
Lighting Grid Hierarchy for Self-illuminating Explosions

CAN YUKSEL, DreamWorks Animation
CEM YUKSEL, University of Utah

Path Tracing Path Tracing Lighting Grid Hierarchy (Ours)
21 minutes 13 hours 20 minutes

Fig. 1. An example frame from an explosion simulation rendered with multiple scattering using path tracing and our lighting grid hierarchy (including
precomputation time). Notice that the path tracing result with render time equal to our method includes an excessive amount of noise, which is not fully
eliminated after almost 40 times longer rendering using path tracing.

Rendering explosions with self-illumination is a challenging problem. Ex-
plosions contain animated volumetric light sources immersed in animated
smoke that cast volumetric shadows, which play an essential role and are
expensive to compute. We propose an efficient solution that redefines this
problem as rendering with many animated lights by converting the volumet-
ric lighting data into a large number of point lights. Focusing on temporal
coherency to avoid flickering in animations, we introduce lighting grid hier-
archy for approximating the volumetric illumination at different resolutions.
Using this structure we can efficiently approximate the lighting at any point
inside or outside of the explosion volume as a mixture of lighting contri-
butions from all levels of the hierarchy. As a result, we are able to capture

ACM SIGGRAPH 2017 Technical Paper, July 30-August 3, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3072959.3073604.

high-frequency details of local illumination, as well as the potentially strong
impact of distant illumination. Most importantly, this hierarchical structure
allows us to efficiently precompute volumetric shadows, which substantially
accelerates the lighting computation. Finally, we provide a scalable approach
for computing the multiple scattering of light within the smoke volume using
our lighting grid hierarchy. Temporal coherency is achieved by relying on
continuous formulations at all stages of the lighting approximation. We show
that our method is efficient and effective approximating the self-illumination
of explosions with visually indistinguishable results, as compared to path
tracing. We also show that our method can be applied to other problems
involving a large number of (animated) point lights.

CCS Concepts: • Computing methodologies→ Rendering;

Additional KeyWords and Phrases: Explosion rendering, many-lights, virtual
point lights, participating media, translucent shadows, multiple scattering

ACM Reference format:
Can Yuksel and CemYuksel. 2017. LightingGridHierarchy for Self-illuminating
Explosions. ACM Trans. Graph. 36, 4, Article 110 (July 2017), 10 pages.
https://doi.org/10.1145/3072959.3073604

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

https://doi.org/10.1145/3072959.3073604
https://doi.org/10.1145/3072959.3073604

110:2 • Can Yuksel and Cem Yuksel

1 INTRODUCTION
Explosions are frequently featured in visual entertainment. While
there are effective methods for simulating explosions in computer
graphics [Feldman et al. 2003; Kawada and Kanai 2011; Kwatra
et al. 2010; Selle et al. 2005], rendering them with self-illumination
has been challenging. Unfortunately, unbiased stochastic sampling
methods based on path tracing fall short, since the high-frequency
details of the volumetric illumination often require a large number
of samples to converge to a low-noise solution. Considering the
fact that explosions are typically represented as volume data and
ray tracing high-resolution volumes can be expensive, path tracing
leads to completely impractical render times (Figure 1).
Our approach is converting this expensive volumetric lighting

problem into illumination with many animated point lights. Ren-
dering images using a large number of light sources has obvious dif-
ficulties regarding computational performance. Nonetheless, prior
work on this many-lights problem includes some elegant scalable
solutions that can provide sub-linear performance using hierarchical
clustering of light sources [Walter et al. 2006, 2005] or approximate
computations of the lighting matrix [Hašan et al. 2007; Ou and
Pellacini 2011]. However, when it comes to animation, especially
with animated light sources, these methods introduce substantial
amount of temporal flickering [Hašan et al. 2008], which limits their
applications. Being able to handle animated lights without temporal
flickering is a crucial challenge for efficiently rendering explosions
with self-illumination.

In this paper we introduce a scalable solution for many animated
lights using a hierarchical grid structure. This structure contains
levels of grids with successively lower resolutions, where each grid
vertex is treated as a light source that approximates the point lights
around it. Our lighting grid hierarchy is carefully constructed to
avoid flickering in animation, without having to process consecu-
tive frames together. Unlike typical hierarchial structures that can
be represented using trees, our lighting grid hierarchy forms a more
connected graph, where each node can have multiple parents. Dur-
ing lighting computation we combine the contributions of multiple
levels using overlapping blending functions. Thus, we avoid binary
decisions in clustering and lighting computation, which we identify
as a primary source of temporal flickering in hierarchical lighting
solutions.
Another major source of temporal flickering with approximate

lighting solutions is shadows. This presents a particularly important
challenge for explosion rendering, where the light emitting voxels
of the simulation data are often surrounded by an animated smoke
layer with varying density. Therefore, we pair our lighting solution
with a new volumetric shadow mapping approach designed for our
grid structure. Our volumetric shadow mapping approach not only
avoids flickering by carefully utilizing pre-filtered smoke data, but
also provides more than an order of magnitude speedup as compared
to using volume tracing for shadow computation.
We further extend our scalable lighting approach to incorpo-

rate a computationally efficient solution for multiple scattering of
light within the smoke volume. As a result, we can render self-
illuminating explosions and their smoke with self-shadows and
multiple scattering involving millions of animated lights within

several minutes in a production renderer with no noticeable noise
or temporal flickering. Such an example is shown in Figure 1, along
with comparison images generated using path tracing.

