Texture Mapping

texture → mapping → model

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Texture Mapping
Texture Mapping

Parameterization
Texture Mapping

1. Parameterization
2. Filtering

Cem Yuksel, John Keyser, and Donald H. House, “Mesh Colors,” ACM Transactions on Graphics (TOG), 29(2) 2010
Texture Mapping

1. Parameterization
2. Filtering

[Lefebvre et al. 2005]
Texture Mapping

1. Parameterization

2. Filtering

[Lefebvre et al. 2005]
Texture Mapping

1. Parameterization

2. Filtering

[Lefebvre et al. 2005]
Texture Mapping

1. Parameterization

2. Filtering

[Lefebvre et al. 2005]
Texture Mapping

1 Parameterization

2 Filtering

[Lefebvre et al. 2005]
Texture Mapping

• Displacement Maps
 – Inconsistencies at seams cause cracks!
Texture Mapping

• 2D Textures
 – **Automatic planar parameterization**
 – **Guaranteed one-to-one mapping**
 [Hormann and Greiner 1999; Sheffer and de Sturler 2000; Sander et al. 2001; Floater 2003]
 – **User defined constraints**
 [Lévy 2001; Desbrun et al. 2002; Kraevoy et al. 2003]
 – **Higher resolution for detailed areas**
 [Sloan et al. 1998; Balmelli et al. 2002; Sander et al. 2002; Carr and Hart 2004; Igarashi and Cosgrove 2001]
Texture Mapping

• 2D Textures
 – Seams: Interpolation artifacts
 – Duplicated color values
 – Problems with MIP-map filtering
 – No local texture detail adjustment
 – Very sensitive to model topology
Texture Mapping

• 3D Textures
 – Octree Textures
 [Benson and Davis 2002; DeBry et. al. 2002]
 – Hash Textures
 [Lefebvre and Hoppe 2006]
Texture Mapping

• Other Methods

 – Polycube maps
 [Tarini et. al. 2004]

 – Tile trees
 [Lefebvre and Dachsbacher 2007]

 – Ptex (per-face textures)
 [Burley and Lacewell 2008]
Texture Mapping

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

• Properties:
 – No mapping
 – No discontinuities (no seams)
 – Guaranteed one-to-one correspondence
 – Correct MIP-map filtering
 – Local resolution adjustment
 – Permits model editing and subdivision
 – Compatible with current graphics pipeline
Mesh Colors
Mesh Colors

• $R = 1$
• Vertex colors
Mesh Colors

• $R = 2$
• Edge colors
Mesh Colors

- \(R = 2 \)
- Edge colors
Mesh Colors

- $R = 4$
- Face colors
Mesh Colors

• $R = 4$

• Face colors
Mesh Colors

• $R = 8$
• Color positions from indices
Mesh Colors

• Colors are shared along edges
 – Guaranteed continuity
Mesh Colors & Modeling

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

• Non-uniform face resolutions
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, “Mesh Colors,” ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, “Mesh Colors,” ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, “Mesh Colors,” ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors
Mesh Colors

Cem Yuksel, John Keyser, and Donald H. House, “Mesh Colors,” ACM Transactions on Graphics (TOG), 29(2) 2010
Mesh Colors

• Non-triangular Meshes
 — Quadrilaterals
 • Triangle pair
 • Quadrilateral positioning
 — NURBS
 — Subdivision surfaces
 • Dividing faces only
Filtering
Mesh Colors
Filtering Mesh Colors

• Nearest Filtering
Filtering Mesh Colors

• Linear Filtering
Filtering Mesh Colors

• MIP-map Filtering
 – Level 3
Filtering Mesh Colors

• MIP-map Filtering
 – Level 2
Filtering Mesh Colors

• MIP-map Filtering
 – Level 1
Filtering Mesh Colors

• MIP-map Filtering
 – Level 0
Filtering Mesh Colors

- MIP-map Filtering

Level 3 Level 2 Level 1 Level 0
Implementation
Mesh Colors
Mesh Colors

- Separating mesh and color data
Implementation

• All faces must know
 – 1 x Face color index
 – 3 x Edge color indices
 – 3 x Vertex color indices
 – Face resolution

Send to the shader
Analysis
Mesh Colors
Mesh Colors

• Unified content creation
• Memory efficient
• Fast
• Correct filtering
Content Creation with Mesh Colors

Mesh colors are on the low-res mesh.
Content Creation with Mesh Colors

Mesh colors are on the low-res mesh.

- No UV layouts
- On the fly resolution adjustment
- Modeling & Painting together
Mesh Colors

✓ Unified content creation

• Memory efficient
• Fast
• Correct filtering
Similar Memory Use

2D Texture
3 MB

Mesh Colors
(converted from 2D texture)
2.4 MB
Mesh Colors

- Unified content creation
- Memory efficient
 - Fast
 - Correct filtering
Real-time Rendering

<table>
<thead>
<tr>
<th></th>
<th>Hardware</th>
<th>2D texture</th>
<th>Nearest</th>
<th>Linear</th>
<th>MIP-map</th>
<th>Anisotropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>face count</td>
<td></td>
<td>3 K</td>
<td>50 K</td>
<td>218 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>color count</td>
<td></td>
<td>530 K</td>
<td>530 K</td>
<td>9 000 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D texture</td>
<td></td>
<td>3938 fps</td>
<td>2597 fps</td>
<td>337 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearest</td>
<td></td>
<td>2567 fps</td>
<td>1147 fps</td>
<td>273 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td>2076 fps</td>
<td>862 fps</td>
<td>247 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP-map</td>
<td></td>
<td>991 fps</td>
<td>376 fps</td>
<td>180 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisotropic</td>
<td></td>
<td>452 fps</td>
<td>152 fps</td>
<td>109 fps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Texture filtering on hardware is ~20x faster!
Real-time Rendering

• For high performance
 – Mesh Colors for content creation
 – Convert to 2D texture for rendering

• Hardware support for Mesh Colors?
 – 2D textures produce incorrect filtering!
 – Mesh Colors produce correct filtering
Tiled 2D texture

zoom: 4x
Offline Rendering

• Mesh Colors are ready!
Mesh Colors

- Unified content creation
- Memory efficient
- Fast
- Correct filtering
Summary
Mesh Colors
No Mapping!

texture

model
No Discontinuities
Guaranteed 1-1 Correspondence
Correct MIP-map Filtering

Unwrapped 2D texture Mesh Colors

zoom: 4x zoom: 4x
Local Resolution Adjustment

• Non-uniform face resolutions
Modeling with Painting

Cem Yuksel, John Keyser, and Donald H. House, "Mesh Colors," ACM Transactions on Graphics (TOG), 29(2) 2010
Compatible with Current Pipeline

• Separating mesh and color data
Mesh Colors

• Easy to use (for end user)
 – No mapping
 – High flexibility

• Easy to implement (for programmer)
 – Colors have well-defined positions on the surface

• High quality

• High performance
Mesh Colors

• Mesh Colors are ideally suited for
 – 3D painting
 – Storing precomputed data
 • Ambient occlusion
 • Radiosity
 – Displacement

• Mesh Colors provide a solution to the *fundamental* problems of texture mapping.
Acknowledgements

• Murat Afsar
• Anonymous reviewers
• NVIDIA
• Microsoft
• NSF IIS Award #0917286
Mesh Colors

Questions?