

provided under Theorem A.1 in the appendix.

This choice for ti also ensures that the two parts of the Bézier

curve that interpolate consecutive control points remain between

the control points, as shown in Fig. 3. Consider the shaded area

between two parallel lines that are perpendicular to the line that

connects the two consecutive control points pi and pi+1 and each

passing through one of the control points. The curve segment be-

tween these control points is contained within this area (see Theo-

rem A.2 in the appendix for a proof). This property holds in higher

Fi+1

Fi Ci

pi+1

pi

pi–1 pi+2

Fig. 3. The curve generated with Bézier interpolation function remains
between two control points (the shaded region).

dimensions as well, where Ci is bounded by two planes or hyper-

planes that are perpendicular to pipi+1.
Furthermore, this particular choice for ti also guarantees that the

resulting curve segment Ci cannot contain self-intersections. We

provide a proof of this property in the appendix under Theorem A.3.

Cusps can appear only at control points and only in the singular

case when three consecutive control points are colinear and out of

order (i.e. the one in the middle is not between the other two).

Note that while we pick the ti value that places pi at the local
maximum of curvature for the interpolation function, the final curve

Ci that combines two interpolation functions can have its maximum

local curvature at a slightly different position. Our experiments

with this particular interpolation function revealed that the local

curvature maxima appear very close to control points (Fig. 4).

Constructing a global parameterization s with this interpolation

function can be achieved by assigning global parameter values si to
each control point, such that

si = αi ti + si−1 , and (8)

si+1 = αi+1ti+1 + si = αi + si−1 , (9)

where αi = si+1 − si−1 is a scaling factor for the normalized local

parameter of Fi . The first values of this recursive definition can

be chosen arbitrarily, such as s0 = 0 and α0 = 1. For each curve

segment, where s ∈ [si , si+1], the local parameter θ can be defined as

θ = (π/2)(s − si )/(si+1 − si ). Note that constructing a global param-

eterization is not required for evaluating Ci and it can be computed

directly using the local parameters.

Bézier curves remain within the convex hull of their control

points. Therefore, regardless of the choice for ti , the convex hull

of the curve segment Ci can be defined using the convex hulls of

the parts of the two interpolation functions between control points

pi and pi+1. Since these two points are shared by the interpolation

functions, the convex hull ofCi is formed by four points in total, two

of which are pi and pi+1, and the other two are (1 − ti )bi,1 + tipi+1
and (1 − ti+1)pi + ti+1bi+1,1 (see Fig. 2).

Fig. 4. An example curve generated with Bézier interpolation function,
showing that the local curvature maxima appear near control points.
The purple lines indicate the curvature of the curve.
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(a) (b)

Fig. 5. Interpolating splines generated using circular interpolation
functions (a) can be far from the control polygon and (b) lead to cusps
and self-intersections within curve segments.

Overall, this quadratic Bézier interpolation function leads to C2

curves with each segment defined by only four control points, guar-

antees no self-intersections within curve segments, and ensures that

the resulting curve always moves towards the next control point. On

the other hand, just like polynomial interpolating curves, it cannot

represent perfect circular arcs.

4.2 Circular Interpolation Function
The second interpolation function we present is a circle that goes

through three consecutive control points. This is not a typical formu-

lation for splines, as a circle cannot handle more than three control

points. Nonetheless, a circle can be used as an interpolation function

with our spline formulation. Indeed, this particular interpolation

function also appears in prior blending curve formulations [Séquin

et al. 2005; Szilvási-Nagy and Vendel 2000; Wenz 1996]. Regardless

of dimensions and control points positions, there is always a cir-

cular arc that goes from pi−1 to pi+1 and passes through pi . In the

singular case when control points are colinear, leading to a circle

with infinite radius, we simply use a line segment instead.

This interpolation function produces perfect circular arcs when-

ever four consecutive control points are on the same circle. The

resulting curves address a fundamental limitation of polynomial

spline formulations.

Yet, other properties of splines formed by this circular interpola-

tion function are not as desirable. First of all, curves can be substan-

tially far from the control polygon, as shown in Fig. 5a. Furthermore,

it is possible to get cusps and self-intersections with this interpola-

tion function, as shown in Fig. 5b.

Another difficulty with this interpolation function is handling

affine transformations. Translation, rotation, and uniform scale ap-

pi+1
pi

pi–1

Fi

qi

vi
ui

Fig. 6. The affine-invariant representation of the circular interpola-
tion function.

pi+1
pi

pi–1

Fi secondary
axis

primary
axis pi+1

pi

Ci

(a) (b)

Fig. 7. Elliptical interpolation function: (a) the construction of the
ellipse and (b) the resulting curves contained in the shaded area.

plied to the control points or the resulting curve produces the same

result, but this is not true for non-uniform scale (and thereby shear).