2 RELATED WORK
The many-lights problem has a long history in computer graph-
ics [Dachsbacher et al. 2014]. Earlier methods relied on ordering
lights based on their contributions [Ward 1994], stochastic sampling
[Shirley et al. 1996], light clustering using octrees [Paquette et al.
1998], or selecting lights using precomputed visibility culling [Fer-
nandez et al. 2002]. The many-lights problem received considerable
attention after the instant radiosity method [Keller 1997] converted
the global illumination problem to direct illumination from many
virtual point lights (VPLs). Instant global illumination [Wald et al.
2002] extended this idea and further accelerated in scenes with high
occlusion using a path tracing preprocess for light selection [Wald
et al. 2003]. Virtual spherical lights [Hašan et al. 2009] were intro-
duced for eliminating the singularities of VPLs and improving the
illumination with glossy surfaces.
A more general solution to the many-lights problem was pro-

vided using Lightcuts [Walter et al. 2005], a method that builds a
binary tree from the lights and determines the part of the tree that
should be evaluated during shading, based on a highly conserva-
tive error bound for achieving sub-linear performance. This was
later extended to high dimensional integrations involving volume
scattering, depth of field, and motion blur [Walter et al. 2006]. Exten-
sions of the Lightcuts approach include a progressive GPU-friendly
variant [Davidovič et al. 2012], bidirectional Lightcuts [Walter et al.
2012] for improving the weighting scheme to support a wider range
of materials, and an out-of-core GPU implementation [Wang et al.
2013] for rendering large scenes.

An alternative formulation of the many-lights problem was pro-
vided using an approximate evaluation of the lighting matrix [Hašan
et al. 2007], where rows and columns correspond to the points to be
shaded and light sources, respectively. Separating the illumination
into local and global components allowed handling glossy surfaces
[Davidovič et al. 2010]. The lighting matrix approximation was fur-
ther accelerated by introducing cuts to adaptively evaluate a fraction
of the lights [Ou and Pellacini 2011] and using a reduced matrix
that approximates the entire lighting matrix [Huo et al. 2015]. These
approaches are not ideal for rendering volume data, as it involves
orders of magnitude more points to be shaded.

Many-lights methods were also used for rendering participating
media, where most methods concentrate on eliminating singularities
of VPLs using a path tracing step [Kollig and Keller 2006; Raab et al.
2008], introducing approximate bias compensation [Engelhardt et al.
2012], or generating rays [Frederickx et al. 2015; Huo et al. 2016;
Novák et al. 2012] or beams [Novák et al. 2012] instead of VPLs.
On the other hand, the temporal coherence issue received less

attention. Hašan et al. [2008] recognized the flickering in animated
sequences using prior methods and attempted to reduce flickering
by computing the lighting tensor that includes all frames of the
animation. Dong et al. [2009] used a k-means clustering method that
utilizes the clustering results of the previous frame for introducing
temporal coherence. Nonetheless, these approaches had only limited
success.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

Lighting Grid Hierarchy for Self-illuminating Explosions • 110:3

Simulation Grid and S0 Level 1 grid over Simulation Grid Level 1 grid and S1 Level 2 grid and S2

Fig. 2. Our lighting grid hierarchy for explosion rendering. We begin with the explosion simulation grid and generate point lights (shown as black dots) in
voxels with high temperature values. We place the highest resolution (level 1) lighting grid, such that vertices of the grid are aligned with voxel centers. For
each vertex of the lighting grid at any level, we keep the illumination center, shown as black dots along with offset arrows from their grid vertices.

3 LIGHTING GRID HIERARCHY
Our lighting grid hierarchy is a collection of grids with different
resolutions. All of these grids correspond to the same volume in
space. Given a set of point light sources S0 as input, each grid in
the hierarchy approximates the entire set S0 on its own, such that
each grid vertex is treated as a light source that represents a portion
of the light emission in S0 around it. Hence, each level of the grid
hierarchy allows us to access the entire lighting information at a
different sampling resolution.
We adjust the grid resolutions such that the grid at level ℓ has

half the resolution (in all dimensions) as compared to the grid at
level ℓ − 1. Given a user defined spacing of the grid vertices h1 at
level 1, the spacing for other levels is calculated using hℓ = 2ℓ−1h1.
In this notation ℓ = 0 corresponds to S0, and h0 = h1/2.

Note that in general S0 can be any collection of point lights. For
rendering explosions, however, we generate a point light at the
center of each simulation voxel that has a temperature high enough
to cause light emission. Therefore, for rendering explosions we take
h0 as the simulation resolution and place the level 1 grid with half a
voxel offset, as shown in Figure 2. Note that in general the resolution
of level 1 grid does not have to be tied to a simulation resolution
and it can be specified independently. Each vertex of the lighting
grid at level ℓ corresponds to a light in Sℓ , and it stores the total
light intensity Iℓ and the illumination center pℓ (shown as offset
vectors in Figure 2) for a subset of lights in S0 that it represents.

3.1 Building the Hierarchy
Determining which lights in S0 are represented by which lights
in Sℓ has utmost importance. A naïve choice would be clustering
the lights based on their distances to the grid vertices. However,
clustering uses binary decisions, so it leads to flickering. We cir-
cumvent this problem by allowing each light in S0 to have multiple
representations in Sℓ . For each light source j ∈ S0, we consider the
corresponding grid cell at level ℓ, the volume of which encapsules
the position of the light p0, j . We distribute the intensity of each
light I0, j to the vertices of the corresponding grid cell using trilinear
weightswi, j of grid vertices i of level ℓ. Hence, the total intensity

Iℓ,i of the grid vertex i at level ℓ is

Iℓ,i =
∑
j ∈S0

wi, j I0, j , (1)

such thatwi, j is zero for any light j that is not in one of the eight grid
cells (2 × 2 × 2 block) around the grid vertex i at level ℓ. Note that
this formulation distributes the intensity of each light to multiple
lights at level ℓ.

