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Figure 1: An example frame rendered using our real-time global illumination solution with one million virtual point lights, computed by our
method, using α = 2 and 4 × 4 interleaved sampling. The render time is 24 ms on an NVIDIA RTX 2080 GPU at 1280 × 720 resolution.

ABSTRACT
We present an extension of the lighting grid hierarchy method for
real-time rendering with many lights on the GPU. We describe
efficient methods for parallel construction of the lighting grid hier-
archy and using it with deferred rending. We also present a method
for estimating shadows from many lights with a small number of
shadow samples using the ray tracing API on the GPU. We show
how our approach can be used for real-time global illumination
computation with virtual point lights.
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1 INTRODUCTION
Rendering with a large number of light sources (i.e. the many-lights
problem) has been an important challenge in computer graphics.
While there exists elegant offline rendering methods that provide
sub-linear performance in the number of light sources [Hašan et al.
2007; Walter et al. 2005; Yuksel and Yuksel 2017], it still remains an
open problem for real-time rendering.

In this paper we provide an extension on the recently-introduced
lighting grid hierarchy method [Yuksel and Yuksel 2017], which
was originally developed for rendering explosions by representing
their illumination using many point lights, and we make it suitable
for general-purpose real-time rendering on the GPU. Given a large
number of light sources, we construct a lighting grid hierarchy on
the GPU and use it for efficiently approximating the total light-
ing contribution from all lights in a deferred renderer. We achieve
this by rendering the lights within the lighting grid hierarchy as
range-limited light volumes and using a small number of shadow
samples for approximating the shadows from all lights via a new
importance sampling algorithm. The computation of the chosen
shadow samples is performed using the recently-introduced ray
tracing API on the GPU and a screen-space filter is used for elim-
inating the high-frequency noise of shadow sampling. We show
how our method can be used for computing global illumination
with a large number of virtual point lights at real-time frame rates
(Figure 1). The technical contributions in this paper include:

• An efficient method for lighting grid hierarchy construction
on the GPU,

• An importance sampling algorithm for estimating shadow
contributions of all lights with a fixed memory footprint,
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• A hybrid ray tracing-rasterization approach for rendering
high-quality diffuse-dominant global illumination in com-
plex scenes using many virtual lights, including dynamic
lighting and dynamic geometry at real-time frame rates.

2 BACKGROUND
In this section we briefly overview the related work in computer
graphics regarding rendering with many-lights and real-time global
illumination computation. We also provide a summary of the light-
ing grid hierarchy method [Yuksel and Yuksel 2017].

2.1 Prior Work
The many-lights problem received considerable attention in com-
puter graphics [Dachsbacher et al. 2014], starting with ordering
lights based on their contributions [Ward 1994], stochastic sam-
pling [Shirley et al. 1996], light clustering using octrees [Paquette
et al. 1998], and precomputed visibility culling [Fernandez et al.
2002]. The lightcuts method [Walter et al. 2005] provides a highly
efficient scalable solution to the many lights problem by forming a
binary light tree from the light sources. Its extensions address high-
dimensional integrations [Walter et al. 2006], progressive GPU im-
plementation [Davidovič et al. 2012], bidirectional sampling [Walter
et al. 2012], and out-of-core GPU implementation for large scenes
[Wang et al. 2013]. An alternative solution to the many-lights prob-
lem forms a lighting matrix and approximates its solution [Hašan
et al. 2007]. The extensions of this approach include a method for
handling glossy surfaces [Davidovic et al. 2010], reducing flickering
by processing animated sequences [2008], and using cuts [Ou and
Pellacini 2011] or a reduced matrix [Huo et al. 2015] for accelerat-
ing the computation. Recently, the lighting grid hierarchy method
[Yuksel and Yuksel 2017] was introduced for rendering explosions
by representing their illumination using many virtual point lights.
We extend this method in this paper by providing a GPU-friendly
variant that is suitable for real-time rendering with many lights, so
we discuss this method in more detail below (Sec. 2.2).

Most interactive global illumination methods aim to provide a
fast estimation of the rendering equation [Kajiya 1986] with geome-
try approximations using voxels [Crassin et al. 2011; Kaplanyan and
Dachsbacher 2010], surfels [Christensen 2008; Ritschel et al. 2009a],
or spheres [Ren et al. 2006; Sloan et al. 2007]; lighting approxima-
tions using photons [Hachisuka et al. 2008; Jensen 1996], virtual
point lights [Keller 1997; Segovia et al. 2006a], or spherical func-
tions [Green et al. 2007; Ramamoorthi and Hanrahan 2001; Sloan
et al. 2002]; screen space techniques [Mara et al. 2016; McGuire
and Mara 2014; Moreau et al. 2016; Nichols et al. 2009; Ritschel
et al. 2009b]; caching [Jendersie et al. 2016; Vardis et al. 2014]; or
reconstruction from sparse samples [Krivanek et al. 2005; McGuire
et al. 2017; Silvennoinen and Lehtinen 2017].