This comes as no surprise, because circles that undergo non-uniform

scale are no longer circles, they are ellipses. Yet, supporting non-

uniform scale is particularly important for rendering operations

with rasterization. We can achieve this by converting our circle

function to a representation that can handle all affine transforma-

tions. The representation we use for Fi consists of the center of the
circle qi and two perpendicular vectors ui and vi that are on the

same plane as the circle and have the same length as the radius of

the circle, as shown in Fig. 6. We arbitrarily pick vi = pi − qi and
the resulting interpolation function F̃i representing the circular arc

using a normalized local parameter t ∈ [0, 1] can be written as

F̃i (t) = cos(αi t + δi ) ui + sin(αi t + δi ) vi + qi , (10)

where αi and δi are chosen such that F̃i (0) = pi−1 and F̃i (1) = pi+1.
A global parameterization can be formed similar to the Bézier inter-

polation function described above, using ti = −δi/αi that leads to
F̃i (ti ) = pi . Obviously, this representation must be computed prior

to applying non-uniform scale. Note that this representation can

properly handle perspective transformations as well.

4.3 Elliptical Interpolation Function
A significantly better formulation can be achieved using ellipses,

instead of circles. However, three points are not enough to uniquely

define an ellipse. To narrow down the solution space into a unique

ellipse, we introduce additional constraints, resulting in a novel

formulation for constructing splines with ellipses.

First, we make sure that pi is along one of the two major axes of

the ellipse, as shown in Fig. 7a. We refer to this axis as the primary
axis. Second, we pick one of the other control points, either pi−1 or
pi+1, whichever one is further away from pi , and place it along the

other major axis, referred to as the secondary axis. We impose no

restrictions on which axis would be the shorter one (i.e. the semi-

major axis). Finally, we pick the ellipse that places the third control

point on the other side of the primary axis. Since it is closer to pi
than the other control point, it resides somewhere between two the

vertices of the ellipse (i.e. the points on the ellipse that intersect

with one of the axes). These restrictions uniquely define an ellipse.

Let pi+1 be further away from pi than pi−1 (as in Fig. 7a). The set

of ellipses that have pi and pi+1 as vertices on the primary and

secondary axes have centers along the circle with diameter pipi+1.

ACM Trans. Graph., Vol. 39, No. 5, Article 160. Publication date: July 2020.
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Bézier Interpolation Function Circular Interpolation Function Elliptical Interpolation Function

(a) (b) (c) (d) (e) (f)

Fig. 8. Control points along a circle: (a) the Bézier interpolation function cannot produce circular arcs, though (b) adding more control points on a
circle brings the resulting curve closer to a circle; (c) circular interpolation function can easily form perfect circles, (d) even when control points are
not regularly placed; (e) elliptical interpolation function can form perfect circular arcs in special cases, but (f) more than four control points on a
circle leads to a non-circular curve with curvature spikes away from control points. The purple lines indicate the curvature of the curves.

In our implementation we find the center of the ellipse that passes

through pi−1 using bisection and formulate Fi as in Equation 10.

The resulting splines with this interpolation function have some

interesting properties that are highly desirable for an interpolating

spline formulation. First of all, the curves generated with this for-

mulation are close to the control polygon. Let di be the distance
between pi and pi+1 and hi be the maximum distance between the

curve segment Ci and the line that connects its end points. hi/di
is maximized when the curve forms a circular arc of angle

π
2
and

h/di becomes (
√
2 − 1)/2, which is less than 21% (see the proof of

Theorem B.1 in the appendix).

Second, since we constrain the pair of consecutive control points

with the largest separation to lie on the two major axes of the

ellipse, the tangent of the curve segment between two control points

is always pointed towards the next control point, except for the

singular case when the control points are colinear and the secondary

axis collapses to a point. In the case of this singularity, the derivative

at pi becomes zero, but the rest of the curve segment still maintains

tangents towards the next control point, as shown in the proof of

Theorem B.2 in the appendix.

Consequently, the curve is contained between the two consec-

utive control points, as shown in Fig. 7b (see Theorem B.3 in the

appendix). Like our Bézier interpolation function, this property

holds in higher dimensions as well.

Another consequence of this is that the curve segments cannot

contain self-intersections (see Theorem B.4 in the appendix). Cusps

can only appear at control points in the singular case when the

secondary axis collapses.

Similar to the circular interpolation function, this formulation

can also represent perfect circles (in addition to perfect elliptical

arcs). However, perfect circular (and elliptical) arcs only appear in

special cases
2
, such as the example in Fig. 8e. Also, the maximum

curvature of the interpolation function Fi is at pi if the primary

axis is longer than the secondary axis of the ellipse; otherwise, it

is at one of the other two control points (the one on the secondary

axis). Therefore, the resulting curve segments Ci can have sharp

curvature peaks close to their centers, such as the example in Fig. 8f,

which can be undesirable for some applications.

2
The elliptical interpolation function produces a circular arc of π /2 when four con-

secutive control points are on a circle, the middle two have π /2 separation, and the

others have π /2 or less separation.

