
3

Virtual Blue Noise Lighting

TIANYU LI∗, WENYOU WANG∗, DAQI LIN, and CEM YUKSEL, University of Utah, USA

(a) VPLs (b) VSLs (c) Rich-VSLs (d) VBNL (Ours)
Fig. 1. Different methods for estimating indirect illumination using virtual lights: (a) virtual point
lights [Keller 1997] producing illumination spikes, (b) virtual spherical lights [Hašan et al. 2009]
blurring those spikes, (c) Rich-VSLs [Simon et al. 2015] improving the results by storing a non-uniform
emission profile, and (d) our virtual blue noise lighting. All images rendered using 12K virtual lights.

We introduce virtual blue noise lighting, a rendering pipeline for estimating indirect illumination with a blue
noise distribution of virtual lights. Our pipeline is designed for virtual lights with non-uniform emission
profiles that are more expensive to store, but required for properly and efficiently handling specular transport.

Unlike the typical virtual light placement approaches that traverse light paths from the original light
sources, we generate them starting from the camera. This avoids two important problems: wasted memory
and computation with fully-occluded virtual lights, and excessive virtual light density around high-probability
light paths. In addition, we introduce a parallel and adaptive sample elimination strategy to achieve a blue
noise distribution of virtual lights with varying density. This addresses the third problem of virtual light
placement by ensuring that they are not placed too close to each other, providing better coverage of the
(indirectly) visible surfaces and further improving the quality of the final lighting estimation.

For computing the virtual light emission profiles, we present a photon splitting technique that allows
efficiently using a large number of photons, as it does not require storing them. During lighting estimation,
our method allows using both global power-based and local BSDF important sampling techniques, combined
via multiple importance sampling. In addition, we present an adaptive path extension method that avoids
sampling nearby virtual lights for reducing the estimation error.

We show that our method significantly outperforms path tracing and prior work in virtual lights in terms
of both performance and image quality, producing a fast but biased estimate of global illumination.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional Key Words and Phrases: Virtual lights, virtual point lights, virtual spherical lights, many lights,
instant radiosity, global illumination, light sampling, blue noise sampling, sample elimination.

ACM Reference Format:
Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel. 2022. Virtual Blue Noise Lighting. Proc. ACM Comput.
Graph. Interact. Tech. 5, 3, Article 3 (July 2022), 25 pages. https://doi.org/10.1145/3543872

∗Joint first authors: both authors contributed equally to this work.

Authors’ address: Tianyu Li, ltyucb@gmail.com; Wenyou Wang, wenyouwang@outlook.com; Daqi Lin, daqi@cs.utah.edu;
Cem Yuksel, cem@cemyuksel.com, University of Utah, USA.

2022. 2577-6193/2022/7-ART3
https://doi.org/10.1145/3543872

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

https://doi.org/10.1145/3543872
https://doi.org/10.1145/3543872

3:2 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

1 INTRODUCTION
Indirect illumination estimation using virtual lights has been a popular technique since the introduc-
tion of instant radiosity [Keller 1997]. Instead of directly sampling the path space during rendering,
they cache light paths into virtual lights prior to rendering. During rendering, camera paths can be
terminated in advance by connecting shading points to virtual lights, providing an efficient global
illumination estimation. Obviously, the estimation quality is correlated with the number of virtual
lights. Using a large number effectively converts the indirect illumination estimation problem to
the many-lights problem.
On the other hand, simply increasing the number of virtual lights does not solve all problems

with this approach. For example, using virtual point lights (VPLs) for illuminating highly-specular
surfaces produces undesirable illumination spikes (Figure 1a). Virtual spherical ligths (VSLs) [Hašan
et al. 2009] effectively blur such illumination spikes (Figure 1b). Combining them with directional
emission profiles [Simon et al. 2015] improves the result (Figure 1c) at a cost of significantly inflated
storage demand. This, in turn, limits the number of virtual lights that can be used in practical
applications. Also, with more virtual lights, efficiently sampling them becomes a challenge.

