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Figure 1: Example models with mesh color textures we used in our tests. The mesh colors values are sampled from 2D texture maps. The
images are generated on the GPU using our trilinear filtering method with our 4D texture coordinate representation.

ABSTRACT
The fundamental limitations of texture mapping has been a long
standing problem in computer graphics. The cost of defining and
maintaining texture coordinates and the seams that introduce var-
ious filtering inconsistencies lead some graphics applications to
adapt alternative techniques that directly address these problems,
such as mesh colors. However, alternatives to texture mapping
introduce run-time cost that contradicts with the performance con-
straints of real-time graphics applications. In this paper we intro-
duce mesh color textures that offer all benefits of mesh colors to
real-time graphics applications with strict performance constraints.
Mesh color textures convert the mesh color data to a format that
can be efficiently used by the texture filtering hardware on current
GPUs. Utilizing a novel 4D texture coordinate formulation, mesh
color textures can provide correct filtering for all mipmap levels and
eliminate artifacts due to seams. We show that mesh color textures
introduce negligible run-time cost with no discontinuity in texture
filtering. We also discuss potential future modifications to graphics
hardware and API that would further simplify the use of mesh color
textures in real-time graphics applications.
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1 INTRODUCTION
Virtually in all computer graphics applications texture mapping is
the essential means by which high-frequency surface details are
represented. Textures typically store surface colors, but they can
also be used for storing other information like various material
properties, precomputed lighting, surface normals, displacement,
etc. Yet, texture mapping has severe fundamental flaws that inflate
the manual labor cost, negatively impact the final image quality, and
limit the use of advanced features like tessellation and displacement
mapping. We group the problems of texture mapping into two
categories: parameterization and filtering.

Parameterization is the process of defining a mapping from the
model space to the (typically 2D) texture space. While researchers
continue to develop ingenious ways to automate this process [Ray
et al. 2010; Smith and Schaefer 2015; Tarini 2016], in practice it still
requires extensive manual effort. Though the texture resolution on
a part of the surface is often directly tied to its size, in reality the
desired resolution also depends on the deformation that a surface
undergoes through an animation sequence and the desired amount
of detail an artist would like to add to a certain part of a model (for
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example, an artist may want to have a higher resolution texture
representation for the face of a character). Unfortunately, these
require user intervention and preclude the extensive use of fully
automated methods in practice. The parameterization process is
further complicated by the fact that the 3D model creation and
texture preparation are virtually separated. Thus, texture mapping
is often completely excluded from the 3D modeling process, and
post-iterations on the model geometry and topology after texture
mapping may require redefining the parameterization and subse-
quently repainting the texture (partially or completely). Therefore,
parameterization has been a tedious process even for highly skilled
and experienced artists.

The second group of problems are related to the filtering op-
erations that are used for computing the value of a texture at a
point (or an area) on the model surface. Baring limited special cases,
seams are unavoidable with texture mapping and it is extremely
difficult, if possible at all, to make sure that the interpolated color
values on either side of a seam would agree. Thus, seams lead to
visible discontinuities on the surface. The process of hiding seams
is typically left to the artist who paints the texture and her ability
to manually match the interpolated colors (and causes additional
manual labor). Even though minute differences in color values can
be tolerated due to the limitations of human visual system, they can
lead to unacceptable results when textures are used for geometric
information, such as cracks on surfaces with displacement maps.
In fact, this very problem was attributed as the primary reason
that prevents widespread use of displacement maps in video games
[Tatarchuk 2016], thereby limiting the use of the existing tessella-
tion hardware on the GPUs. Moreover, mipmapping, the primary
method by which minification filtering is computed, is broken be-
cause of seams: manual efforts of hiding seams cannot work beyond
a few mipmap levels (if that), as the mipmap levels store wrong
information by filtering the texture values based on proximity in
texture space, rather than model space. Also, texels near seams can
be shared by unrelated parts of the model. Similarly, anisotropic
filtering near seams can produce incorrect results, which are also
unavoidable.

In offline computer graphics applications these severe problems
of texture mapping can be completely avoided by using alterna-
tives of texture mapping that directly address these problems, like
mesh colors [Yuksel et al. 2010] or Ptex [Burley and Lacewell 2008].
However, these custom solutions require custom filtering opera-
tions that are not supported by current GPUs. Having in mind that
hardware texture filtering can be more than an order of magnitude
faster than software implementations, custom texture filtering is
entirely unacceptable for video games and other real-time graphics
applications with performance constraints. In fact, Intel’s Larrabee
architecture [Seiler et al. 2008], which proposed removing almost all
fixed function units from the GPU, still kept the texture filtering unit
for this very reason. Therefore, the problems of texture mapping
are still sources of real concern for real-time computer graphics
applications, and they continue to occupy a significant portion
of artist time, which dominates the monetary cost of AAA video
game production, as recently stated by developers from Bungie and
Activision studios [Tatarchuk et al. 2015].

An ideal solution to the problems of texture mapping for real-
time graphics applications must use the existing GPU hardware and

should impose minimal run-time computation cost. In this paper,
we introduce such a solution that converts mesh colors tomesh color
textures with 4D encoded texture coordinates, a format that can be
efficiently used on existing GPUs. We also provide solutions to the
limitations of mesh colors and offer relatively simple modifications
to graphics hardware and API that would further simplify the use of
mesh color textures in real-time graphics applications. In particular,
this paper contains the following technical contributions:
• A method that converts mesh colors to a 2D texture representa-

tion with correct bilinear filtering,
• A novel 4D texture coordinate formulation that provides correct

bilinear filtering for any mipmap level,
• A texture layout generation method and an optimization scheme

that allows mipmap levels beyond vertex colors,
• A formulation that permits nonuniform mesh color resolutions

on elongated triangles, and
• A solution for preventing anisotropic filtering from sampling

unacceptable texture locations in future hardware.
As a result, we provide a comprehensive solution that directly ad-
dresses the problems of texture mapping in real-time graphics appli-
cations. The solution we provide adds negligible computation cost
during rendering by utilizing existing texture filtering hardware,
completely eliminates the need for model parameterization, and
produces no filtering inconsistency in any mipmap level without
any manual effort. Therefore, we not only minimize the need for
manual labor, but also allow high-quality filtering operations with
mipmaps and resolve the issues that lead to limited use of tessel-
lation and displacement mapping. Most importantly, our solution
provides the authoring benefits of mesh colors without introducing
noticeable run-time overhead. Some example images of models
with mesh color textures captured from our implementation are
shown in Figure 1.