For better representation of the underlying light sources, we store
an illumination center per grid vertex, which is treated as the light
position, using

pℓ,i =

∑
j ∈S0 vi, j p0, j∑
j ∈S0 vi, j

, (2)

where vi, j = wi, j
I0, j is the contribution of light j and

I0, j
denotes the luminance component of the light intensity. This for-
mulation places the illumination center to the weighted average of
the light positions p0, j that contribute to the light i at level ℓ. Note
that the illumination center of a vertex can fall anywhere within
the eight cells (2 × 2 × 2 grid block) around the grid vertex.
Using this formulation we can generate the illumination grid

for all levels up to a user-defined maximum level ℓmax . Note that
the input light positions p0 of our explosion simulation are not
animated (and placed at voxel centers), but the light intensities I0
change at each frame, causing the illumination centers pℓ at higher
(coarser) levels to move accordingly. Most importantly, this simple
formulation avoids random decisions used for clustering [Walter
et al. 2005] that lead to flickering, since each randomly generated
clustering leads to a different illumination approximation for the
entire image.
It is also possible to compute intensity Iℓ,i and position pℓ,i

values for level ℓ directly from the lights in the lower (finer) grid
levels Sℓ−1, instead of the input lights S0. While this accelerates the
build operation, it is not exactly equivalent to using S0 directly and
introduces some smoothing in lighting estimation.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

110:4 • Can Yuksel and Cem Yuksel

Fig. 3. Blending functions for levels 0 through 3 (ℓmax = 3).

3.2 Estimating Lighting
We use our lighting grid hierarchy for efficiently computing the
lighting at a given point x in space by querying Sℓ at all levels ℓ for
accessing the lighting information with different resolutions. We use
different grid levels for approximating the incoming illumination
from different distances. For achieving temporal coherency, we avoid
using sharp thresholds that would determine which distance would
correspond to which resolution. Instead, we blend the illumination
contributions of different resolutions, such that the illumination
contribution of a light i at level ℓ on point x is calculated using

Îℓ,i (x) = V (x, pℓ,i)д(d)Bℓ(d) Iℓ,i , (3)

where d = | |x − pℓ,i | | is the distance of x to the illumination center
pℓ,i ,V is the visibility function,д is the light fall-off function, and Bℓ
is the blending function that determines the influence region of level
ℓ. Let rℓ = α hℓ be the influence radius of level ℓ, determined by a
user-defined parameter α . Our blending functions linearly increase
from zero at rℓ−1 to one at rℓ (except for the first level), and linearly
decrease down to zero at rℓ+1 (except for the last level), as shown
in Figure 3. Notice that the blending functions form a partition of
unity and that the influence regions of neighboring levels overlap
to avoid temporal flickering.
Using these blending functions, for a given shading point x, we

only need to query the lights in Sℓ within 2rℓ radius for each level
ℓ. The influences of the nearby light sources come from the lower
(finer) levels and the higher (coarser) levels are used for distant
illumination. This formulation allows us to achieve sub-linear per-
formance in shading with many lights. The user defined parameter
α controls the accuracy and the performance of the illumination
computation. Larger values of α increase the influence region of
lower (finer) levels, thereby increasing both the number of lights
included in shading and the accuracy.

4 SHADOWS
Typically, most of the lighting computation for each light is de-
voted to shadow generation. Even though our method substantially
reduces the number of lights considered during each shading opera-
tion (just like other sub-linear lighting approximations), volumetric
shadows still dominate the rendering computations. Unfortunately,
volume tracing even for a small fraction of the light sources leads to
impractical render times. Therefore, we introduce a simple shadow
precomputation method that exploits properties of our lighting grid
hierarchy for efficiently computing shadows during rendering.

Prior many-lights methods for shadows include reusing shadows
from previous frames [Laine et al. 2007] and computing shadows

approximately [Ritschel et al. 2008]. Instead, we compute a volu-
metric cube-map shadow for each light at each level, completely
independently at each frame. Obviously, computing full-resolution
shadow maps for all light sources in S0 alone would be memory
intensive. However, since the influence regions of our light sources
in lower (finer) levels are limited, the shadow maps at these lev-
els can be low-resolution. Let h be the size of a voxel that stores
the smoke volume data (in our examples h = h0). The sufficient
cube-map resolution should have texels of size h at rℓ distance from
the light, where the blending function Bℓ reaches its apex. Such a
cube-map would have 24(rℓ/h)2 texels. Therefore, for lower (finer)
levels of the hierarchy, a relatively small cube-map is sufficient for
capturing the full shadow detail of the smoke volume data at the
apex of the blending function. These cube-map texels can store a
variant of deep shadow maps [Gautron et al. 2012; Lokovic and
Veach 2000] for encoding the volumetric shadow data or simply a
few extinction values at different distances. Note that this approach
is not applicable to prior many-lights methods, since they do not
limit the influence regions of lights.