The method we describe in this paper uses virtual point lights
(VPLs) [Keller 1997]. Advantages of using VPLs include easy im-
plementation, stable appearance, and scalability. Due to the low-
frequency nature of diffuse reflection, VPLs are particularly effective
in rendering diffuse indirect reflection, which, in many cases, is
the most important part of global illumination. However, the sin-
gularity of point lights cause practical problems. Simply clamping

the inverse square attenuation leads to energy loss. Energy com-
pensation methods that use path tracing [Kollig and Keller 2006],
screen space sampling [Novák et al. 2011] or a mixture with photon
mapping [Sriwasansak et al. 2018] have been developed to solve
this issue, but they are computationally expensive, particularly for
real-time rendering.

An important obstacle for using VPLs in real-time rendering has
been the challenge of efficiently handling many light sources. Clus-
tered shading [Olsson et al. 2012] is the first method that presented
real-time rendering performance with one million point lights;
however, it assumes local illumination. Stochastic light culling
[Tokuyoshi and Harada 2016] achieves interactive rates by fitting
VPLs into the tiled shading framework [Olsson and Assarsson 2011],
but introduces banding artifacts that are difficult to filter. Forward
light cuts [Laurent et al. 2016] can compute the illumination of
many VPLs using a multi-scale radiance cache, but shadows are not
accounted. More recently, Estevez and Kulla [2018] introduced an
efficient method for importance sampling many lights during path
tracing by stochastically traversing a bounding volume hierarchy
of light clusters, and this method is recently extended to real-time
rendering [Moreau and Clarberg 2019].

Computing shadows from many VPLs has been another related
challenge. There are solutions for real-time shadow computation
from hundreds of lights [Olsson et al. 2015, 2014], but scenes using
VPLs for indirect illumination usually require thousands of VPLs or
more. Traditionally, shadows are computed for each of the VPLs, but
this can be too expensive for real-time rendering, unless combined
with a subsampling technique. Harada et al. [2013] proposed a
method for efficiently casting shadow rays to lights within each
render tile, but it does not solve the problem for virtual point lights
with potentially global influence radius. Imperfect shadow maps
[Ritschel et al. 2008] use a point cloud representation of the scene
geometry to significantly reduce the shadow mapping cost at the
expense of shadow quality.

2.2 Lighting Grid Hierarchy
The lighting grid hierarchy method [Yuksel and Yuksel 2017] pro-
vides an effective solution to the many-lights problem, though
it was originally introduced for rendering explosions with self-
illumination by representing the volumetric illumination data as
many virtual point lights. As opposed to alternative solutions to
the many-lights problem, lighting grid hierarchy provides a tem-
porally stable computation. It also allows efficiently precomputing
and storing shadows for all lights, which leads to orders of mag-
nitude faster computation with volumetric shadows needed for
rendering explosions. In this paper we extend this approach by
providing an efficient parallel construction method, presenting a
technique for efficiently computing the lighting from the hierarchy
on the GPU, and introducing an importance sampling algorithm
that avoids shadow precomputation, all of which are crucial for
achieving real-time frame rates.

The lighting grid hierarchy method represents the entire illu-
mination from all lights at multiple resolutions. Each level of the
hierarchy corresponds to a different resolution representation that
approximates the original lights using fewer light sources. A level is
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Figure 2: The blending functions B0, B1, B2, and B3 of lighting grid
hierarchy with ℓmax = 3, forming a partition of unity for any distance
d from the point where lighting is computed.

constructed by placing a volumetric grid that encapsulates the orig-
inal lights. The vertices of the grid approximate the lights around
them, such that the contribution of each original light is distributed
to the eight neighboring grid vertices using trilinear weights. A
grid light is generated from each grid vertex with non-zero illumi-
nation and placed at the illumination center of the original lights it
represents. The highest resolution grid forms level 1 with the set
of light sources S1. Higher levels ℓ of the hierarchy use grid cells
with twice the size in all dimensions as compared to the level ℓ − 1
right below them. The highest (coarsest) level ℓmax typically has a
single cell with 8 vertices, forming Sℓmax . Therefore, the number of
levels constructed depends on the resolution of level 1. The original
lights are kept at level zero, forming S0.