4.4 Hybrid (Circular-Elliptical) Interpolation Function
The class of splines we present in this paper does not require using

the same formulation for Fi and Fi+1. Therefore, each interpolation

function of the curve can be defined independently. We demonstrate

this feature with a hybrid interpolation function that alternates

between circular and elliptical interpolation functions.

The hybrid interpolation function we describe here combines the

benefits of circular and elliptical interpolation functions and avoids

their undesirable properties. The advantage of the circular interpo-

lation function is that it makes it easy to define circular arcs, but

when the angle of the arc between two consecutive control points is

larger than π , the tangents of the interpolation function on control

points no longer point towards the next control point, resulting in

curves that can be arbitrarily far from the control polygon (Fig. 5a)

and can contain self-intersections (Fig. 5b). The elliptical interpo-

lation function guarantees that the tangent is always towards the

next control point (thereby avoiding self-intersections), but when

the primary axis is shorter than the secondary axis, the maximum

curvature of the curve segment appears near its center (Fig. 8f),

which might be undesirable for some applications. Therefore, our

hybrid interpolation function uses circular interpolation when the

angle of the arc is small and switches to elliptical interpolation for

larger arcs, which produce ellipses with longer primary axes.

The threshold we set for switching between the two functions is

π
2
. If the angle of the arc that corresponds to one of the two circular

arcs Qpi−1pi and Qpipi+1 is above this threshold, we use the elliptical
interpolation function. If both angles are smaller than the threshold,

we use the circular interpolation function. The reason behind the

choice of this particular threshold is that in the case when one of the

angles is exactly
π
2
, and the other one is equal or smaller, the two

interpolation functions become identical (i.e. elliptical interpolation

function produces a circle). Therefore, using
π
2
as the threshold, we

Fig. 9. An example curve generated with hybrid interpolation func-
tion, showing that the local curvature maxima appear near control
points. The purple lines indicate the curvature of the curve.
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(a) Bézier (b) Circular (c) Elliptical (d) Hybrid

Fig. 10. A comparison of curves generated with our formulation using our example interpolation functions from the same control points.

can seamlessly transition between the two functions. Thus, contin-

uous motion of control points leads to continuous changes in the

shapes of the resulting curves.

This simple combination of the two interpolation functions inher-

its all benefits of the elliptical interpolation function. Also, it makes

it easier to form circular arcs and avoids the high-curvature peaks

of the elliptical interpolation near the center of curve segments. Fi
either has constant curvature (forming a circle) or its maximum

curvature is at pi (forming an ellipse with a longer primary axis).

Our experiments revealed that, just like our Bézier interpolation

function, the resulting curves Ci have local curvature maxima close

to control points, as shown in Fig. 9.

5 RESULTS AND DISCUSSION
We include a self-contained example implementation of our curve

formulations (with full source code) in a single-file webpage (us-

ing HTML, JavaScript, and WebGL) as a supplementary document,

including all four example interpolation functions.

5.1 Comparison of Interpolation Functions
Obviously, the example interpolation functions we describe produce

different curves from the same control points. Still, we provide

comparisons using the same set of control points for discussing

their similarities and differences.

Two simple examples comparing the four example interpolation

functions are provided in Fig. 1 and Fig. 10 and more complex exam-

ples are shown in Fig. 11. The curves with hybrid (circular-elliptical)

interpolation function are colored to indicate which function is used

for which curve segment (red indicates circular and blue indicate

elliptical). The one that visually stands out among these four func-

tions is the circular interpolation function, forming curves with no

sharp features. More importantly, curves with circular interpola-

tion function can significantly deviate from the control polygon

(Fig. 10b). In fact, other than producing perfect circles, the curves

with the circular interpolation function do not have many desirable

features, besides the common features of this class of curves (i.e.C2

continuity and local support). The elliptical interpolation function

can produce sharper features near isolated control points, but curve

segments can contain curvature peaks away from control points

(Fig. 11c). The curves with both Bézier and hybrid interpolation

functions can produce sharper features near isolated control points

and avoid curvature spikes away from control points. The resulting

curves are also remarkably close to the control polygon.

Themain advantage of the hybrid interpolation function (Fig. 11d)

over Bézier (Fig. 11a) is its ability to easily produce perfect circular

arcs. This is presented in Fig. 8, showing curves generated with

control points on a circle. Notice that Bézier interpolation function

produces relatively sharp features near control points (Fig. 8a-b).

While this might be desirable in some cases, approximating a circle

with these curves becomes difficult. Circular interpolation function

produces a circle regardless of how the control points are oriented

around the circle (Fig. 8c-d). Elliptical interpolation function can

produce perfect circular arcs (Fig. 8e), but can deviate from a circle

when representing smaller arcs (Fig. 8f), which is avoided by the

hybrid interpolation function.