Since rℓ doubles at successive levels (i.e. rℓ = 2 rℓ−1), the sufficient
cube-map resolution quadruples at higher (coarser) levels. On the
other hand, the number of light sources at higher (coarser) levels
decreases by a factor between 4 (for light sources scattered over
surfaces) to 8 (for light sources scattered volumetrically). Therefore,
the total number of shadow map texels for all lights in a level Sℓ is
typically smaller for higher (coarser) levels.

Note that the explosion datamay include substantial high-frequency
changes in smoke density. Therefore, if the lights in Sℓ are treated
as point lights for computing shadows, even the slightest change in
the illumination centers pℓ can cause a drastic change in volumetric
shadows, which can lead to flickering in successive frames. This is
due to the fact that shadows from a point light source in Sℓ may not
accurately approximate the shadows from many individual lights
in S0 that are scattered around it. For this reason, it is important to
treat the lights at higher (coarser) levels (ℓ > 0) as volumetric light
sources, rather than point lights.
It is possible to assume that the size of the lights at level ℓ is

proportional to the grid separation of that level hℓ . However, this
can lead to substantial overestimation of the light size (especially for
higher levels) and produce excessively smoothed shadows. Instead,
we can perform stochastic sampling by picking a random position
around pℓ,i from a desired distribution with a variance that matches
the variance σ 2

ℓ,i of the light positions represented by the grid light
i using

σ 2
ℓ,i =

∑
j ∈S0 vi, j p

2
0, j∑

j ∈S0 vi, j
− p2ℓ,i (4)

in each direction. Yet, precomputing the shadows using stochas-
tic sampling may require a large number of samples to converge,
especially for higher (coarser) levels.

Therefore, we simplify this computation by prefiltering the smoke
density for shadow tracing. Let sℓ,i represent the estimated size of
a light at level ℓ as the weighted average of the corresponding light
distances, such that

sℓ,i =

∑
j ∈S0 vi, j

p0, j − pℓ,i
∑

j ∈S0 vi, j
. (5)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

Lighting Grid Hierarchy for Self-illuminating Explosions • 110:5

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Fig. 4. The lighting contributions of different levels for an example frame taken from the explosion simulation shown in Figure 1. Notice that lower (finer)
levels contain high-frequency local illumination and higher (coarser) levels account for distant illumination.

To compute the shadow map of a light i ∈ Sℓ , we start tracing a
ray from the illumination center pℓ,i towards each shadow texel
direction up to the maximum distance 2rℓ (the last level is not
bounded). At each sampling step during volume tracing we compute
the filtered density value using a pyramidal convolution filter of
size δ , such that

δ (d) =

(
1 −

d

rℓ

)
sℓ,i +

d

rℓ
h0 , (6)

where d is the distance from the illumination center for d ≤ rℓ .
When d > rℓ , we use δ (d) = 0. This formulation linearly reduces
the filter size starting from sℓ,i down to 0 at distance rℓ from the
light. Note that the pyramidal convolution filter coincides with the
trilinear weights we use while computing the light data for the grids.
For efficiently approximating the filtered density values at any

point, we can pre-filter the density field. This way, we can efficiently
approximate the shadow from volumetric light sources and avoid
shadow-related flickering in the final result. What makes this pos-
sible is the limited influence region of each light in the lighting
grid hierarchy, and it provides more than an order of magnitude
reduction in the total render time.

5 MULTIPLE SCATTERING
The lighting computation we discussed so far only includes direct il-
lumination with volumetric shadows. The smoke density also causes
multiple scattering of light within the explosion volume. For simplic-
ity, we assume that the scattering function for the smoke component
is completely isotropic. This is also the scattering function we use
for rendering smoke in all our examples. In this case, our scalable
lighting approach provides a mechanism for computing the multiple
scattering component as well.

Let lights S0
ℓ
represent the original lights we discussed in previous

sections, providing direct illumination. We can generate a new set
of virtual point lights S1

ℓ
in the explosion volume for representing

light that goes through one scattering event. Hence, illumination
computation using S0

ℓ

⋃
S1
ℓ
would include both single scattering

(from direct illumination) and two scattering events.
S10 at level 0 can be easily generated by computing the illumination

at the center of each grid voxel of level 0 that has non-zero smoke
density using S0

ℓ
and multiplying the incoming illumination with

the scattering function. The higher (coarser) levels S1
ℓ
for ℓ > 0 can

be generated in the same way as explained in Section 3. Once we
have all levels of S1

ℓ
, we can use it for computing S20. For producing

multiple scattering data involving up to n scattering events, we
generate lights for all scattering depths up to Sn−10 .
The problem is that each scattering event we incorporate adds

a new set of lights to our system with a new lighting grid hierar-
chy. Nonetheless, all lights at level 0 of all scattering depths are
placed exactly at voxel centers of the simulation grid. Therefore, we
can easily merge the lights of a voxel that correspond to different
scattering depths into a single light that incorporates all computed
scattering depths.