For providing an efficient solution to the many-lights problem,
a lighting grid hierarchy approximates the light coming from dif-
ferent distances using different levels of the hierarchy, providing
different resolution representation of the original lighting. This
is accomplished using blending functions that form a partition of
unity for any distance from the point where lighting is computed
(Figure 2). These blending functions determine the influence re-
gions of the lights at each grid level and the incoming illumination
from a light is modulated by the corresponding blending function
value. Let hℓ be the grid size of level ℓ. The non-zero regions of the
blending functions are determined by distances rℓ = αhℓ , where
α is a user-defined parameter that determines the accuracy of the
lighting approximation. Larger α values lead to blending functions
with larger non-zero regions and result in using more grid lights
for estimating lighting with higher accuracy.

3 RENDERINGWITH MANY LIGHTS
Our rendering algorithm uses the lighting grid hierarchy method
[Yuksel and Yuksel 2017] to efficiently evaluate the illumination
from a large number of point lights. In our experiments we use this
algorithm for computing indirect illumination with many virtual
point lights (VPLs) [Keller 1997], though our lighting computation
is independent from how the point lights are generated.

We begin with constructing a lighting grid hierarchy from the
given point lights on the GPU (Sec. 3.1). We use this lighting grid
hierarchy within a deferred renderer for efficiently estimating the
illumination from all lights (Sec. 3.2). While computing the lighting,
we stochastically pick a fixed number of shadow samples to be
computed via ray tracing on the GPU (Sec. 3.3). Finally, we filter
the computed shadows to eliminate the high-frequency sampling
noise and use the result as shadow ratio estimators for computing
the final lighting approximation.

3.1 Lighting Grid Hierarchy Construction
The problem of constructing a lighting grid hierarchy is similar to
the particle-to-grid transfer operations used in hybrid Lagrangian-
Eulerian simulation systems [Gao* et al. 2018; Wu et al. 2018].
Each level of the hierarchy can be constructed using either scatter
[Gao* et al. 2018] or gather [Wu et al. 2018] operations. The scatter
approach loops over each light and adds its illumination to the
corresponding grid vertices. Since the parallel scatter loop involves
atomic operations, it can be highly inefficient for higher (coarser)
levels of the hierarchy, as the small number of target grid vertices at
these levels lead to frequent thread contentions in atomic operations.
The gather approach, on the other hand, loops over each grid vertex
and finds the corresponding lights that contribute to the vertex.
This eliminates the need for atomic operations, but requires search
operations for finding the corresponding lights. This search can be
accelerated by a pre-ordering step [Wu et al. 2018], which can also
be expensive to compute.

To provide an efficient parallel construction algorithm, we split
the construction process into two steps. In the first step we scatter
the contributions of each input light to the first grid level S1 with
the highest resolution. Since this level involves a relatively small
percentage of thread contentions, the related atomic operations
can be performed efficiently. In the second step we build the rest
of the levels using a gather approach. To avoid an expensive pre-
ordering step, we build these levels using the grid lights of the first
level S1, which are already ordered by construction. This approach,
as opposed to generating all levels directly from the input lights
S0, leads to some smoothing in the final lighting approximation
from the lighting grid hierarchy, but provides a highly efficient
mechanism for the parallel construction process. Since VPLs are
placed only on surfaces, a significant portion of the grid vertices in
the volume may contain no illumination, especially for the lower
(finer) levels of the hierarchy. Therefore, the construction process
is completed by a stream compaction pass that is applied for each
level to remove the large percentage of unused grid vertices.

Since we use a bottom-up construction of the hierarchy by build-
ing S1, we must first determine the size of the grid cells h1. We
begin with computing the bounding box of all input lights and set
the grid size of the top level Sℓmax , which only contains a single cell
(i.e. 8 grid lights), as the longest edge of this bounding box. The
grid size for the first level S1 is computed using h1 = hℓmax/2ℓmax−1.
In our implementation the number of lighting grid hierarchy levels
ℓmax is controlled by a user-specified parameter.