In this paper, we introduce virtual blue noise lighting (VBNL), a complete redesign of the rendering
pipeline using virtual lights. We begin with virtual light placement, a crucial factor determining the
rendering quality, and present efficient methods for computing their emission profiles and sampling
them during rendering. We rely on a similar virtual light storage as Rich-VPLs [Simon et al. 2015],
containing non-uniform emission profiles. Our pipeline includes the following departures from
prior methods:

• Virtual Light Generation: Unlike typical methods that generate virtual lights from the
original scene lights, we start from the camera. This guarantees that all virtual lights with non-
zero emission contribute to the final image, preventing a substantial amount of unnecessary
computation and storage. Notably, this leads to improved quality with a set number of virtual
lights, as our virtual light density is correlated with camera importance.

• Virtual Light Distribution: Simon et al. [Simon et al. 2015] have shown that virtual light
distribution with blue noise characteristics improves the rendering quality. However, the
relaxation method they use for achieving this is difficult to control and does not always
converge to a desirable distribution. It also requires storing all photons used during the
emission profile computation. We replace it with a form of sample elimination [Yuksel 2015],
including a new parallel computation approach and a novel adaptive density factor that
automatically adjusts the virtual light density based on a spatial importance measure. This
also helps with assigning a radius to each virtual light.

• Emission Profile Computation: We present a photon splitting technique that efficiently
computes the incident illumination for each virtual light without storing any photons. This
incident illumination profile per light is then converted to an emission profile. This approach
allows efficiently using a large number of photons for computing the emission profiles.

• Virtual Light Sampling: We combine three strategies via multiple importance sampling.
We use the traditional power-based importance sampling for distant illumination only. We
employ a BSDF importance sampling strategy that relies on our virtual light representation
for efficient illumination estimation. In addition, we use adaptive path extension, as needed,
to improve the accuracy of indirect illumination estimation from nearby surfaces.

Our results show that our VBNL approach provides substantial improvement in both quality and
performance over the state-of-the-art in virtual lights (Figure 1). Preliminary experiments for our
virtual light generation and distribution approaches were conducted by Montazer [2017], using
VPLs without emission profiles on Lambertian surfaces.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:3

2 BACKGROUND
Since the introduction of instant radiosity [Keller 1997], estimating indirect illumination with
virtual lights has been a popular solution [Dachsbacher et al. 2014]. This approach can be con-
sidered a variant of bidirectional path tracing [Veach and Guibas 1995], in which the same light
paths are shared by all camera paths. Therefore, relatively few VPLs are enough to approximate
indirect illumination without noise. Virtual lights have also been used for approximating volumetric
scattering using ray [Novák et al. 2012b] or beam [Novák et al. 2012a] lights.
The rendering efficiency of virtual lights stems from the fact that they are a set of light path

vertices that can be reused globally. Density estimation techniques like photon mapping [Jensen
1996] and path-space filtering [Keller et al. 2014] allow path vertices to be reused locally, which
have the strength of smoothing out low-probability path samples like caustics samples. These
two types of reuse can be combined in frameworks like Vertex-Connection and Merging (VCM)
[Georgiev et al. 2012] or Unified Path Sampling (UPS) [Hachisuka et al. 2012] to improve the
sampling efficiency further. Our method shares some similarities with VCM/UPS in the sense that
our virtual lights can be reused both globally and locally (Section 4). Different from VCM/UPS,
our method reuses virtual lights (instead of path vertices) that have a spatial extent [Hašan et al.
2009] and enriched emission profiles [Simon et al. 2015]. While our method advances the frontier
of virtual lights rendering, it is also related to radiance caching [Krivánek et al. 2005; Müller et al.
2021; Ward et al. 1988] and point-based global illumination (e.g., surfel) [Christensen 2010].

2.1 Virtual Lights and Light Transport
The types of virtual lights used in indirect illumination estimation vary in their ability to handle
different forms of light transport:

𝐿𝐷→𝐷 : Light from diffuse surfaces illuminating diffuse surfaces
𝐿𝐷→𝑆 : Light from diffuse surfaces illuminating specular surfaces
𝐿𝑆→𝐷 : Light from specular surfaces illuminating diffuse surfaces
𝐿𝑆→𝑆 : Light from specular surfaces illuminating specular surfaces