2 BACKGROUND
There is a large body of work on surface parameterization [Floater
and Hormann 2005; Hormann et al. 2007; Sheffer et al. 2006]. How-
ever, parameterization suitable for texture mapping should be ide-
ally bijective or at least injective, which is guaranteed by few meth-
ods. Some of them repeatedly split the surface until each piece can
have a bijective parameterization [Lévy et al. 2002; Zhou et al. 2004]
or grow (potentially) multiple regions starting from seed triangles
[Sorkine et al. 2002]. Global parameterization methods can guar-
antee local injectivity by preventing triangle flips [Hormann and
Greiner 1999; Sander et al. 2001; Schüller et al. 2013] and bound the
triangle distortion [Aigerman et al. 2014; Lipman 2012; Poranne
and Lipman 2014]. Bijectivity can be achieved through non-linear
optimization to planarize either separate parts of a model [Zhang
et al. 2005] or an entire model [Smith and Schaefer 2015]. Skeleton
texture mapping [Madaras and Ďurikovič 2012] first computes a
global skeleton for the model and then separates the surface into
rectangular pieces. Volume-encoded UV-maps [Tarini 2016] can au-
tomatically parameterize the surface by mapping each point using
its 3D position, thereby directly support multi-resolution represen-
tations. However, since a desirable parameterization for texture
mapping is not always the one that minimizes triangle distortions
and it can depend on the artist’s intentions and how the model will
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Figure 2:Mesh colors on triangles and quadrilaterals with different
resolutions R = 2r − 1: (blue) vertex colors, (green) edge colors, and
(red) face colors.

be used, the parameterization process involves manual intervention
in practice. Also, regardless of the parameterization method used,
seams are unavoidable and they lead to problems in filtering.

For hiding the seams researchers proposed quad segmentation
that maps each surface piece to a square portion of the texture
space with half a pixel boundary [Nießner and Loop 2013; Purnomo
et al. 2004]. This allows a limited number of mipmap levels by
adjusting the texture coordinate accordingly for each level. The
resolution of each quad piece can also be independently specified
[Carr and Hart 2004]. Using a grid-preserving parameterization
avoids the need for enforcing a square-shaped boundary for each
piece [Ray et al. 2010]. Color discontinuities near the seams can
also be hidden by triangulating the seams in texture space with
additional computation in the fragment/pixel shader [González
and Patow 2009]. The artifacts of displacement mapping can be
fixed using analytically computed normals and a tile-based texture
format [Nießner and Loop 2013].

Other approaches aim to avoid the problems of 2D parameteriza-
tion by redefining texture representation. Octree textures [Benson
and Davis 2002; DeBry et al. 2002] and brick maps [Christensen
and Batali 2004] store colors efficiently in a 3D embedding, but
they may require too many levels to avoid color bleeding across
geometrically close surfaces and GPU implementations [Kniss et al.
2005; Lefebvre et al. 2005; Lefohn et al. 2006] must use multiple de-
pendent texture lookups. Hash textures [Lefebvre and Hoppe 2006]
avoid the color bleeding problem using a hash function in a 3D
embedding, but nonuniform resolution adjustment is not permitted.
Polycube maps [Tarini et al. 2004] use a parameterization onto the
faces of multiple cubes that approximate the shape of the model,
but they are not general enough to handle any model geometry.
TileTrees [Lefebvre and Dachsbacher 2007] store texture values on
2D elements placed at the leaf nodes of an octree, thereby share
the limitations of octree textures.

2.1 Mesh Colors
Mesh colors [Yuksel et al. 2010] eliminate the fundamental problems
of texture mapping by defining the colors directly on the model sur-
face. Using the existing topology of a polygonal mesh, mesh colors
allow generating detailed textures on arbitrary surfaces without
parameterization. Therefore, any model (containing triangles and
quadrilaterals) can be painted with mesh colors directly without
any manual or automatic parameterization effort.

Figure 3: An example polygonal mesh and its low-resolution can-
vas mesh used for defining mesh colors.

Mesh colors extend the concept of vertex colors by introducing
edge colors and face colors as shown in Figure 2. The color posi-
tions are evenly distributed in the barycentric space for triangles
and bilinear space for quadrilaterals. Therefore, no additional data
structure is needed, beyond the resolutions of each face, which can
be adjusted independently as desired. This permits simultaneous
model editing and texture painting. Furthermore, by placing the
colors exactly on the vertices and along the edges, mesh colors
avoid discontinuities in filtering operations.

It is often advantageous to definemesh colors on a low-resolution
version of a mesh that uses a subset of its vertices. We refer to the
mesh that is used for defining mesh colors as the canvas mesh
(Figure 3). Mesh colors of a canvas mesh can be directly used by
any arbitrary tessellation of the canvas mesh. Remeshing is not
directly supported, but since each color value has a well-defined
3D position (defined by its embedding), resampling is trivial. Mesh
colors also permit simultaneous model editing and texture painting.

All these properties make mesh colors an ideal alternative to
texture mapping for a production pipeline that uses 3D painting
[Lambert 2015]. For the purposes of real-time rendering, however,
mesh colors share the same limitations with most other methods,
that is a custom shader is required, which is often a deal-breaker.
Moreover, while mesh colors provide correct mipmap treatment,
the lowest resolution mipmap level is the vertex colors of the canvas
mesh, which is an important limitation especially when the sizes of
faces vary significantly, as it often is the case. Furthermore, since
the resolution is defined uniformly on each triangle, elongated
triangles can lead to extra color storage. The mesh color textures
we introduce in this paper directly address all of these problems
and make mesh colors a real alternative to texture mapping for
real-time rendering as well.