3.2 Lighting Computation
If the lighting grid is densely populated, such that each grid vertex
contains a light with non-zero intensity, lights around a shaded
point can be directly gathered from the grid. However, the stream
compaction pass we use for eliminating grid lights with zero inten-
sities prevents trivially finding the lights around a shaded points
from their grid locations. Therefore, we use the lighting grid hierar-
chy within a deferred renderer for estimating the illumination from
all lights with a light rasterization step. After generating G-buffers
for the scene geometry, we rasterize the lights in the lighting grid
hierarchy as (coarse) spheres (approximated using cubes in practice)
[Dachsbacher and Stamminger 2006]. Since the blending function
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values for the lights in the lighting grid hierarchy are zero beyond
the distance 2rℓ from the light sources, for each light we draw a
sphere with 2rℓ radius. The exception is the 8 lights in the top
level of the hierarchy, which use blending functions that do not
go to zero with increasing distance, so these lights can be handled
separately by drawing a screen-size quad. This process produces
fragments for each pixel that the lights can potentially illuminate
with a non-zero blending function value. Yet, the blending func-
tions can still evaluate to zero for some of these fragments, since
each grid light at the higher levels of the hierarchy has a minimum
illumination radius rℓ/2 within which the blending function is zero
(see Figure 2). Therefore, we compute the blending function for
each fragment and discard the fragment if it is zero.

We perform the lighting computation for each fragment with a
non-zero blending function value and accumulate the result with-
out considering shadows. Shadows are computed separately, as
explained below (Sec. 3.3).

3.3 Shadow Sampling
The lighting grid hierarchy allows estimating the illumination using
a small subset of all lights. Yet, in practice lighting computation of
each pixel still involves hundreds of lights with non-zero blending
function values (especially with relatively large α parameters) and
computing shadows for each one of these lights can be prohibitively
expensive for real-time rendering. Even though the lighting grid
hierarchy method allows precomputing shadows (such as shadow
maps) with a reasonable memory usage, this precomputation can
easily become the bottleneck of the entire rendering process. There-
fore, we instead stochastically estimate shadows using a fixed num-
ber of samples, which are computed via ray tracing on the GPU.
We pick these shadow samples during the lighting computation
(Sec. 3.2). The shadows computed from these samples are then used
as shadow ratio estimators [Heitz et al. 2018].

We must pick the shadow samples randomly, independent of the
order in which the lights are processed, to avoid introducing bias
in shadow sampling. Furthermore, this random sampling should
be performed independently for each pixel to avoid correlation in
sampling. This process requires considering the set of all lights that
have non-zero illumination contributions for each pixel. Moreover,
since the illumination contributions of each light in the lighting
grid hierarchy can vary drastically, using an importance sampling
scheme is crucial for reducing the variance in sampling.

We pick a small number of shadow samples for each pixel during
the lighting computation, while rendering the lights as spheres
(Sec. 3.2). These shadow samples are evaluated after the lighting
computation via tracing shadow rays on the GPU from the pixel po-
sitions towards the selected shadow sample locations. The lighting
grid hierarchy we construct contains the variance of the illumina-
tion center for each light.We use these variance values for randomly
picking shadow sample positions to produce area shadows, as op-
posed to using the illumination centers directly. Each one of the
shadow samples of a pixel is selected independently. Therefore, it is
possible to havemultiple shadow samples of a pixel belonging to the
same light source, though it is improbable in practice, considering
that each pixel is illuminated by hundreds of lights. Nonetheless,

even if two shadow samples of a pixel use the same light, they are
likely to send shadow rays towards slightly different directions.

Let fi be the probability density of picking the light source i
for shadow sampling, such that the probability of picking the light
source is pi = fi/

∑n
j fj , where n is the total number of lights in the

hierarchy. These fi values are determined per pixel based on the
illumination contribution of each light for importance sampling,
such that fi is non-zero if and only if the light has non-zero illu-
mination contribution (disregarding potential shadowing). During
lighting computation, we store a running total for the cumulative
probability density f̂i =

∑i
j fj for each pixel. For each fragment

with a non-zero fi value, we decide whether to use it as a shadow
sample stochastically with probability p̃i = fi/ f̂i , using the accumu-
lated probability density f̂i while rendering the light source i . This
stochastic decision is performed separately for each shadow sample
of the pixel. If the light is selected as a shadow sample, it overwrites
the previously selected sample. Note that the first light of a pixel
with p̃1 = f1/ f̂1 = 1 is always selected as a shadow sample, though
succeeding lights can overwrite the shadow sample. At the end of
the lighting computation, this process provides k shadow samples
each with the desired probability pi (see Appendix A for a proof),
where k is the number of shadow samples per pixel, controlled as a
user-defined parameter.

After the lighting computation, during which k shadow samples
are picked, we trace shadow rays on the GPU to determine a binary
shadow value for each sample. The average of the k samples provide
the shadow value for the pixel, which can be used as a shadow ratio
estimator [Heitz et al. 2018].