5.2 Curve Properties
Table 1 provides a comparison of the four example curve types

we present in this paper to popular interpolating spline formu-

lations that provide curvature-continuity. All curve types within

the class of splines we present in this paper have C2
continuity,

which is essential for defining smooth curves. When the curves are

used for representing hair or cloth fibers, C2
continuity provides

smoothly varying specular reflections. When interpolating anima-

tion keyframes, C2
continuity means continuous acceleration. G2

continuity of κ-curves [Yan et al. 2017] is sufficient for curvature

continuity. ThoughG2
does not mean continuous second derivative,

it is possible to define a global C2
parameterization for a G2

curve.

Table 1. Comparison of curvature-continuous spline formulations.

Catmull-Rom Splines Interpolating B-Splines κ-curves Ours with Ours with Ours with Ours with
[Catmull and Rom 1974] [Farin 2002] [Yan et al. 2017] Bézier Int. Func. Circular Int. Func. Elliptical Int. Func. Hybrid Int. Func.

Continuity C2 C2
mostly G2 C2 C2 C2 C2

Local Support yes (6 points) no no yes (4 points) yes (4 points) yes (4 points) yes (4 points)

Global Optimization no no yes no no no no

Self-Intersections yes yes no no yes no no

Distance to Polygon unbounded unbounded bounded bounded unbounded bounded bounded

Max. Curvature anywhere anywhere at control points near control points anywhere anywhere near control points

Linear Segments simple hard hard simple simple simple simple

Circular Arcs no no no no yes yes yes
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(a) Bézier (b) Circular (c) Elliptical (d) Hybrid (e) Control Points

(a) Bézier (b) Circular (c) Elliptical (d) Hybrid (e) Control Points

Fig. 11. A comparison of curves generated with our formulation using different interpolation functions. The arrows highlight parts of the curves
that exhibit the characteristics of the interpolation functions: (a) Bézier interpolation function can have difficulty forming near-circular segments,
(b) circular interpolation function can deviate from the control polygon and always forms circular shapes, (c) elliptical interpolation function can
form high-curvature peaks between control points, negatively impacting the visual smoothness of the curve segments. (d) Hybrid interpolation
functions avoids these problems. Artwork by Ozum Yuksel.

Yet, κ-curves are only G1
at infliction points, due to the underlying

limitation of the quadratic polynomial representation they use.

Note that constructing a global parameterization with our formu-

lation is no different than parameterizing Catmull-Rom curves. How-

ever, unlike the Catmull-Rom formulation, we cannot achieve C2

continuity with user-specified parameter values per control point.

Local support is important to make sure that modifying a single

control point does not have a global effect on the curve. Neither

interpolating B-Splines [Farin 2002] nor κ-curves [Yan et al. 2017]

provide local support. While the effect of a single control point

is mostly local with κ-curves, they require a global optimization

step for recomputing the entire curve whenever a control point

is modified. C2
Catmull-Rom splines [Catmull and Rom 1974] do

provide local support, but they form piece-wise 4
th

degree poly-

nomials defined by 6 control points each. In comparison, all curve

formulations in the class of splines we present need only 4 control

points to define each curve segment.

Three of the example interpolation functions we describe (all

but circular interpolation function) guarantee self-intersection-free

curve segments. This property is also supported by κ-curves [Yan
et al. 2017]. This is a crucial property and the unpopularity of

prior interpolating C2
curve formulations in practice can be at-

tributed to the fact that they are prone to producing unintended

self-intersections.

The same three interpolation functions (all but circular interpo-

lation function) also produce curves that are close to the control

polygon. On the other hand, C2
Catmull-Rom splines [Catmull and

Rom 1974] and interpolating B-Splines [Farin 2002] can form curve

segments that are arbitrarily far from the control polygon and their

distance is not bounded as a function of the distance between the

two control points they interpolate. Indeed, this has been another

important flaw of earlier interpolating spline formulations that cer-

tainly contributes to their unpopularity in practice.

κ-curves [Yan et al. 2017] place the local curvature maxima at

control points. Arguably, this property canmake the resulting curves

easier to control for design applications. Curves with our Bézier and

hybrid interpolation functions place the local curvature maxima

in close proximity of the control points. This is because these two

interpolation functions guarantee that the maximum curvature of

Fi is at pi . Blending the interpolation functions Fi and Fi+1 using
the trigonometric interpolation in Equation 2, however, can slightly

shift the locations of the curvature maxima.

On the other hand, forming linear curve segments with κ-curves
[Yan et al. 2017] and interpolating B-splines [Farin 2002] can be chal-

lenging, due to global support. Even when multiple control points

are placed on a line, the resulting curve can bend because of the

other control points. Also, linear segments conflict with the goal

of placing local curvature maxima at control points that κ-curves
enforce, as line segments have zero curvature. C2

Catmull-Rom

splines [Catmull and Rom 1974] can produce linear segments, but

they require 6 consecutive control points to be on a line. In compar-

ison, all of our interpolation functions can produce perfect linear

segments when 4 consecutive control points are placed linearly.