Virtual point lights (VPLs), a popular choice, provide a simple representation using a constant
emission profile. VPLs can only handle diffuse transport (i.e. 𝐿𝐷→𝐷) and they lead to illumination
spikes with any form of specular transport (i.e. 𝐿𝐷→𝑆 , 𝐿𝑆→𝐷 , or 𝐿𝑆→𝑆), as shown in Figure 1a. In
addition, they suffer from singularity in the geometry term due to inverse-square attenuation,
resulting in illumination spikes with diffuse transport as well. Clamping the geometry term leads to
energy loss, which requires expensive treatment to compensate, such as introducing path tracing
to handle nearby indirect illumination [Kollig and Keller 2006]. Alternatively, VPLs close to the
shading point are treated as photons, avoiding the geometric singularity without introducing
energy loss [Sriwasansak et al. 2018]
Virtual spherical lights (VSLs) [Hašan et al. 2009] avoid the singularity by replacing VPLs with

simplified spherical lights, which reduces the energy loss. For handling specular transport, each
VSL stores the incoming illumination and material/surface information at its center. The outgoing
illumination towards any given direction is computed at render time. This provides an effective
solution to 𝐿𝐷→𝐷 and 𝐿𝐷→𝑆 . It also helps with 𝐿𝑆→𝐷 and 𝐿𝑆→𝑆 , but may suffer from excessive
blurring (Figure 1b).

A more general solution to specular transport is provided by Rich-VPLs and Rich-VSLs [Simon et al.
2015] by storing an outgoing illumination profile per virtual light. Unlike a VSL that is generated
from a single light path, the emission profile of a Rich-VSL is computed from multiple light paths
using a photon map [Jensen 2001]. As a result, Rich-VSLs provide a more effective solution to 𝐿𝑆→𝐷

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:4 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

and 𝐿𝑆→𝑆 (Figure 1c). On the other hand, the emission profile significantly increases the storage
cost per virtual light, thereby limiting the number of virtual lights that can be used in practice.

2.2 Evaluating Many Lights
Instant radiosity effectively converts the indirect illumination problem into the many-lights problem.
Brute-force computation of many lights can be highly inefficient. Fortunately, there are various
efficient methods for estimation, including clustering using a light tree and finding important
clusters [Davidovič et al. 2012; Paquette et al. 1998; Walter et al. 2006, 2005, 2012], refactoring
the light-surface interaction into a lighting matrix to evaluate it approximately [Davidovic et al.
2010; Hašan et al. 2007; Huo et al. 2015; Ou and Pellacini 2011], and using an multiresolutional grid
representation [Lin and Yuksel 2019; Yuksel and Yuksel 2017]. Monte Carlo sampling provides a
more general solution and can be used for interactive rendering, but requires an effective importance
sampling strategy to achieve an estimation with low noise. Many recent methods build light trees
to guide sampling [Estevez and Kulla 2018; Lin and Yuksel 2020; Moreau et al. 2019; Tatzgern
et al. 2020; Vévoda et al. 2018; Vévoda and Křivánek 2016; Yuksel 2019]. Recently, spatiotemporal
reservoir resampling (ReSTIR) [Bitterli et al. 2020] is found to be highly effective for sampling
direct illumination on primary hit points.
Our VBNL method can be used with any of these many-lights solutions. However, simple

intensity-based sampling [Shirley et al. 1996] combined with BSDF sampling turns out to be highly
efficient for our method, enabling high convergence rate and low overhead which are ideal for
interactive pre-visualization. MIS between BSDF and light sampling has also found to be highly
effective by recent work in light tree sampling [Liu et al. 2019].
Our virtual light sampling also involves extending the camera paths, which is conceptually

similar to Bidirectional Lightcuts [Walter et al. 2012] that combines light paths and camera paths.

2.3 Virtual Light Placement
Virtual lights are typically placed by tracing light paths from the original light sources [Georgiev
and Slusallek 2010; Keller 1997; Segovia et al. 2007]. However, this approach has the following
fundamental problems:

Problem 1: It can generate a large number of virtual lights that have no contribution to the
final image, depending on the camera position and the light sources in the scene. This not only
leads to wasted storage and computation, but also, by including many lights with no visibility
in the lighting estimation, it hinders the efficiency and effectiveness of the many-lights
solution used. This problem is demonstrated in Figure 2a with only a small portion of virtual
lights contributing to the rendered image, resulting in a low-quality indirect illumination
estimation.

Problem 2: “Hot zones,” where a significant portion of the light paths go through, are often
over-sampled with many virtual lights, even when their contributions to the final image
could be effectively approximated using fewer virtual lights. On the other hand, light paths
with lower probability but with more significant contributions to the final image are not
always sampled adequately. Figure 2a also demonstrates this with a large portion of virtual
lights placed close to the original light source.