Stochastic shadow sampling, as explained above, leads to a sub-
stantial amount of noise when using a small number of shadow
samples. For eliminating the high-frequency noise in shadow sam-
pling a screen-space bilateral filter can be applied to the computed
shadow values before using them as shadow ratio estimators [Heitz
et al. 2018]. In our tests we use a wavelet-based filter [Dammertz
et al. 2010], which we found to be more effective for filtering the
shadow noise of VPLs used for computing diffuse-dominant global
illumination.

4 IMPLEMENTATION AND RESULTS
We evaluate our method by computing indirect illumination with
VPLs [Keller 1997]. The VPLs are generated by tracing light rays
up to three diffuse bounces. When the lighting condition changes,
we regenerate all VPLs and construct a new lighting grid hierarchy.
We use the DirectX ray tracing API for both generating VPLs and
computing shadow rays. All performance results are generated
using an NVIDIA RTX 2080 graphics card at 1280 × 720 resolution.

4.1 Additional Optimizations
The process of picking the shadow samples (Sec. 3.3) involves
atomic operations for updating the running total for the cumu-
lative probability density f̂i and overwriting the shadow samples.
However, in practice the impact of thread contentions during the
lighting computation on the final result can be negligible. An ex-
ception is rendering to very small viewports. In our tests we found
that disabling thread locks produces virtually identical results with
10–20% improvement in render times. Therefore, the results in



Real-Time Rendering with Lighting Grid Hierarchy I3D ’19, May 21–23, 2019, Montreal, QC, Canada

(a) Sample shadows from S1
Render time: 32.5 ms

(b) Sample shadows from S2
Render time: 28.5 ms

(c) Difference ×8

Figure 3: Comparison of shadow sampling with and without using the lowest (finest) level of the hierarchy S1, using 100K VPLs, 4 shadow
samples, and α = 1.

this paper are generated without thread locks, unless otherwise
indicated.

Note that each level of the lighting grid hierarchy encodes the
entire illumination of all input lights with a different resolution.
Therefore, it is possible to skip using the actual input lights alto-
gether and begin the lighting computation using the first level of
the hierarchy S1 instead. This can significantly reduce the overdraw
caused by rendering spheres for each light source and accelerate
the lighting computation, but it also introduces some smoothing to
the estimated illumination. Yet, in the case of using VPLs for com-
puting indirect illumination, this additional smoothing can even
be preferable in practice. Therefore, all results in this paper are
generated using the lighting grid hierarchy starting from S1.

In addition, due to the large number of grid lights in S1 and
their relatively small illumination radii, skipping S1 grid lights for
shadow sampling can significantly reduce the memory bandwidth
and computation time, without obvious impact on the render quality.
In our tests we observed an additional 10–15% speedup by skipping
S1 for shadow sampling with almost identical render results, as can
be seen in Figure 3. Therefore, the results in this paper do not use
S1 for shadow sampling, unless otherwise specified.

4.2 Lighting Grid Hierarchy Construction
Rendering begins with constructing a lighting grid hierarchy, which
is reconstructed every time the illumination changes and a new set
of VPLs are generated. Table 1 compares the computation time of
parallel lighting grid hierarchy construction using scatter opera-
tions on the input VPLs and our gather approach using S1 for com-
puting the higher levels of the hierarchy. The computation time of
each step is listed in the table. The first step computes the collective
bounding box of the lights and the final step merges the grid lights
of all levels into a single buffer to avoid multiple draw calls during
light rasterization. Notice that our gather method is more than an
order of magnitude faster than the scatter approach. The first two
(compute bounds and compute S1) and the last (merge levels) oper-
ations are identical in both cases. The difference in performance
comes from the thread contentions of the scatter operations for
computing the higher levels of the hierarchy. In comparison, we
can efficiently construct a lighting grid hierarchy by generating
higher levels from S1.

A qualitative comparison of lighting grid hierarchy construc-
tion methods is provided in Figure 4. Notice that the two methods

Table 1: Breakdown of lighting grid hierarchy construction time.

Scatter VPLs Gather from S1
Compute bounds 1.7 ms 1.7 ms

Compute S1 2.3 ms 2.3 ms
Compute S2 2.3 ms 1.0 ms
Compute S3 4.7 ms 1.0 ms
Compute S4 23 ms 2.0 ms
Compute S5 107 ms 1.0 ms
Compute S6 405 ms 1.1 ms
Compute S7 1,563 ms 1.5 ms
Merge levels 0.5 ms 0.5 ms

Total 2,110 ms 12.1 ms
The timings are generated by averaging 256 frames using 100K VPLs
with the scene in Figure 5.

for parallel lighting grid hierarchy construction produces similar
results. Yet, an extra level of smoothing and light leakage can be
observed when using our gather operations from S1 (Figure 4b).