Circular and hybrid interpolation functions form perfect circular

arcs whenever any four consecutive control points are on a circle.

Our elliptical interpolation function produces circular arcs only in
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(a) Bézier (b) Circular

Also, Szilvási-Nagy and Vendel [2000]

and Séquin et al. [2005]

(c) Elliptical (d) Hybrid

(e) Rational Bézier

with w = 0.25

[Sun and Zhao 2009]

(f) Rational Bézier

with w = 0.5

[Sun and Zhao 2009]

(g) Rational Bézier

with w = 1

[Sun and Zhao 2009]

(h) Rational Bézier

with w = 2

[Sun and Zhao 2009]

(i) Interpolating B-Spline

[Farin 2002]

(j) Catmull-Rom Curve

[Catmull and Rom 1974]

(k) Catmull-Rom Curve

with centripetal parameterization

(l) (l) κ-curve
[Yan et al. 2017]

Fig. 12. Comparison of curves generated from the same set of control points using different curve formulations. The top row shows our example
interpolation function, the middle row shows the formulation of Sun and Zhao [2009], which is similar to our curve construction, with different
weight parametersw , and the bottom row shows other curve types. Though in this exampleC2 Catmull-Rom curve with centripetal parameterization
does not present self-intersections, only three of our example interpolation functions and κ-curves guarantee self-intersection-free curves.

special cases. Neither our Bézier interpolation function, nor any

polynomial interpolating curve formulation can form perfect circles.

However, a recent extension of κ-curves can produce circular an

elliptical arcs by using a rational Bézier formulation with a more

complicated global optimization procedure [Yan et al. 2019].

5.3 Comparisons to Prior Methods
Fig. 12 shows a comparison of curvature-continuous curves gen-

erated from the same set of control points using different curve

formulations. The top row shows our formulation with our example

interpolation functions. Notice that circular interpolation function

(Fig. 12b), which produces identical curves to Szilvási-Nagy and

Vendel [2000] and Séquin et al. [2005], highly deviates from the

control points and forms a self-intersecting segment. The novel

interpolation functions we introduced in this paper (Fig. 12a, 12c,

and 12d) form reasonable interpolations and they guarantee self-

intersection-free segments. The middle row shows curves generated

using the rational quadratic Bézier formulation of Sun and Zhao

[2009] with different weight parameters w (Fig. 12e-h), ranging

from conics to hyperbola, all of which lead to self-intersecting seg-

ments (and notable deviations from the control polygon for shorter

segments). Indeed, this self-intersection problem is common with

other prior interpolating C2
curves as well, such as interpolating

B-Splines [Farin 2002] (Fig. 12i) and Catmull-Rom curves [Catmull

and Rom 1974] (Fig. 12j) with uniform parameterization. Using this

particular set of control points,C2
Catmull-Rom curves with chordal

and centripetal parameterizations do not produce self-intersections

(Fig. 12k), but they are also prone to forming self-intersecting seg-

ments with different control point positions [Yuksel et al. 2009b].

The κ-curves method [Yan et al. 2017] in this example leads to a

reasonable interpolation (Fig. 12l), similar to our curves with Bézier,

elliptical, and hybrid interpolation functions. On the other hand, the

resulting κ-curve is mostly G2
with G1

at infliction points (where

the curvature changes sign), unlike the curves with our formulation

that have C2
continuity everywhere.

Of the similar curve formulations in prior work, the method of

Szilvási-Nagy and Vendel [2000] and Séquin et al. [2005] are iden-

tical to our curves with circular interpolation function (Fig. 12b)

and the rational Bézier formulation of Sun and Zhao [2009] forms

curves within the class we present in this paper (Fig. 12e-h). Rational

Béziers allow elliptical (with 0 < w < 1), parabolic (withw = 1), and

hyperbolic (withw > 1) interpolation. However, these curves cannot

address the problems of typical interpolating curves with cusps and
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(a) Bézier (b) Circular (c) Elliptical (d) Hybrid (e) κ-curves [Yan et al. 2017]

(a) Bézier (b) Circular (c) Elliptical (d) Hybrid (e) κ-curves [Yan et al. 2017]

Fig. 13. Comparison of (a-d) curves generated using our method with four example interpolation functions and (e) κ-curves [Yan et al. 2017] from
the same control points. The bottom row shows the control point positions and the curvature of the curves. The inset on the right bottom provides
a zoomed-out view, showing the entire curvature visualization of κ-curves. The red arrows highlight the extremely sharp corners generated by
κ-curves and the blue arrows show the curve segments that are bent due to the global support of κ-curves.

self-intersecting segments, unbounded distance to the control poly-

gon, and curvature maxima appearing anywhere. In fact, besides

their ability to form conics and somewhat improved local-support,

they are not qualitatively superior to the popular alternative of

Catmull-Rom curves [Catmull and Rom 1974] (Fig. 12j), producing

a visually similar interpolation. The advantages of our Bézier in-

terpolation function stem from placing pi at the local curvature

maxima. The formulation of Sun and Zhao [2009], however, places

pi at the parametric center of a rational Bézier curve, which leads

to the undesirable properties mentioned above that are common

with prior interpolating curves. Note that it is possible to replace

our Bézier interpolation function with rational Béziers, solving a

different equation to find the curvature maxima [Yan et al. 2019].