6 IMPLEMENTATION AND RESULTS
We implemented our lighting grid hierarchy inside the SideFX Hou-
dini software using its VEX language. All explosion images are
generated with the SideFX Mantra renderer using its ray tracer for
the volume data. The renderer uses ray marching for each primary
camera ray sample and calls our shader at each step through the
volume if enough smoke density is encountered, until the ray gets
fully occluded. Therefore, each primary camera ray sample corre-
sponds to multiple shading operations. The performance results are
generated on a computer with dual Intel Xeon E5-2690 v2 CPUs (20
cores total) and 96GB RAM.
Our implementation keeps the generated lights in separate kd-

trees for quickly retrieving the lights within rℓ radius of a given
shading point. We remove the lights weaker than a small thresh-
old from the lower (finer) levels of the hierarchy for additional
optimization, but their cumulative contributions are included in
higher (coarser) levels. We store the volumetric shadows in cube-
map textures as accumulated densities recorded at four predefined
distances from the light position. The density values in-between
these positions are calculated using linear interpolation. Therefore,
the resolution of the light extinction due to volumetric shadow is
substantially lower at higher (coarser) levels in our implementation.
We use α = 2 for all examples in this paper, unless otherwise speci-
fied. We use inverse squared fall-off and clamp the minimum light
distance to h0 to avoid the singularity of point lights.

6.1 Explosion Rendering
Figure 1 shows a comparison of our method to path tracing. The
path tracer also uses ray marching and it accumulates light emission
from the volume at every step until the rays are absorbed. Since
we use an isotropic scattering function for smoke, no importance
sampling is used. Notice that our method can faithfully reproduce

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

110:6 • Can Yuksel and Cem Yuksel

Fig. 5. Frames from the same explosion simulation as Figure 1 in a box that is illuminated using our method.

α = 1 α = 2 α = 3

Fig. 6. The impact of α on single scattering accuracy. The bottom row
shows the differences (×2) to the path tracing reference (using clamped
low-dynamic-range images).

the small-scale details of the illumination as well as the large-scale
overall illumination of the explosion. Furthermore, our method can
produce a noise-free image within several minutes (including the
precomputation time), while path tracing requires more than an
order of magnitude longer time to converge to a low-noise result.
Note that this is a particularly challenging frame of this explosion
simulation for our method. In other frames, where the illumination
is not as widely distributed within the explosion volume, our method
becomes substantially more efficient (i.e. produces fewer lights and
uses less memory for shadowmaps); therefore, it renders even faster,
while path tracing produces even more noise for such frames.

The illumination contributions of all levels with our method for
the frame in Figure 1 are presented in Figure 4. Notice that the lower
(finer) levels contain high-frequency local illumination, and distant
illumination is produced by the higher (coarser) levels. The majority
of the error in our system comes from these higher (coarser) levels,
mainly because our implementation keeps only 4 volumetric shadow
values per deep shadow map texel.

Single Scattering Multiple Scattering Luminance Diff. ×2

Fig. 7. The impact of multiple scattering for self-illumination is mostly
visible near bright areas as a subtle glow.

Figures 5 and 8 show frames from two explosion simulations.
Note that our method can also be used for illuminating and casting
shadows onto other objects both inside and outside of the explo-
sion volume. Especially when illuminating objects outside of the
explosion volume, our method relies on the lights at higher (coarser)
levels; therefore, the lighting computation is very efficient, partic-
ularly for distant illumination. In these examples rendering the
box surrounding the explosions took only a few seconds per frame,
though the box is relatively close to the explosions.
The impact of our α parameter is shown in Figure 6. Note that

larger α values reduce the error in our lighting approximation. How-
ever, going from α = 2 to α = 3 more than doubles the precomputa-
tion and render time for this frame.

The effect of multiple scattering is displayed in Figure 7. This ex-
ample uses four levels of scattered light. Thus, the final light reaching
the camera includes up to five scattering events. Notice that multiple
scattering produces a low-frequency “glow” as a function of both
illumination and smoke density. Due to the scattering properties of
the smoke medium, the total light intensity drops significantly with
each scattering event. Therefore, the fourth scattering depth barely
contributes to the total illumination. Even though the impact of
multiple scattering can be substantial, the low-frequency difference
can be hard to notice in side-by-side comparisons.
Our supplementary video demonstrates that our method avoids

temporal flickering. On the other hand, simpler variants that build
the hierarchy by clustering the lights (instead of distributing illu-
mination to multiple parents at higher levels), use thresholds for

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

Lighting Grid Hierarchy for Self-illuminating Explosions • 110:7

Fig. 8. Frames from another explosion simulation rendered using our lighting grid hierarchy with single scattering.

Grid Vertex Positions (qℓ) Illumination Centers (pℓ)

Fig. 9. An example frame showing the importance of placing lights at
the illumination centers (pℓ). When lights are placed at the grid vertex
positions (qℓ), illumination inside the explosion volume escapes the smoke
layer around it and illuminates the explosion from outside, so it produces
over-exposed illumination and incorrect self-shadows.

determining the effective distances of levels (instead of using blend-
ing functions), or generate shadows by treating lights at higher
(coarser) levels as point lights (instead of using pre-filtered smoke
data) lead to substantial amount of flickering. The importance of
using illumination centers (pℓ) for lighting, as opposed to original
grid vertex positions (qℓ), is shown in Figure 9. When the illumina-
tion centers are not considered, not only is the total illumination not
properly reproduced, but also the lights at higher (coarser) levels
can incorrectly illuminate the explosion from outside of the smoke
volume. This is because the grid points that are outside of the smoke
volume (but close enough to receive light intensity) escape the oc-
clusion of the smoke layer surrounding the internal illumination.
Therefore, using original grid vertex positions as light positions
leads to highly over-exposed illumination, as shown in Figure 9.