2.2 Per-face Textures (Ptex)
Ptex [Burley and Lacewell 2008] avoids the problems of texture
mapping by simply using a separate texture for each face of a
model. While this may sound inefficient at first glance, it is far
more preferable to the problems of texture mapping in a production
environment. That is why Ptex is becoming increasingly popular
for offline rendering applications, led by Disney Animation and
Pixar studios.

Ptex and mesh colors are very closely related. In terms of the
color placement topologies, Ptex and mesh colors are dual pairs. In
other words, the color locations of mesh colors are exactly at the
center of color locations used by Ptex (and vice versa), as shown
in Figure 4. Mesh colors guarantee texture filtering continuity by
placing colors exactly on the vertices and along the edges. Ptex,
on the other hand, accesses the colors of neighboring faces during
texture filtering to achieve continuity (by storing adjacency data
per polygon).
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Ptex Mesh Colors

Figure 4: Color locations of Ptex and mesh colors on two square-
shaped quadrilateral faces.

However, this theoretically minor difference in color placement
makes Ptex less suitable for real-time graphics applications. First
of all, Ptex cannot properly filter near extraordinary vertices that
are not 4-valence (vertices where more or less that 4 edges meet)
without special treatment during filtering. Unfortunately, extra-
ordinary vertices are commonplace. More importantly, Ptex was
designed for quad faces, not triangles, which are heavily used in
real-time graphics applications, though it is possible to extend Ptex
to equilateral triangles (by packing them as quads). Also, converting
triangles to quadrilaterals via subdivision produces extraordinary
vertices.

Therefore, in this paper we concentrate of mesh colors, instead of
Ptex. Nonetheless, most of the methods we introduce in this paper
can be trivially adapted to Ptex as well (with quad-only meshes).

3 MESH COLOR TEXTURES
Since we are targeting real-time graphics applications, we must
convert mesh colors to 2D textures, which can be efficiently used
by existing GPUs. This way, the GPU can directly handle bilinear
texture filtering and we benefit from all existing hardware optimiza-
tions, including caching. Converting mesh colors to a 2Dmesh color
texture for bilinear filtering (Section 3.1) is relatively simple, but
care must be taken to avoid seams. Mipmaps (Section 3.2) require
special treatment that we efficiently handle at run-time using a 4D
texture coordinate formulation (Section 3.3). Supporting mipmap
levels beyond vertex colors (Section 3.4) is trivial at run-time, but
requires additional considerations for generating the mipmap lev-
els. Anisotropic filtering (Section 3.5) could also be achieved, but it
would require hardware modifications to avoid software filtering.
At the end of this section we also provide an extension to mesh
colors that allows nonuniform mesh color resolutions on skinny
triangles (Section 3.6).

3.1 Bilinear Filtering
For bilinear filtering it is sufficient to generate a single 2D texture
from mesh color values. We first assign a set of 2D texture coordi-
nates for the vertices of each face separately to form our texture
layout. Then, we copy the mesh color values to a 2D texture using
these coordinates. Finally, we assign colors for some texels between
faces that are used during bilinear filtering. Note that our treatment
of this process bears similarities to prior work [Carr and Hart 2002;
Purnomo et al. 2004], but our method differs with its ability to
handle correct bilinear filtering for triangles.

To generate the texture layout, we place the vertices of each face
exactly at texel centers, such that the edges lie precisely horizontally,
vertically, or diagonally, with as many texels in between the vertices
as specified by the face resolution (Figure 5). This way, all mesh
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Figure 5: Texture layout of mesh colors on a 2D texture.

color values (for vertices, edges, and faces) correspond to the center
of a unique texel and assigning the texel color values becomes
trivial.

In the mesh color representation, the color value along an edge
only depends on the edge colors (and the vertex colors). This is
how filtering continuity across an edge is guaranteed. In our mesh
color texture representation, filtering continuity is guaranteed au-
tomatically for horizontally and vertically placed edges. However,
diagonally placed edges require some extra effort. The colors along
these edges not only depend on the edge colors (such as c1 and c2
in Figure 5) as desired, but also the two other nearby colors, only
one of which is associated with the face (c0) and other is on the
opposite side of the edge (c3). Fortunately, we can ensure that the
color along the edge only depends on c1 and c2 by simply setting

c3 = c1 + c2 − c0 . (1)

As a result, bilinear filtering of these four color values using param-
eters s, t ∈ [0, 1] simplifies down to sc1 + (1 − s)c2 along the edge,
where s = 1 − t . Thus, we merely need to add a single texel-wide
border near diagonally placed edges for storing the interpolation
colors c3 on the opposite side of the edge. This way, an edge that
is placed diagonally for one face can be placed vertically or hori-
zontally for the other face that shares it, without causing filtering
discontinuity. This is an important property for supporting arbi-
trary triangular meshes.

However, most color formats used for texture storage only sup-
port values between 0 and 1. Though it is likely that c3 would be
within those limits when c0, c1, and c2 have similar values, there
is no guarantee. If c3 cannot be represented correctly, we cannot
achieve filtering continuity. Therefore, when we detect that a color
component of c3 is negative, we modify the original mesh colors by
adding δ = −c3/3 to c1 and c2, and subtracting δ from c0. This pro-
vides the minimum required change in color values to set the new
value c′3 = 0. Similarly, if a color component of c3 is greater than 1,
we use δ = (1 − c3)/3. It is possible that some of these colors may
be modified again due to similar constraints for different faces. Yet,
since the modification brings color values closer, it is guaranteed
to converge after a few iterations.