As one would expect, the lighting grid hierarchy construction
time depends on the number of VPLs. The total construction times
for different number of VPLs can be seen in Table 2, showing that
the construction time using our gather approach grows sublinearly
with the increasing number of VPLs.

(a) Scatter VPLs (b) Gather from S1

Figure 4: Lighting grid hierarchy construction methods using (a) scat-
ter operations on the input VPLs and (b) our gather operations using
the first level S1 of the hierarchy, producing similar results.
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1K VPLs
Render time: 15.5 ms

10K VPLs
Render time: 22.4 ms

100K VPLs
Render time: 28.5 ms

1M VPLs
Render time: 37.0 ms

Brute-force 1M VPLs
Render time: 15 minutes

1K grid lights
Average Overdraw: 135

5K grid lights
Average Overdraw: 190

28K grid lights
Average Overdraw: 222

144K grid lights
Average Overdraw: 254
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Number of Grid Lights vs.
Average Overdraw

Figure 5: Heatmaps showing the number of overdraw per pixel during the lighting computation for lighting grid hierarchies generated from
different numbers of VPLs and a log plot of number of grid lights used in lighting computation vs. average overdraw per pixel, showing the
logarithmic growth in average overdraw as compared to the increasing number of lights. The first row shows the corresponding render results
using our method with 4 shadow samples per pixel and the brute-force reference generated by computing shadows of each VPL.

4.3 Rendering
Figure 1 shows an example image rendered using our method for
computing global illumination with VPLs. As expected, our method
can produce high-quality global illumination, since we can effi-
ciently compute lighting from a large number of VPLs. The perfor-
mance and the quality of our results depend on the number of VPLs
used, the number of shadow samples per pixel, and the parameter α
of the lighting grid hierarchy method that determines the number
of light samples used for estimating the illumination.

Obviously, using more VPLs leads to a better approximation
of global illumination and it also increases the render time. Since
we do not directly use the VPLs in the lighting computation, the
performance of our results depend on the number of grid lights in
the higher levels of the hierarchy. In our tests we set the number
of levels for the lighting grid hierarchy according to the number
of VPLs and we pick the largest number of levels, such that the
number of lights in S1 is less than half of the number of VPLs.
Thus, in our test the number of lights in the hierarchy is roughly
proportional to the number of VPLs. However, as shown in Table 2,
the render time does not linearly scale with the number of VPLs
and we achieve a sublinear growth in render time with increasing
VPL count.

Table 2 also shows that using a single shadow sample per pixel
is significantly cheaper than 4. It is important to note that most of
the extra cost of having additional shadow samples is related to the
process of picking shadow samples during lighting computation.
The actual shadow computation via tracing shadow rays is much
faster in comparison.

The sublinear growth in render time with increasing VPL count
can also be observed by investigating the number of overdraw (i.e.
the number of fragments generated per pixel) during the lighting
computation. Note that the lighting computation is the bottleneck
of our system and the actual computation is proportional to the
number of fragments generated. Figure 5 shows heatmaps indicat-
ing the number of overdraw per pixel for different number of VPLs.

Table 2: Computation & render times with different number of VPLs.

Number of VPLs 1K 10K 100K 1M
VPL Generation 0.1 ms 0.2 ms 0.4 ms 2.5 ms
Hierarchy Construction 7.0 ms 9.2 ms 12.1 ms 32.0 ms
Render time (no shadow) 5.6 ms 8.1 ms 11.2 ms 16.0 ms
Render time (1 shadow/pixel) 10.1 ms 14.3 ms 18.4 ms 24.3 ms
Render time (4 shadows/pixel) 15.5 ms 22.4 ms 28.5 ms 37.0 ms
The timings are generated using the camera angle in Figure 5.

Notice that the number of lights in the hierarchy grows propor-
tional to the number of VPLs, but overdraw grows approximately
logarithmically with increasing number of lights.

One way to reduce the number of overdraw is using interleaved
sampling [Keller and Heidrich 2001; Segovia et al. 2006b; Wald et al.
2002], which splits the frame buffer into a small number of tiles.
The lights at each level of the hierarchy are distributed evenly to
each tile and each light is rasterized onto only one of the tiles. Since
the tiles have much lower resolution than the combined frame
buffer, lights rendered onto a tile produces fewer fragments than
rendering onto the entire frame. The final image of the combined
frame buffer is constructed during the final compositing pass. By
reducing overdraw in lighting computation, interleaved sampling
significantly improves the total render time, but also leads to addi-
tional smoothing in the final illumination estimation.