6.2 Comparisons to Lightcuts
Our approach is conceptually similar to the Lightcuts method [Wal-
ter et al. 2005], which uses a binary tree for clustering lights. How-
ever, the stochastic binary decisions used for building the light tree

produce a different tree every time the algorithm is used, which is
a source of flickering. The example in Figure 10 shows one frame
of an explosion simulation rendered multiple times using Lightcuts
with a 2% error threshold (as recommended). Notice that the dif-
ference (even without animation) is strong enough to cause visible
flickering (Figure 10c). One could eliminate the stochastic decisions
in light tree construction (by always picking the representative light
with stronger intensity) (Figure 10d), but deterministic construction
introduces bias (Figure 10e) and cannot guarantee temporal stability
with animated illuminations.

The lighting computation of Lightcuts is based on a conservative
error-bound that limits the maximum possible illumination that
could come from a subtree. However, since hundreds of such sub-
trees are involved in lighting computation, the total error is not
bounded by the error threshold and the temporal flickering can
be substantial (though the total error estimation can be improved
[Nabata et al. 2016]).
Most importantly, since Lightcuts and its variants do not limit

the influence radii of lights, our shadow precomputation method
is not applicable and the vast amount of high-resolution volume
tracing for shadows leads to completely impractical render times.
In fact, in our tests Lightcuts resulted in much slower render times
than path tracing. The images in Figure 10 are generated using 100
times fewer primary camera rays than the images in Figure 1, but
they rendered in about 2 hours, which is over an order of magni-
tude slower than our path tracing reference and several orders of
magnitude slower than our method. This is because our path tracer
directly uses the volume data (instead of generating many point
lights), so it can accumulate light during ray marching, while the
many-lights solution using Lightcuts merely accumulates shadows
(via ray marching).

In comparison, our method builds a consistent structure every
time (avoiding flickering) and allows efficient shadow precompu-
tation (by limiting the light influence radii) for significantly ac-
celerated rendering. However, if we skip shadow precomputation
with our method and use ray marching instead, our method slows
down to a similar impractical rendering speed (varies based on the
α parameter) as Lightcuts. Therefore, the performance advantage of
our method is directly tied to its ability to precompute volumetric
shadows.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

110:8 • Can Yuksel and Cem Yuksel

(a) Lightcuts (b) Lightcuts (rerun) (c) Difference (×4) (d) Deterministic Lightcuts (e) Deterministic bias (×4)

Fig. 10. One frame of an explosion rendered twice using Lightcuts producing (a-b) two different results, (c) their difference (×4), (d) Lightcuts with
deterministic light tree construction, and (e) the bias introduced by deterministic tree construction shown as the difference (×4) between (d) and the average
of 128 results with Lightcuts.

(a) Lightcuts (b) Deterministic Lightcuts (c) Ours (point light shadows) (d) Ours (volume light shadows)

Fig. 11. Opaque polygonal geometry inside the light volume (shown as green box), where only a narrow segment of the volume contains non-zero illumination
(shown as blue box), computed using (a) Lightcuts, (b) Lightcuts with deterministic tree construction, (c) our method with point light shadows, and (d) our
method with volume light shadows (9 shadow samples per light per pixel).

6.3 Opaque Shadows
We use ray traced shadows for handling opaque polygonal objects
within or outside of the explosion volume, such as the example in
Figure 11. Therefore, ourmethod for handling opaque geometry does
not benefit from the performance boost of precomputed shadows.
However, since polygonal shadows are typically faster to compute as
compared to raymarching through volume data, this is an acceptable
solution.

For handling opaque polygonal geometry Lightcuts can produce
faster results by sampling fewer lights than our method (depend-
ing on the parameters). On the other hand, Lightcuts suffers from
temporal flickering and it can produce artifacts in soft shadows
(Figure 11a). Modifying the light tree construction of Lightcuts with

deterministic decisions (as described above) does not help with flick-
ering or soft shadows, and the bias it introduces can lead to incorrect
illumination, such as the middle of the wall in Figure 11b top row.

Using our method it is possible to precompute shadows for polyg-
onal geometry as well. However, treating the lights at the higher
(coarser) levels as points leads to objectionable hard shadows instead
of soft shadows (Figure 11c), and it can produce incorrect results for
distant illumination if the illumination centers happen to fall inside
opaque geometry. Instead, we treat them as volume lights and gener-
ate shadows via Monte Carlo sampling using Equation 4 to produce
the soft shadows in Figure 11d. While this produces high-quality
shadows and alleviates light bleeding problems, like other scalable
many-lights solutions, light bleeding cannot be entirely avoided.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

Lighting Grid Hierarchy for Self-illuminating Explosions • 110:9

Fig. 12. A scene illuminated by 227K animated balls. Both the balls and
the letters are translucent volumes. The balls illuminate each other and cast
shadows.

6.4 General Many-lights Problems
Besides explosions, lighting grid hierarchy can also be used for
efficiently computing the illumination from a large number of an-
imated point lights. Figure 12 shows such an example, where the
scene is illuminated by animated balls. The letters and the balls are
translucent and represented as volume data, so they illuminate each
other and cast translucent shadows.
In fact, our method is oblivious to how the lights are generated.

In Figure 13 we show a scene rendered using VPLs for indirect
illumination, computed using our method with three different α
parameter values: 1, 4, and 16. In this case, the lowest (finest) level
grid separation (h1) is automatically computed, starting with the
bounding box of the VPLs with a desirable coarse resolution. Lower
(finer) levels are generated until the number of grid vertices with
non-zero illumination exceeds the number of VPLs. As the α value
increases, our method samples more VPLs per shaded point, since
the radius values used for the blending functions increase with α .
Thus, when α is large enough, all VPLs are contained in the influ-
ence region of the lowest (finest) level, and our method converges
to ground truth via (effectively) brute-force computation. Smaller
α values permit approximating distant illumination using higher
(coarser) levels, causing low-frequency error, as can be see in the
difference images in Figure 13.