Note that in the absolute worst case, when the edge colors are
black (c1 = c2 = 0) and the face color is white (c0 = 1), the color
values would be modified by 0.33. In a more typical case, the modi-
fication (if any) would be minor, as it is only needed when the face
color is at least twice as bright as the average of the edge colors,
and the maximum modification of c0/3 only happens when both
edge colors are black. Nonetheless, in practice it might be a good
idea to apply the color modification as the texture is painted, so
that the user can immediately respond, if a modification occurs.

Another issue to consider is that Equation 1 effectively converts
the bilinear filtering near the diagonal edge to barycentric filtering
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(a) Triangulation (b) Barycentric filter (c) Bilinear filter

Figure 6: Mesh colors on (a) two triangles that form a square
filtered using (b) a barycentric filter near diagonal edges, revealing
the diagonal edge without causing discontinuity, and (c) a bilinear
filter that filters across the diagonal edge.

that interpolates the three nearest colors. This is indeed the desired
behavior and avoids filtering discontinuities, but it results in a
different filtering behavior near edges that are placed diagonally
on the texture layout. If the two triangular faces of an edge have
the same resolution and if they both place this edge diagonally, the
switch to barycentric filtering near the edge might visually reveal
the edge as shown in Figure 6b (even though it would not cause
discontinuity). That is why, in this special case, it is a better idea to
copy the color for c3 directly from the corresponding color of the
opposing face, so that we can get continuous bilinear interpolation
across the diagonal edge (Figure 6c). This would also eliminate
the need for Equation 1 for the copied texels and the possibility
of any color modification. Alternatively, two such triangles can be
packed as a single quad, virtually eliminating the diagonal edge
altogether (and the wasted space for duplicating the edge colors
and the borders).

Obviously, converting mesh colors to a mesh color texture using
this procedure would copy each edge color (at most) twice and each
vertex color multiple times. Yet, the minimal wasted space (mostly
due to color duplication) is a small price we pay for achieving
hardware-accelerated bilinear filtering. Note that the number of
duplicated colors can be minimized using a lower resolution canvas
mesh and by overlapping the shared edges of neighboring faces on
the texture layout, as shown in Figure 5 (right).

Since mesh color textures generated in this form guarantee con-
tinuous bilinear filtering, they are suitable for displacement map-
ping. However, it is important to note that even though the color
values are copied without resampling (i.e. interpolation), since the
currently supported hardware tessellation pattern does not align
with themesh color positions, a tessellated vertex inside a triangular
face does not correspond to a single mesh color value and its value
must be interpolated. A variant of mesh colors addresses this issue
by placing face colors using the current hardware tessellation pat-
tern [Schäfer et al. 2012], but mesh colors defined with this pattern
cannot be converted to a mesh color texture without resampling.
Quadrilateral faces, however, do not require interpolation as long
as the tessellation resolution matches the resolution of the face.

3.2 Generating Mipmaps
We assume that the mesh color resolutions use powers of 2. This as-
sumption has limited practical consequence and it also helps when
two neighboring faces have different resolutions. Let Ri denote
the resolution of a face i (i.e. the number of colors along an edge).

When Ri = 2ri − 1 for ri ∈ Z∗, if two faces i and j sharing an
edge have different resolutions ri < r j , the edge colors for i can be
freely painted and the additional edge colors for j are interpolated.
Therefore, when using mesh colors, it is almost always a good idea
to restrict the face resolutions to powers of 2 (minus one).

We follow the mipmap generation process of the original mesh
colors method [Yuksel et al. 2010], which is different than mipmap
generation for standard 2D textures. Therefore, we cannot simply
create the mipmap levels from the mesh color texture directly. In-
stead, the mipmap levels for mesh colors must be computed first,
and then each level must be converted to a mesh color texture
separately. Better results can be achieved using a geometry-aware
filtering scheme [Manson and Schaefer 2012].

Note that the lowest resolution for mesh colors is vertex col-
ors (i.e. ri = 0 and so Ri = 0). Therefore, mipmap levels can be
generated with decreasing resolution down to vertex colors. For
generating higher mipmap levels we continue filtering the vertex
colors, but the storage resolution is not reduced. While this is cer-
tainly a limitation, it is a substantial improvement in comparison to
standard 2D textures with seams, for which we cannot even expect
to have more than a few reliable mipmap levels in general.1

3.3 Trilinear Filtering with Mipmaps
The main difficulty with trilinear filtering is that the 2D texture
coordinates for each mipmap level of mesh color textures are differ-
ent. Unfortunately, naïvely storing a separate texture coordinate for
each mipmap level would be too expensive. Therefore, we introduce
a simple 4D texture coordinate representation that allows quickly
computing the 2D texture coordinates for any mipmap level.

Let uℓ be the non-normalized 2D texture coordinates for mipmap
level ℓ. At runtime we can compute it using

uℓ = us/2ℓ + uδ , (2)

where us is a 2D scalable coordinate representing the portion of the
texture coordinate that changes for each mipmap level and uδ is a
2D constant offset, forming our 4D texture coordinate representation.
In this formulation u0 = us + uδ is the texture coordinate for the
highest resolution mipmap level with ℓ = 0. Note that in practice
the division in Equation 2 can be replaced with multiplication by
storing us/2ℓmax instead of us , where ℓmax is the maximummipmap
level, though we have not included this optimization in our tests.

For the sake of simplicity, in this section we only consider
mipmap levels up to vertex colors (determined separately for each
face based on its resolution). We refer to these mipmap levels as
valid mipmap levels in this section. We discuss how to handle
higher level (lower resolution) mipmap levels in the next section.