We provide another comparison to κ-curves [Yan et al. 2017] in

Fig. 13. As compared to our curves, κ-curves (Fig. 13e) can produce

extremely sharp corners (highlighted with red arrows). More impor-

tantly, κ-curves fail to produce linear segments (highlighted with

blue arrows in Fig. 13e). Notice that all of our interpolation func-

tions are able to produce linear segments (Fig. 13a-d). Since κ-curves
are quadratic polynomials, they cannot represent perfect circular

arcs either. Indeed, the objective of placing the maximum curvature

exactly at control points conflicts with lines and circles, which have

constant curvature (i.e. no maximum point of curvature). That is

why the implementation of κ-curves in Adobe Illustrator differs

from the original formulation to address some of its shortcomings.

Obviously, since these are different curve formulations, producing

a similar curve shape would require a different set of control points.

Nonetheless, all curve types within our class provide C2
curves and

local support without a global optimization step, while κ-curves are
mostly G2

(and G1
at infliction points), have global support, and

are generated through a costly numerical optimization process. The

only arguable advantage κ-curves have over our curves with Bézier

and hybrid interpolation functions is that the curvature maxima are

exactly at the control points, instead of having them near control

points. Yet, this strict policy also prevents κ-curves from forming

linear curve segments. Also, κ-curves and their recent extension

[Yan et al. 2019] are only shown to work in 2D and it is unclear if

κ-curves can be easily extended to 3D (or higher dimensions). In

comparison, our formulation naturally supports higher dimensions,

even though interpolation functions are conveniently defined in 2D.

5.4 3D Curves
Note that, while most examples in this paper are 2D curves, the prop-

erties of our formulation are maintained in higher dimensions as

well. An example featuring 3D hair modeling is shown in Fig. 14. The

hair strands are generated from a hair mesh [Yuksel et al. 2009a]. All

hair strands and the edges of the hair mesh along the hair direction

are formed by our spline formulation with the hybrid interpolation

function. Using an interpolating curve formulation (as opposed to

an approximating curve) for representing the hair mesh allows the

user to directly control the hair mesh surface. The C2
continuity

provided by our curves leads to continuous changes in specular

reflections and our hybrid interpolation function connects most

control points with circular arcs, which can be desirable for this

application. Most importantly, our formulation is computationally

efficient enough for such applications that involve a vast amount of

curves, since the curves are generated without global optimization.

5.5 Sharp Features
When sharp features are needed, our curves can provide them by

placing control points in close proximity. Some examples including
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Fig. 14. An example hair model generated using our curves with the
hybrid interpolation function for both representing the hair strands
and the edges of the hair mesh along the hair direction. The control
points of the final hair curves are placed using procedural styling
operations. The hair model consists of over 100,000 strands and 8.5
million curve segments. The character and hair mesh models by Lee
Perry-Smith. Designed and rendered using Hair Farm, the ultimate
hair plugin for Autodesk 3ds Max.

sharp features are shown in Fig. 15. Still, the curves maintain C2

continuity everywhere. When extremely sharp corners are needed,

placing two consecutive control points exactly on top of each other

(by collapsing the curve segment between them to a point) leads to

a curve with only C0
continuity at that point.

6 CONCLUSION AND FUTURE WORK
We have presented a class of splines that interpolate the control

points, guarantee C2
continuity everywhere, and provide local sup-

port with only four control points defining each curve segment. This

formulation of splines allows defining novel curve types by simply

specifying a custom interpolation function. Since our interpolation

functions only consider three consecutive control points, unconven-

tional formulations can be utilized. Furthermore, there is no need

for a costly global optimization step with any spline formulation

within this class, as the interpolation functions are defined locally.

We have also presented four example interpolation functions

within this class, producing curves with different properties. Among

them, Bézier and hybrid interpolation functions produce curves with

guaranteed self-intersection-free segments, bounded distances to

the control polygon, and local curvature maxima close to the con-

Fig. 15. Examples curves generated using the hybrid interpolation
function, showing sharp features achieved by placing control points in
close proximity. Artwork by Ozum Yuksel.

trol points. Furthermore, these curves also have local-support and

C2
continuity everywhere and they require no global optimization

(as any other curve formulation within this class). To our knowl-

edge, no prior spline formulation can provide all of these properties.

Moreover, they can easily produce linear segments, and curves with

hybrid interpolation function can also represent perfect circular arcs,

a feature not supported by any polynomial interpolating spline.

Note that our formulation with the circular interpolation function

example also appears in prior work [Séquin et al. 2005; Szilvási-

Nagy and Vendel 2000]. This interpolation function leads to curves

with undesirable properties and it is included mainly for aiding the

descriptions of our elliptical and hybrid interpolation functions.