6.5 Performance
Table 1 includes the peak values for the number of light sources at
all levels and the total shadow map sizes, along with the average
computation times per frame for the explosion examples in Figures 5

α
=
16

α
=
4

α
=
1

rendered images differences (×8) from α = 16

Fig. 13. Indirect illumination from 365K VPLs computed using our lighting
grid hierarchy with α values 16, 4, and 1, sampling 43K, 4K, and 361 lights on
average, respectively. Hemispheres with 2r0 radius that correspond to α = 1
and α = 4 are shown on the difference images, indicating the influence
regions of lights in S0.

Table 1. Performance Results
Figure 5 Figure 8 Figure 12

Voxel Count ∼19M ∼19M ∼32M
Max. S0 light count * 1,405K 700K 227K
Max. S1 light count * 233K 114K 240K
Max. S2 light count * 36K 19K 59K
Max. S3 light count * 5.6K 3.2K 11K
Max. S4 light count * 932 652 1.7K
Max. S5 light count * 178 142 316
Max. S6 light count * 46 46 —
Max. Total Shadow Size 905 MB 448 MB 683 MB
Max. S0 Shadow Size 426 MB 195 MB 67 MB
Max. S1 Shadow Size 202 MB 109 MB 185 MB
Max. S2 Shadow Size 111 MB 58 MB 178 MB
Max. S3 Shadow Size 68 MB 38 MB 124 MB
Max. S4 Shadow Size 45 MB 23 MB 78 MB
Max. S5 Shadow Size 34 MB 15 MB 51 MB
Max. S6 Shadow Size 19 MB 10 MB —
Avrg. Precomputation * 273 sec. 35 sec. 20 sec.
Avrg. Render Time 320 sec. 150 sec. 30 sec.

* Includes multiple scattering lights/computation.

and 8, and the animated balls in Figure 12. Notice that the num-
ber of lights rapidly decreases with increasing levels. The fastest
component of our method is building the lighting grid hierarchy.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

110:10 • Can Yuksel and Cem Yuksel

Shadow generation takes most of the precomputation time, but it
provides substantial savings during final rendering. Each depth level
of the multiple scattering computation involves light generation
by computing lighting through the entire simulation volume using
the previously computed hierarchy, generating the hierarchy, and
precomputing shadows.

7 CONCLUSION
We have introduced a scalable solution for computing illumina-
tion with many animated lights designed for rendering explosions.
We have explained how we could avoid temporal flickering and
how we could precompute volumetric shadows for providing or-
ders of magnitude speed up. Furthermore, we have described an
efficient method for incorporating multiple scattering. Our results
show that our method is effective in rendering explosions with self-
illumination and it can also be used for other many-lights problems.

However, our method has its limitations. First of all, it relies on a
user-defined parameter α for determining its accuracy. While this
may be a convenient knob for adjusting the performance and accu-
racy trade-off, we provide no formulation for bounding the error of
our lighting approximation. Yet, even with relatively small α values
our method generates consistent and noise-free results. Moreover,
our multiple scattering computation only works for isotropic scat-
tering. Even with single scattering, glossy materials may require
relatively large α values. Furthermore, unlike path tracing solutions
that can quickly produce a noisy preview, our method has a fixed
cost and it directly produces the final result.

ACKNOWLEDGEMENTS
We thank David Hill for his help with preliminary tests, Ron Hen-
derson and Andrew Pearce for their support for this work, and
DreamWorks Animation for facilitating this project. We also thank
Peter Shirley for his helpful feedback and Konstantin Shkurko for
his comments. Finally, we thank anonymous reviewers for their
valuable suggestions, particularly regarding extensive comparisons
with Lightcuts.

REFERENCES
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and

Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer
Graphics Forum 33, 1 (2014), 88–104.

Tomáš Davidovič, Iliyan Georgiev, and Philipp Slusallek. 2012. Progressive Lightcuts
for GPU. In ACM SIGGRAPH ’12 Talks. Article 1.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, Philipp Slusallek, and Kavita Bala.
2010. Combining Global and Local Virtual Lights for Detailed Glossy Illumination.
ACM Trans. Graph. (Proceedings of SIGGRAPH ’10) 29, 6, Article 143 (2010), 8 pages.

Zhao Dong, Thorsten Grosch, Tobias Ritschel, Jan Kautz, and Hans-Peter Seidel. 2009.
Real-time Indirect Illumination with Clustered Visibility. In Vision, Modeling, and
Visualizaion Workshop 2009. 187–196.

Thomas Engelhardt, Jan Novák, ThorstenW. Schmidt, and Carsten Dachsbacher. 2012.
Approximate Bias Compensation for Rendering Scenes with Heterogeneous Partici-
pating Media. Computer Graphics Forum 31, 7 (2012), 2145–2154.

Bryan E. Feldman, James F. O’Brien, and Okan Arikan. 2003. Animating Suspended
Particle Explosions. ACM Transactions on Graphics (Proceedings of SIGGRAPH ’03)
22, 3 (2003), 708–715.

Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg. 2002. Local Illumination En-
vironments for Direct Lighting Acceleration. In Proceedings of the 13th Eurographics
Workshop on Rendering. 7–14.

Roald Frederickx, Pieterjan Bartels, and Philip Dutré. 2015. Adaptive LightSlice for
Virtual Ray Lights. In Eurographics 2015 Short Papers. 61–64.