Figure 6 shows a comparison of images generated with and
without interleaved sampling. Since indirect illumination is mostly
smooth, the differences caused by the additional smoothing of
interleaved sampling are not easy to notice. Yet, there exists some
additional smoothing in indirect shadows, especially visible behind
the draping cloth shown in the insets.

Table 3 provides the break-down of computation time for all
rendering operationswith andwithout interleaved sampling. Notice
that without interleaved sampling lighting computation takes most
of the rendering time ( 82.1% in this example). Using interleaved
sampling with 2 × 2 and 4 × 4 significantly reduces the lighting
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(a) No interleaved sampling
Render time: 30.2 ms

(b) 2 × 2 interleaved sampling
Render time: 15.2 ms

(c) 4 × 4 interleaved sampling
Render time: 10.1 ms

Figure 6: Comparison of our method with and without interleaved sampling using 100K VPLs, 4 shadow samples, and α = 1.
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Figure 7: Shadowed indirect illumination without shadow filter-
ing, generated with and without importance sampling using 1 and 4
shadow samples per pixel.

Table 3: Computation time of rendering operations.

Interleaved sampling not used 2 × 2 4 × 4
G-buffer generation 1.1 ms 3.5% 1.1 ms 7.0% 1.0 ms 5.9%
Lighting computation 24.8 ms 82.1% 9.0 ms 59.4% 3.8 ms 25.5%
Shadow ray tracing 2.3 ms 7.7% 2.2 ms 14.5% 2.2 ms 28.9%
Shadow filtering 1.9 ms 6.3% 2.8 ms 18.4% 2.9 ms 37.4%
Final compositing 0.1 ms 0.4% 0.1 ms 0.8% 0.1 ms 2.3%
Total render time 30.2 ms 15.2 ms 10.1 ms

The timings are generated with 100K VPLs, 4 shadow samples per
pixel, and α = 1, using the camera angle in Figure 6. Thread locks
are used in lighting computation for only 4 × 4 interleaved sampling
to prevent race conditions, which can be prominent in this case. The
total render times do not include 0.4 ms used for generating VPLs and
12.1 ms used for constructing the lighting grid hierarchy.

computation time. For dynamic scenes where lighting condition
or scene geometry constantly changes, the cost of VPL generation
and lighting grid hierarchy also need to be taken account into the
total render cost.

Importance sampling for shadow computation is a crucial compo-
nent of our method. Figures 7 and 8 compare the results of indirect
shadows before and after filtering, computed with and without
importance sampling. Notice that shadows are extremely noisy
without importance sampling and the filtered shadows still contain
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Figure 8: Shadowed indirect illumination with shadow filtering, gen-
erated with and without importance sampling using 1 and 4 shadow
samples per pixel.

a substantial amount of lower-frequency noise even with 4 shadow
samples per pixel. In comparison, we achieve superior results with
a single shadow sample per pixel using importance sampling. Our
shadows are further improved using more samples.

The lighting grid hierarchy method with smaller α values pro-
duces a smoother lighting approximation by considering fewer
lights for each lighting computation. A comparison with two dif-
ferent α values is shown in Figure 9. Since indirect illumination
is mostly smooth, the differences between the two alpha values
are difficult to notice. On the other hand, doubling the alpha value
triples the render time for this example.

(a) α = 1 (Render time: 31 ms) (b) α = 2 (Render time: 93 ms)

Figure 9:While the accuracy of the lighting approximation improves
with increasing α parameter of lighting grid hierarchy, the quality
improvement in indirect illumination can be difficult to see.
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(a) VXGI
Render time: 21 ms

(b) 4 × 4 interleaved sampling
Render time: 15 ms

(c) No interleaved sampling
Render time: 93 ms

(d) Path Tracing Reference
Render time: 2 hours

Figure 10: Comparison of global illumination computation using (a) voxel cone tracing generated with the highest quality settings in NVIDIA
VXGI 2.0, (b) our method with 4 × 4 interleaved sampling and α = 1.5, (c) our method with no interleaved sampling and α = 2, and (d) path
tracing reference. The given render times for VXGI and our method do not include construction time. 100K VPLs are used for generating our results.