The 4D texture coordinate formulation in Equation 2 can be used
in numerous ways. To create a desirable layout for our mesh color
textures, however, we must follow three simple rules:
(1) uℓ of each canvas mesh vertex for each valid mipmap level
ℓ must be at the center of a texel. This means that us must
be an even multiple of 2ri (where Ri = 2ri − 1 is the face
resolution, as mentioned above) and the uδ values must be

1Texture mapping by tiling a small texture over a surface can have proper mipmap
levels down to a single pixel, but this approach is seldom useful for texturing complex
models (such as characters).
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3 4

Level 0

Level 1

Level 2

us uδ
1 0 0 0.5 0.5
2 4 0 0.5 0.5
3 0 4 0.5 0.5
4 4 4 0.5 0.5

us uδ
5 4 0 1.5 0.5
6 6 0 1.5 0.5
7 4 2 1.5 0.5
8 6 2 1.5 0.5
9 4 2 1.5 1.5
10 6 2 1.5 1.5
11 4 4 1.5 1.5
12 6 4 1.5 1.5

us uδ
13 6 0 2.5 0.5
14 8 0 2.5 0.5
15 6 2 2.5 0.5
16 8 2 2.5 0.5
17 6 2 2.5 1.5
18 7 2 2.5 1.5
19 6 3 2.5 1.5
20 7 3 2.5 1.5

Figure 7: An example texture layout for 5 quad faces (each colored
differently) on 3mipmap levels and the list of 4D texture coordinates
for each vertex of each face.

some integer plus 0.5 to move the texture coordinate to the
texel center (Figure 7). Thus, us provides integer values for all
valid mipmap levels.

(2) The offset uδ must be the same for all vertices of a face and
the us values must vary by exactly 2ri (obeying the first rule).
This places a quad face onto a 2ri−ℓ + 1 square texel region
for all valid mipmap levels ℓ, allocating exactly as many texels
as needed for copying vertex, edge, and face colors, as shown
in Figure 7. Note that since we map each canvas mesh face
independently, we assign each vertex as many separate coordi-
nates as the number of faces sharing it. Also, because all offsets
uδ of all vertices of a face must be the same, if desired, it is
possible to store uδ per face, instead of storing them separately
for each vertex of each face.

(3) The mapped positions of separate faces must not overlap for
any valid mipmap level. This can be accomplished by simply
making sure that the uδ values of a face are no smaller than
the preceding faces (placed on the left or above) in the texture
layout.

As long as these three rules are followed, any packing algorithm
can be used for generating the texture layout. In our experiments
we have used the packing algorithm outlined in Algorithm 1 (where
b = 1). This algorithm begins with pairing triangles into rectangles
that contain two triangles with 2 texel spacing between them to
make room for the extra texels needed during bilinear filtering
(such as the yellow texels in Figure 5). Each quad face is placed in a
separate rectangle. Then, we sort the rectangles based on their sizes
(using first height then width). Starting with the largest rectangle,
we place them on the mesh color texture in scanline order (left
to right then top to bottom). If placing a rectangle on the current
line would make the length of the line (the width of the texture)
larger than a desirable value (taken as the square root of the total
number of colors to be copied), we move to the next line (past the
last non-empty texel of the line). uδ,y , the vertical coordinate of
uδ , is the same for all rectangles placed on the same row and it
is taken as the number of preceding rows (when b = 1). uδ,x , the

Algorithm 1: Texture layout generation with 4D coordinates.
1 Form rectangles from faces.
2 Sort rectangles from large to small.
3 us ← [0 0]
4 uδ ← [0.5 0.5]
5 foreach rectangle do
6 if reached end of row then
7 Find next row
8 uδ ← uδ + [0 b]
9 us ← next row starting position −uδ

10 end
11 Make sure that us is an even multiple of 2ri .
12 Place rectangle using the four texture coordinates:
13 us , uδ
14 us + [0 2ri ], uδ
15 us + [2ri 0], uδ
16 us + [2ri 2ri ], uδ
17 us,x ← uδ,x + 2ri
18 uδ,x ← us,x + Xi + b
19 end

Figure 8: A mesh color texture and its mipmap levels.

horizontal coordinate of uδ , is the number of rectangles on the
left side (when b = 1) plus an additional offset Xi , where Xi = 0
for rectangles containing quad faces and Xi = 2 for rectangles
containing triangle pairs (to account for the constant separation
between triangles). Before placing a rectangle on a new row, we
make sure that the horizontal component of us is an even multiple
of 2ri (and skip texels if necessary).2 An example layout generated
using this procedure is shown in Figure 8. Note that this is just one
way of generating a valid layout. We leave the exploration of an
optimal layout generation (producing optimal packing) to future
work.

While forming rectangles from faces, it is possible to group
neighboring faces into larger rectangles (as in Figure 5 (right)). In
our tests, however, we haven’t used this extra optimization that
would reduce the number of duplicated color values.

2In most cases us is an even multiple of 2ri , but exceptions are possible, in which
case we waste some pixels to ensure that the first rule is satisfied. Notice the two
rectangular white holes near the bottom of the textures in Figure 8.
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Figure 9: Options for trilinear and anisotropic filtering using mipmaps. For trilinear filtering we can use (a) the maximum screen space
derivatives, (b) the average derivatives, or (c) the minimum derivatives. For anisotropic filtering the minimum derivatives are used. (d)
Hardware anisotropic filtering introduces inaccuracies that reveal the edges of the canvas mesh. (e) Software anisotropic filtering can resolve
this but software filtering introduces run-time computation cost. (f) For correct anisotropic filtering anti-aliasing is needed to consider the
contributions of each face that corresponds to a pixel.

Using this method we can generate a texture layout with 4D
coordinates and use it for generating a mesh color texture for each
mipmap level. Yet, this procedure only supports mipmap levels up
to vertex colors. Since faces with higher resolution mesh colors are
placed first near the top part of the texture, the bottom/right part for
higher mipmap levels can be simply cropped (as in Figure 7), as the
bottom part would correspond to invalid mipmap levels (beyond
vertex colors) for faces with lower-resolution mesh colors.

During rendering, we determine the mipmap level using the
screen space derivatives of us . The filtering result using different
trilinear filtering options are shown in Figure 9. We perform two
hardware accelerated bilinear filtering operations using the two
closest mipmap levels, and linearly interpolate the result to achieve
trilinear filtering. In our implementation we store each mipmap
level in a different texture.