Pascal Gautron, Cyril Delalandre, Jean-Eudes Marvie, and Pascal Lecocq. 2012. Volume-
aware Extinction Mapping. In ACM SIGGRAPH ’12 Talks. Article 31, 31 pages.

Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual Spherical
Lights for Many-light Rendering of Glossy Scenes. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia ’09) 28, 5, Article 143 (2009), 6 pages.

Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix Row-column Sampling for
the Many-light Problem. ACM Transactions on Graphics (Proceedings of SIGGRAPH
’07) 26, 3, Article 26 (2007), 10 pages.

Miloš Hašan, Edgar Velázquez-Armendariz, Fabio Pellacini, and Kavita Bala. 2008. Ten-
sor Clustering for Rendering Many-light Animations. In Proceedings of Eurographics
Workshop on Rendering. 1105–1114.

Yuchi Huo, Rui Wang, Tianlei Hu, Wei Hua, and Hujun Bao. 2016. Adaptive Ma-
trix Column Sampling and Completion for Rendering Participating Media. ACM
Transactions on Graphics 35, 6, Article 167 (2016), 11 pages.

Kosuke Nabata, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2016. An Error
Estimation Framework for Many-Light Rendering. Computer Graphics Forum 35, 7
(2016), 431–439.

Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hujun Bao. 2015. A Matrix Sampling-
and-recovery Approach for Many-lights Rendering. ACM Transactions on Graphics
34, 6, Article 210 (2015), 12 pages.

Genichi Kawada and Takashi Kanai. 2011. Procedural Fluid Modeling of Explosion
Phenomena Based on Physical Properties. In Proceedings of Symposium on Computer
Animation. 167–176.

Alexander Keller. 1997. Instant Radiosity. In Proceedings of ACM SIGGRAPH ’97. 49–56.
Thomas Kollig and Alexander Keller. 2006. Illumination in the Presence of Weak Singu-

larities. 245–257.
Nipun Kwatra, Jón T. Grétarsson, and Ronald Fedkiw. 2010. Practical Animation of

Compressible Flow for Shock Waves and Related Phenomena. In Proceedings of
Symposium on Computer Animation. 207–215.

Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and Timo Aila.
2007. Incremental Instant Radiosity for Real-time Indirect Illumination. In Proceed-
ings of Eurographics Workshop Rendering. 277–286.

Tom Lokovic and Eric Veach. 2000. Deep Shadow Maps. In Proceedings of ACM SIG-
GRAPH ’00. 385–392.

Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012.
Progressive Virtual Beam Lights. Computer Graphics Forum 31, 4 (2012), 1407–1413.

Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012.
Virtual Ray Lights for Rendering Scenes with Participating Media. ACM Transactions
on Graphics 31, 4, Article 60 (2012), 11 pages.

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix Slice Sampling for the Many-
lights Problem. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia ’11)
30, 6, Article 179 (2011), 8 pages.

Eric Paquette, Pierre Poulin, and George Drettakis. 1998. A Light Hierarchy for Fast
Rendering of Scenes with Many Lights. Computer Graphics Forum 17, 3 (1998),
63–74.

Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Monte Carlo and QuasiMonte
Carlo Methods 2006. Chapter Unbiased Global Illumination with Participating Media,
591605.

Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten Dachsbacher,
and Jan Kautz. 2008. Imperfect Shadow Maps for Efficient Computation of Indirect
Illumination. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia ’08) 27,
5, Article 129 (2008), 8 pages.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A Vortex Particle Method
for Smoke, Water and Explosions. ACM Transactions on Graphics (Proceedings of
SIGGRAPH ’05) 24, 3 (2005), 910–914.

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo Techniques
for Direct Lighting Calculations. ACM Transactions on Graphics 15, 1 (1996), 1–36.

IngoWald, Carsten Benthin, and Philipp Slusallek. 2003. Interactive Global Illumination
in Complex and Highly Occluded Environments. In Proceedings of Eurographics
Workshop on Rendering. 74–81.

Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek.
2002. Interactive Global Illumination Using Fast Ray Tracing. In Proceedings of
Eurographics Workshop Rendering. 15–24.

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimen-
sional Lightcuts. ACM Transactions on Graphics (Proceedings of SIGGRAPH ’06) 25, 3
(2006), 1081–1088.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM
Transactions on Graphics (Proceedings of SIGGRAPH ’05) 24, 3 (2005), 1098–1107.

Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional Lightcuts. ACM
Transactions on Graphics 31, 4, Article 59 (2012), 11 pages.

Rui Wang, Yuchi Huo, Yazhen Yuan, Kun Zhou, Wei Hua, and Hujun Bao. 2013. GPU-
based Out-of-core Many-lights Rendering. ACM Transactions on Graphics 32, 6,
Article 210 (2013), 10 pages.

GregoryJ. Ward. 1994. Adaptive Shadow Testing for Ray Tracing. In Photorealistic
Rendering in Computer Graphics (Proceedings of the Second Eurographics Workshop
on Rendering). 11–20.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 110. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Lighting Grid Hierarchy
	3.1 Building the Hierarchy
	3.2 Estimating Lighting

	4 Shadows
	5 Multiple Scattering
	6 Implementation and Results
	6.1 Explosion Rendering
	6.2 Comparisons to Lightcuts
	6.3 Opaque Shadows
	6.4 General Many-lights Problems
	6.5 Performance

	7 Conclusion
	References