Global illumination computation with a large number of VPLs
produces high-quality results and our approach, especially when
combined with interleaved sampling, provides the necessary perfor-
mance for achieving real-time frame rates. We compare the results
of our method to the NVIDIA VXGI implementation of voxel cone
tracing [Crassin et al. 2011] and path tracing [Kajiya 1986] in Fig-
ure 10. Notice that using our method we can produce a reasonably
close solution to the path tracing reference at interactive frame
rates (Figure 10c). Using interleaved sampling with our method
(Figure 10b) introduces additional smoothing in lighting approxi-
mation, but provides a highly efficient solution to real-time global
illumination computation. Notice that the indirect shadows (e.g. be-
hind the draping cloth and on the columns) are properly reproduced
using our method, but with some extra smoothing as compared to
the path tracing reference. In comparison to VXGI (Figure 10a), we
achieve closer results to the path tracing reference with relatively
less smoothing introduced to the indirect illumination estimation.

Although further reducing the render time, ignoring shadows
for indirect lighting can produce unrealistic results, which is more
pronounced in brightly lit scenes. Figure 11 shows different scenes
rendered using our algorithm and compares our method with 1
and 4 shadows samples per pixel to direct illumination only and
indirect illumination without shadows. Notice that without indirect
shadows the resulting indirect illumination is overestimated and it
becomes relatively flat.

While the lighting grid hierarchy method provides a temporally
stable solution to rendering with many lights, it does not eliminate
any underlying flickering of VPLs. In dynamic scenes, where the
direct illumination (and/or scene geometry) changes, we regenerate
all VPLs independently at each frame. Since VPL positions are dis-
tributed randomly in the scene, the resulting VPL distribution is not
temporally stable, even if the scene is static. Therefore, if all VPLs
are regenerated at every frame, the resulting indirect illumination
estimation may include substantial amount of flickering, regardless
of which method is used for computing the illumination from the
VPLs. One solution is incorporating methods that re-use VPLs to
minimize flickering [Hedman et al. 2016]. Alternatively, applying
a temporal anti-aliasing (TAA) filter only to the indirect illumina-
tion can substantially reduce the flickering, but can also introduce
ghosting artifacts. The solution we prefer is applying TAA only to
the indirect shadows, which reduces flickering without noticeable
ghosting artifacts.

5 DISCUSSION AND CONCLUSION
We have introduced an extension of the lighting grid hierarchy
method that makes it suitable for real-time rendering with many
lights. We have also shown how our method can be used for ef-
ficiently computing high-quality global illumination at real-time
frame rates. Our method can handle dynamic scenes, including
dynamic lighting.

One important issue with all efficient solutions to the many-
lights problem is that light leakage is unavoidable. This is certainly
the case with the lighting grid hierarchy method and our parallel
construction approach that uses S1 for generating the higher levels
of the hierarchy leads to additional light leakage.

Moreover, unless a relatively large α value is used, lighting grid
hierarchy can introduce some smoothing to the illumination esti-
mation. Our shadow computation with a small number of shadow
samples introduces an additional level of smoothing due to shadow
filtering.When combined with interleaved sampling, the smoothing
of our lighting estimation is further amplified.

Nonetheless, our method provides an effective solution to the
many-lights problem for real-time rendering.

Note that, regardless of whether VPLs are completely or partially
regenerated at every frame, the lighting grid hierarchy must be
reconstructed when there is any change to the VPL data. This
construction introduces computation cost beyond rendering for
dynamic scenes. An interesting future direction would be exploring
dynamic updates to previously constructed lighting grid hierarchy
that could reduce the initialization cost for dynamic scenes.
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A SHADOW SAMPLING PROBABILITIES
Given a stream of lights x1,x2,x3, ...,xn with discrete probabil-
ity densities f1, f2, f3, ..., fn , the objective is to pick light i as a
shadow sample with probability pi = fi/

∑n
j fj . The algorithm in

Sec. 3.3 keeps a running total for the cumulative probability den-
sity f̂i =

∑i
j fj and for each light i decides whether to pick it as a

shadow sample with probability p̃i = fi/ f̂i . We can prove that this
produces the desired probabilities pi by induction. When n = 1,
p̃i = pi = 1, so the base case is satisfied. For induction, suppose that
a light k , where k < n, is selected as a shadow sample with prob-
ability fk/ f̂n−1. The algorithm replaces k with next light n with
probability p̃n = fn/ f̂n . If light n is selected, its probability p̃n = pn
provides the desired probability. Otherwise, light k is preserved as
the shadow sample with probability f̂n−1/ f̂n ; thus, the total proba-
bility of picking light k becomes (fk/ f̂n−1)( f̂n−1/ f̂n ), which leads
to the desired probability pk = fk/ f̂n .
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