Nonetheless, the interpolation functions we describe in this pa-

per are merely examples within this class and other interpolation

functions with different properties can be developed with future

research. For example, cubic Bézier curves would be an interest-

ing alternative to explore, as they provide more flexibility than the

quadratic ones we use. Another one would be using a helix, which

can be defined by 3 points in 3D [Goriely et al. 2012]. Yet, not all

possible interpolation functions lead to curves with desirable prop-

erties, such as our circular interpolation function and the rational

quadratic Bézier formulation of Sun and Zhao [2009].

Note that the compatibility of circular and elliptical interpola-

tion functions, such that they form the same curve under certain

conditions, makes it easy to combine them for defining our hybrid

interpolation function, but a hybrid interpolation function can be

defined using two (or more) incompatible interpolation functions as

well. Instead of using a single threshold to switch between different

interpolation types, a weighted average of different interpolations
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can be used to ensure continuous transitions between different in-

terpolation types. Thus, the space of spline formulations within

the class we present in this paper also includes combinations of

arbitrary interpolation functions.

Another interesting future research direction would be exploring

interpolation functions that consider more than three control points

for achieving a higher degree of continuity or other curve properties.

It has been argued that it would be a good idea to have local

curvature maxima at the control points because of the sensitivity of

human visual system to curvature maxima and minima [Levien and

Séquin 2009]. In particular, for 2D artistic design applications, having

control points strictly at the local curvature maxima might allow

the user to “guess” the location of a control point, just by looking at

the curve, which might be considered a desirable property. However,

for the purpose of making the curve formulation easier to use in

practice, it is unclear how important it is to strictly enforce this

property and whether having curvature maxima close to control

points, like our curves, would provide a similar benefit. A user-study

investigating this topic is out of the scope of this paper, since we do

not narrowly target this particular application, but it would be an

interesting direction for future work.

APPENDIX

A BÉZIER INTERPOLATION FUNCTION PROPERTIES
Below we provide proofs for the properties of the Bézier interpo-

lation function described in Section 4.1. Since Bézier curves are

affinely invariant, without loss of generality, in the following we

assume that pi is at the origin and pi+1 is along the x-axis at x = 1.

Theorem A.1. The distance of a curve segments with the Bézier
interpolation function to the line that connects its end points is bounded
by the distance between the interpolated control points.

Proof. Let b0, b1, and b2 be the three control points of the qua-
dratic Bézier curve that represents Fi between the interpolated

control points. The Bézier curve parameter value tmc for the point

of maximal curvature can be written as [Yan et al. 2017]

tmc =
(b0 − b1) · (b0 − 2b1 + b2)

∥b0 − 2b1 + b2∥2
. (11)

Let bx be the x-component of b1, such that b1 = [bx by ]T , where
by represents the remaining components. Since tmc = 0 by the con-

struction of Fi , using b0 = pi and b2 = pi+1, Equation 11 becomes

bx = 2b2x + 2(by · by ) . (12)

Thus, the distance of b1 to the x-axis is
by = (bx /2 − b2x )

1

2 . This

distance is maximized when bx = 1/4 and thereby the distance of

Fi is bounded by 1/8. The same bound also applies to Fi+1 due to
symmetry. Therefore, the ratio of the distance of Ci to the line that

connects its end points hi and the distance between the interpolated

control points di is bounded by hi/di ≤ 1/8. �

Theorem A.2. Curve segments with the Bézier interpolation func-
tion remain between the interpolated control points.

Proof. If both Fi and Fi+1 remain between the interpolated con-

trol points, Ci must remain between them as well. It is sufficient

to show this for Fi , and Fi+1 follows due to symmetry. Based on

Equation 12, bx ≥ 0 and bx − 2b2x ≥ 0, thereby bx ∈ [0, 1
2
]. Due

to the convex hull property of Bézier curves, Fi is guaranteed to

remain between the interpolated control points. Therefore, Ci re-
mains between the two lines (in 2D), two planes (in 3D), or two

hyperplanes (in higher dimensions) defined by x = 0 and x = 1. �

Theorem A.3. Curve segments with the Bézier interpolation func-
tion cannot contain cusps or self-intersections.