3.4 Mipmaps beyond Vertex Colors
Mipmap levels up to vertex colors can be arguably enough for many
applications, since higher mipmap levels are needed only when
the faces of the canvas mesh appear smaller than a pixel on the
rendered image. Nonetheless, the procedure explained above can
be extended to support mipmap levels beyond vertex colors.

These higher mipmap levels are stored as vertex colors, though
they are generated via additional filtering operations. Therefore,
if all faces have the same mesh color resolution, there is a simple
solution for supporting higher mipmap levels. In that case, we can
use the same method explained above and merely replace 2ℓ in
Equation 2 with 2min(ℓ,m), wherem is the number of mipmap levels
up to vertex colors (such thatm = ri ∀i). However, for more typical
cases where faces can have different mesh color resolutions, this
simple modification is not enough.

Note that our 4D texture coordinate representation places the ver-
tices of the canvas mesh at the exact centers of texels for all mipmap
levels up to vertex colors. For higher mipmap levels, however, the

scalable portion of the texture coordinate (us/2ℓ in Equation 2)
may not be whole numbers, meaning that the vertices of the canvas
mesh would no longer be at the exact centers of some texels. This
leads to two problems:

(1) Mesh color values for the higher mipmap levels beyond vertex
colors cannot be directly copied to texels. Instead, the mesh
color values must be represented as bilinear combinations of
texel colors.

(2) At higher levels the texel regions that correspond to neighbor-
ing rectangles of the layout can overlap as shown in Figure 10a.

The second problem is easy to solve. All we need to do is to add
a single texel separation between rectangles while generating the
layout, as shown in Figure 10b. This can be accomplished by merely
using b = 2 in Algorithm 1. Since this separation is encoded in the
constant (uδ ) portion of the texture coordinate, the separation is
preserved for all mipmap levels. This separation ensures that for
any mipmap level ℓ there is a 2 texel size difference between the uℓ
values of neighboring rectangles. At higher mipmap levels, these
new separation texels can be included in the bilinear interpolation.
This simple solution guarantees that each texel would correspond
to no more than a single rectangle. Thus, we guarantee that the
texel regions of neighboring rectangles never overlap.

The first problem, however, is not as easy to solve. When tex-
ture coordinates of vertices do not correspond to texel centers, we
cannot simply copy the mesh color values. Instead, we must as-
sign colors to the texture, such that the interpolated values would
correspond to the mesh color values we aim to represent. Unfor-
tunately, accurately reproducing the mesh color values from the
interpolated texel colors might require storing texel values that are
negative or greater than one. Though the texel colors are easy to
compute using bilinear extrapolation of the original mesh color
values, there is no guarantee that the extrapolated color values
would be within the limits [0, 1]. In fact, for higher mipmap level
where the texture coordinates uℓ for the vertices of a face are close,
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(a) Mipmap levels without separation (b) Mipmap levels with separation

Figure 10: Example texture layouts generated with and without separation, showing which texels are associated with which faces. Notice
that without separation the texels that correspond to different faces begin to overlap at higher mipmap levels (beyond vertex colors). Adding
a single texel separation ensures that each face is mapped to a distinct set of texels.

Clamped Optimized Clamped Optimized

Figure 11: Two mipmap levels beyond vertex colors, generated us-
ing clamping that can produce severe artifacts, and our optimization
that resolves this problem.

even minute differences between the original mesh color values
can lead to extrapolated texel color values that are far outside of
the limits [0, 1]. If the texture format does not permit storing values
outside of [0, 1], we cannot ignore this problem by simply clamping
the extrapolated color values, because that might easily introduce
substantial amount of error to the interpolated mesh color values
computed during filtering, as shown in Figure 11.

Instead of simply clamping the extrapolated texel color values
that exceed the limits [0, 1], we propose modifying the original
mesh color values of a face, such that the extrapolated texel color
values reside within [0, 1]. Thus, we convert the problem of comput-
ing the extrapolated texel colors to an optimization problem that
computes the minimal changes to the original mesh color values
of the mipmap level that would produce extrapolated texel color
values within the limit [0, 1].

We perform the optimization separately for each color channel
(red, green, and blue) and for each face. Let x denote the change
in the mesh color values that would make the extrapolated value
at a point k with extrapolation weights wk equal to a limit value
Lk ∈ {0, 1} (whichever limit is violated), and let Ck be the extrap-
olated value at point k using unmodified mesh color values. Our
goal is to solve for x and the points k we consider are texel centers
where the extrapolated values are out of bounds [0, 1]. Note that
vectors x and wk are four dimensional (d = 4) for quadrilateral
faces (using bilinear interpolation) and three dimensional (d = 3)

for triangles (using barycentric interpolation). If adding x to the
original mesh color values would make the extrapolated value at k
equal to the limit value Lk , then we can write

wT
k x = Lk −Ck . (3)

We can solve x using least square minimization of the form

min
x
∥b − Ax∥2 , (4)

where the vector b and the matrix A are

b = S


L1 −C1
L2 −C2
...

Ln −Cn

n×1
and A = S


wT
1

wT
2
...

wT
n

n×d
, (5)

where n ≤ 9 is the number of texels that correspond to the face
and S is an n × n diagonal binary matrix, such that Sk,k = 1 only
if Ck < [0, 1] and Sk,k = 0 otherwise. Thus, matrix S determines
which ones of the n texels are considered as constraints in the
optimization. When only a few points k are out of bounds, the
optimization problem is under-constrained, but we can still find
a solution to ATAx = AT b numerically using conjugate gradients
that would minimize ∥x∥. Since this is a very small system, the
solution can be computed quickly.

However, after the optimization, the modification of the mesh
color values x might cause other texels of the face to be out of
bounds [0, 1] (even if they were previously within bounds). There-
fore, we perform this optimization in multiple steps by introducing
the constraints one by one. At each step h we add the constraint for
the point k with the largest |Lhk −C

h
k | value, where the values for

Lhk andChk are determined incorporating the xh−1 values computed
in the previous step (where x0 = 0). The maximum number of steps
needed is bounded by n. Using this optimization we substantially
reduce the interpolation error during bilinear filtering (Figure 11).