Proof. The curve segment cannot contain cusps or self-

intersections if its derivative along the x-axis is positive between
the interpolated control points. Using a local parameter t ∈ [0, 1],

the derivative with respect to t along the x-axis can be written as

C ′
x,i (t) = cos

2(
π

2

t) F ′x,i (t) + sin
2(
π

2

t) F ′x,i+1(t)

+ π cos(
π

2

t) sin(
π

2

t)(Fx,i+1(t) − Fx,i (t)) , (13)

where the x-components of the interpolation functions can be writ-

ten in polynomial form using constants xi and xi+1 as

Fx,i (t) = xi t
2 + (1 − xi ) t (14)

Fx,i+1(t) = xi+1 t
2 + (1 − xi+1) t , (15)

Since Fi and Fi+1 are quadratic curves that remain between the

interpolated control points, F ′x,i (t) ≥ 0 and F ′x,i+1(t) ≥ 0. Thus,

−1 ≤ xi ≤ 1 and −1 ≤ xi+1 ≤ 1. Using these bounds, we can write

Fx,i+1(t) − Fx,i (t) ≥ −2t(1 − t). Similarly, the first two terms of

Equation 13 interpolate between possible Fx,i and Fx,i+1 values and
they are bounded by 2t and 2(1 − t). Since the last term is bounded

by

π cos(
π

2

t) sin(
π

2

t)(2t(1 − t)) ≤ 2t and (16)

π cos(
π

2

t) sin(
π

2

t)(2t(1 − t)) ≤ 2(1 − t) , (17)

C ′
x,i (t) cannot be negative within t ∈ [0, 1] and it can be zero only

at t = 0 and t = 1. Therefore, the curve segment cannot have cusps

or self-intersections. �

B ELLIPTICAL INTERPOLATION FUNCTION PROPERTIES
Below we provide proofs for the properties of the elliptical interpo-

lation function described in Section 4.3. These properties also apply

to the hybrid (circular-elliptical) interpolation function (Section 4.4).

Using our affine invariant representation, without loss of generality,

in the following we assume that pi is at the origin and pi+1 is along
the x-axis at x = 1. Note that transforming a given curve to this

frame does not require non-uniform scale.

Theorem B.1. The distance of a curve segment with the elliptical
interpolation function to the line that connects its end points is bounded
by the distance between the interpolated control points.

Proof. Let θ ∈ [0, π
2
] represent the local parameter for the curve

segment Ci . The distance of Ci to the line pipi+1 is bounded by

the distance of Fi and Fi+1 to this line for θ ∈ [0, π
2
]. It is sufficient

to show the bound for Fi and Fi+1 follows due to symmetry. The

distance is maximized when the elliptical arc Fi corresponds to
the largest possible angle, which is

π
2
by construction. Let ui =

ACM Trans. Graph., Vol. 39, No. 5, Article 160. Publication date: July 2020.
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[ux uy ]
T
and vi = [vx vy ]

T
represent the primary axes of the

ellipse, where uy = vy and ux −vx = 1. Using Equation 10, we can

write the maximum distance hi to the line as

hi = |uy | (cosθ + sinθ − 1) . (18)

hi is maximized when Fi is a circular arc, such that |uy | =
1

2
and

θ = π
4
. Thus, Ci is bounded by hi/di = (

√
2 − 1)/2, where di is the

distance between the interpolated control points. �

Theorem B.2. The tangent of a curve segment between control
points with the elliptical interpolation function points towards the
next control point, i.e. C′

i (θ ) · (pi+1 − pi ) > 0 for θ ∈ (0, π
2
).

Proof. Consider the scalar portion of the curve derivative C′
i in

Equation 3 along the x-axis. Only the first term of this equation

can be negative and it is minimized when αi = αi+1 = 1 and

δi = δi+1 = 0, such that both pi and pi+1 are on primary and

secondary axes of both ellipses Fi and Fi+1. The scalar equations
for the two ellipses along the x-axis can be written as

Fi (θ ) = ui sinθ +vi cosθ + qi (19)

Fi+1(θ ) = ui+1 cosθ +vi+1 sinθ + qi+1 , (20)

whereui ,vi ,qi ,ui+1,vi+1,qi+1 ∈ [0, 1] are the scalar components of

the affine-invariant representation in Equation 10. Using properties

ui − vi = 1, −ui+1 + vi+1 = 1, ui = 1 − qi , and ui+1 = −qi+1,
Equation 3 can be written as

C ′
i (θ ) = c + (qi+1 − qi )(2cs (c + s − 1)) + (c − s)(qi+1s

2 − qic
2) ,

where c = cosθ and s = sinθ . This equation is minimized when

qi = 1 and qi+1 = 0, and C ′
i (θ ) remains positive within the range

θ ∈ (0, π
2
). �

Theorem B.3. Curve segments with the elliptical interpolation
function remain between the interpolated control points.

Proof. By construction, both ellipse pieces forming the curve

remain between the interpolated control points. Therefore, the re-

sulting curve that combines the two interpolation functions using

Equation 2 must remain within this rage for θ ∈ [0, π
2
]. �

Theorem B.4. Curve segments with the elliptical interpolation
function cannot contain cusps or self-intersections.

Proof. Based on Theorem B.2 the derivative of the curve seg-

ments are positive along the direction that connects the two end

points of the curve segment within range θ ∈ (0, π
2
). Thus, the

resulting curve segment cannot contain cusps or self-intersections

within this rage. Cusps with C ′
i = 0 can only appear at the control

points (where θ = 0 or θ = π
2
) in special cases. �
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