Even though each step of this optimization can be quickly solved,
since this process is repeated for (potentially) each face of the canvas
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mesh, the cumulative processing time can be significant, which was
up to several seconds in our tests.

Also, it is possible that themodifications on themesh color values
for a particular face can cause other interpolated texel colors of
other faces to fall out of bounds. To ensure that the modification on
a vertex color would not lead to any discontinuity, this optimization
problem must be solved globally, considering all interpolated texels
and all related vertex colors. This is certainly possible to do using
a much larger system of equations. However, this optimization is
needed only for higher mipmap levels (and only if the image format
is restricted to [0, 1]). Therefore, in practice, depending on the target
application, minor discontinuities due to this modification might
be acceptable and the colors used for each face can be optimized
independently. Without this optimization, however, the resulting
color differences can be severe (Figure 11).

3.5 Anisotropic Filtering
Hardware anisotropic filtering can be enabled while using mesh
color textures. However, current GPUs automatically determine
the sample locations for anisotropic filtering and they offer no
mechanism for restricting these sample locations. Therefore, some
of the mesh color texture samples can be taken outside of the face
area on the texture layout. As a result, some anisotropic filtering
samples may not correspond to the face being shaded, leading to
inaccuracies in filtering and revealing the edges of the canvas mesh
as shown in Figure 9d.

Unfortunately, we can offer no solution for this using existing
GPUs, besides handling the anisotropy in software. However, this
can be potentially remedied in future GPU hardware by introducing
a relatively simple test. To avoid the anisotropic filtering issues,
all we need to do is to make sure that the texture sample loca-
tions are contained within the texture-space footprint of the shaded
fragment’s triangle. The texture samples that are outside can be
discarded to avoid invalid samples. Even though the triangle infor-
mation may not exist during fragment shading, it is easy to perform
this test using the barycentric coordinates of the fragment and their
screen space derivatives. Eliminating these invalid samples, along
with multi-sampling for antialiasing, would produce the desired
anisotropic texture filtering result (Figure 9f).

However, if antialiasing is not used, limiting anisotropic filter
sample locations may lead to inaccuracies near the edges of the
canvas mesh. Yet, the severity of these inaccuracies depend on the
mesh color values. If the mesh color values on the other side of a
canvas edge are not substantially different, the inaccuracies would
be minimal. Otherwise, the resulting image might contain aliasing
artifacts in shading, which would be similar to typical pixelation
artifacts that appear with no antialiasing (Figure 9e). Nonetheless,
if anisotropic filter sample locations are not limited (as in current
GPUs), the inaccuracies would likely be more severe (Figure 9d).

3.6 Nonuniform Mesh Colors
One limitation of the original mesh colors method is that a single
resolution value is used for determining the resolution of each face.
As a result, elongated triangles (with two long edges and one short
edge) may occupy more color samples than necessary (along the

(a) (b)

Figure 12: Texture layout for converting nonuniform mesh colors
to a 2D texture.

short edge). While this does not lead to any problems in filtering, it
causes needless increase in color storage.

It is trivial to address this problem for elongated quadrilaterals
by simply defining a secondary resolution value per face, as shown
in Figure 12a. In some cases, pairs of elongated triangles can be
represented as elongated quadrilaterals in the canvas mesh, but this
is not always possible. Fortunately, we can apply the same solution
to elongated triangles by introducing a secondary resolution. In
this case, the primary resolution would determine the resolution of
the two long edges and the secondary resolution is for the shorter
edge. The face color locations are determined by two of the edges
(with different resolutions), similar to elongated quadrilaterals, as
shown in Figure 12b.

While converting such triangles to mesh color textures, the texel
pairs that correspond to the diagonal edge colors must be com-
puted via interpolation (Figure 12b). In this case, if the interpolated
colors are negative or greater than 1, we can simply modify the
corresponding diagonal edge color.

Note that since we restrict the resolutions to powers of 2 (minus
one), there is no need to consider three different resolutions for the
three edges of a triangle. The only cases that would not collapse a
triangle (in texture space) would have the same resolution along
two of the edges and an equal or a lower resolution along the third
edge (i.e. an elongated isosceles triangle).

4 RESULTS
We tested the performance of mesh color textures in comparison
to standard 2D textures on multiple GPUs spanning multiple gen-
erations using different models and different texture and screen
resolutions up to 4K. Some of the models we used in our tests are
shown in Figure 1.

Our experiments revealed that mesh color textures with mipmap
filtering using the 4D texture coordinates introduce a negligible
overhead as compared to standard 2D textures. Figure 13 sum-
marizes our experimental results. Each one of our experiments
contained a single model with different resolutions rotating in front
of the camera at varying distances using different resolutions of
mesh color textures and standard 2D textures with matching res-
olutions, rendered using different viewport resolutions. In these
experiments a single texture lookup was performed per fragment
in an extremely simple fragment shader with no other operations.
Thus, the experiments directly measure the difference in texture
lookup performance for mesh color textures and standard 2D tex-
tures.

On relatively new GPUs we observed an average overhead less
than 0.01 milliseconds per frame. In fact, for some camera angles,
mesh color textures provided even faster render times than com-
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Figure 13: Performance overhead of mesh color textures (in mil-
liseconds) as compared to standard 2D textures, showing the range
of overhead values we observed with different experiments (mini-
mum to maximum) measured on different graphics hardware.

pletely hardware-accelerated standard 2D textures. While we could
observe a more pronounced average overhead on older GPUs, it is
still negligible, especially considering the benefits of mesh colors
over 2D textures for both authoring (without parameterization) and
filtering quality (without seam artifacts).

It is not surprising that the mesh color textures produce a similar
performance as 2D textures. Even though our trilinear filtering
explicitly samples two separate textures, trilinear filtering with
standard 2D textures also involves sampling two separate mipmap
levels of a texture. Therefore, we attribute the minor overhead
we observed to the few extra operations we need to perform in
software and the difference in the texture coordinates that could
impact cache behavior. The difference in cache behavior is also an
explanation for some camera angles that happen to provide slightly
faster results with mesh color textures.

In terms of quality, since we generated our mesh color textures
directly from previously painted 2D textures, the rendered results
with mesh color textures and standard 2D textures are virtually
indistinguishable. However, since standard 2D textures contain
seams, when using standard 2D textures with mipmapping, the
seams are revealed as seam artifacts even with the first few mipmap
levels in our examples. The results with mesh color textures, on
the other hand, contain no seam artifacts. This highlights why it
is important to use mesh color textures at run time, rather than
converting 3D painted mesh colors to standard 2D textures for
real-time rendering.

The layout generation method we used (Algorithm 1) can pro-
duce tightly packed rectangles with limited wasted space for the
highest resolution mipmap level. At higher mipmap levels with
lower resolution, however, a larger percentage of texels are wasted
due to imperfect packing (see Figure 8). Yet, since lower resolu-
tion mipmap levels have fewer pixels, the total percentage of the
texture data wasted with unused texels is comparable to typical
uses of standard 2D textures, as shown in Table 1. However, this
analysis does not include duplicated vertex and edge colors for
mesh color textures or the duplicated colors along seams for stan-
dard 2D textures. It also does not consider wasted space due to
mapping distortion. On the other hand, since the width and height
of a mipmap level with mesh color textures are typically larger
than half of the preceding level, mesh color textures occupy more
memory for storing the mipmap levels, as compared to a standard

Table 1: Wasted texture space due to packing

Alien Lizard Head Nyra
Standard 2D Texture 26% 39% 19% 17%
Mesh Color Texture 15% 15% 15% 16%
Mipmap level ℓ = 0 12% 8% 7% 8%
Mipmap level ℓ = 1 18% 19% 17% 18%
Mipmap level ℓ = 2 28% 33% 31% 33%
Mipmap level ℓ = 3 35% 50% 48% 50%
Mipmap level ℓ = 4 42% 66% 63% 62%
Mipmap level ℓ = 5 48% 76% 71% 68%
Mipmap level ℓ = 6 48% 78% 66% 67%
Mipmap level ℓ = 7 45% 78% 62% 63%
Mipmap level ℓ = 8 46% 78% 61% 61%
Mipmap level ℓ = 9 48% 78% 62% 59%

2D texture with the same highest resolution. For the examples in
Figure 1 this storage overhead varies between 8% and 15% with 10
mipmap levels.

5 LIMITATIONS AND FUTUREWORK
One disadvantage of using mesh color textures is that trilinear
filtering adds some extra lines of code to the shader, in compari-
son to standard 2D textures that can be filtered using a single API
call. Even though this may lead to negligible performance penalty,
considering that shader complexity can be an important concern
in practice, it would be helpful to hide this complexity within the
graphics API. In particular, if future graphics API would allow spec-
ifying custom resolutions for mipmap levels, all mipmap levels of
the mesh color textures can be handled within a single texture re-
source. Furthermore, a new texture sampling function that directly
uses our 4D coordinates would hide the extra complexity of mesh
color textures from the programmer, and parts of the computation
can be accelerated to eliminate the overhead using an optimized
low-level implementation of our method.

Resolving the limitations regarding anisotropic filtering, how-
ever, would likely require hardware modification. We have de-
scribed a relatively simple modification that could prevent the
GPU from sampling invalid texture locations. Such a feature would
also resolve the anisotropic filtering problems of standard texture
mapping. However, since the seams with standard texture mapping
also induce other types of texture filtering artifacts, resolving the
anisotropic filtering problems alone would not be an important
improvement for standard texture mapping.

Another problem arises with multi-sample anti-aliasing (MSAA).
Since MSAA avoids shading each sub-pixel sample and instead calls
the fragment shader using the extrapolated (or interpolated) values
at the pixel center, the extrapolated 4D texture coordinate can
easily fall outside of the texture layout footprint of a face. Similar
to anisotropic filtering, this reveals the edges of the canvas mesh.
Unlike anisotropic filtering, however, in this case we have direct
control over the texture sample location. Therefore, this can be
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easily fixed by performing a corrected barycentric interpolation for
computing the texture coordinate that avoids extrapolation. The
software anisotropic filtering example using MSAA in Figure 9f
is generated using this approach. Alternatively, this issue can be
easily avoided using centroid sampling, which ensures that the 4D
texture coordinate is not extrapolated.

Mesh color textures assign multiple texture coordinates per can-
vas mesh vertex. While traditional 2D textures also assign multiple
texture coordinates for some vertices, mesh color textures would
typically require more storage for texture coordinates.

Another possible future hardware modification could be triangle
tessellation using the tessellation pattern of mesh colors. This way,
displacement mapping with tessellation can be done without the
need for resampling the colors.

Mesh color textures also inherit some limitations of mesh colors.
Since mesh colors rely on the topology of the canvas mesh, arbi-
trary remeshing would require resampling the mesh colors. Even
though mesh color textures convert the mesh color data into 2D
textures and thereby provide the option of using existing 2D image
processing tools, 3D painting is still preferable with mesh colors.

Finally, since converting mesh colors to a mesh color texture
may require modifying a small percentage of mesh color values,
not all of the original mesh colors may be exactly reproduced from
the mesh color texture.

6 CONCLUSION
We have shown how mesh colors can be converted to a format that
is ideal for current GPUs, making mesh colors a viable choice for
real-time graphics applications with strict performance constraints.
Thus, the content creation pipeline for real-time graphics applica-
tions can begin enjoying the benefits of mesh colors, which are
no longer exclusive to offline graphics applications. Furthermore,
since mesh color textures resolve the filtering problems of texture
mapping, mipmaps can be used without incorrect filtering concerns
and hardware features like tessellation and displacement mapping
can be utilized more broadly.
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