Problem 3: Random sampling leads to many virtual light pairs (or larger groups) that are
placed close to each other and forms large gaps with no virtual lights on parts of illuminated
surfaces (Figure 3a). This not only causes wasted storage and computation but also results in
a low-frequency noise that is difficult to filter out.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:5

(a) VSLs from light (b) with importons (c) VSLs from camera

Fig. 2. Comparison of VSLs placement methods. (a) When VSLs are generated from the light
sources, their distribution can be inadequate for visible surfaces to camera. (b) Generating VSLs
from the light sources using an importon map [Simon et al. 2015] improves the results, but does not
always produce a desirable placement for VSLs. (c) Generating VSLs from camera ensures that they
all contribute to the final image, improving the quality of the indirect illumination estimation. The
bottom row shows the VSL distributions. All images use 30400 VSLs with non-uniform emission profiles
computed using our method.

Bidirectional instant radiosity [Segovia et al. 2006] addresses Problem 1 by introducing reverse
VPLs that are generated by traversing camera paths with a single bounce (Figure 2c). To estimate
the emission of reverse VPLs, a set of regular VPLs (generated with light paths) are used. Then,
these two sets of VPLs are combined and a subset of them are used during rendering, selected via
resampling based on the contribution of each VPL to the final image, estimated by sampling a set of
camera paths connecting to them. This also involves computing the probability of generating each
reverse VPL, which is first estimated by generating a small number of paths from the camera to each
reverse VPL and then refined with more paths after resampling. Reverse VPLs help with Problem 1
and Problem 2, though the resampled regular VPLs still exhibit these problems (Figure 2a). This
approach does not offer a solution to Problem 3. Another benefit of reverse VPLs is that a small

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:6 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

(a) Random (b) Relaxation (c) Sample Elimination

Fig. 3. Comparison of VSL distributions. (a) Randomly generating VSLs leads to an uneven
distribution with tightly packed groups and relatively large spaces without VSLs. (b) Relaxation [Simon
et al. 2015] improves the distribution in some places, but not everywhere. (c) Our sample elimination
approach leads to a more even distribution and improves the indirect illumination estimation. The
bottom row shows the VSL distributions. All images use 28K VSLs that are generated from camera and
store non-uniform emission profiles computed using our method.

set of VPLs that are indirectly visible to the camera can be maintained in a temporally coherent
manner for interactive rendering [Hedman et al. 2017].
Other strategies for VPL placement include rejection sampling [Georgiev and Slusallek 2010],

which suffers from rejecting too many real VPLs for a complex scene, and metropolis instant
radiosity [Segovia et al. 2007], which produces high-variance with glossy surfaces.
Rich-VPLs [Simon et al. 2015] address Problem 1 using an importon map [Peter and Pietrek

1998] generated with camera paths. Virtual lights are placed by first generating a large number
of photons as VPL candidates and then selecting a subset of them based on the importon map.
This may also help with Problem 2 when high-probability light paths appear at places with no
importons, but otherwise they can still get oversampled (Figure 2b). For addressing Problem 3,
an iterative relaxation process [Spencer and Jones 2009; Turk 1991] is employed, which moves
the selected VPLs and then snaps them back onto the closest photon after each step, effectively
selecting a different photon location to improve the distribution. Though the relaxation process

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:7

Photon
Spli�ng

Sample
Elimination

Radiance
Estimation Shading

Initial Virtual Light Positions Final Virtual Light Positions Emission Profiles Final Rendered Image

Virtual Lights

Fig. 4. A visualization of our rendering pipeline. Initial virtual light positions are generated from
the camera. A subset of them are selected as the final virtual light positions. Virtual light emission
profiles are generated through radiance estimation using photon splitting. The final image is rendered
by sampling the virtual lights during shading.

improves the virtual light distribution, it can easily get stuck in a local minimum (Figure 3b). The
final emission profiles are computed using irradiance estimation from the photon map.

Our virtual light placement approach begins with a similar process as the reverse VPL generation
of bidirectional instant radiosity to address Problem 1 (Figure 2c). However, we do not use VPLs
generated with light paths to evaluate their intensities and avoid the complexity of resampling and
probability computation. More importantly, this addresses Problem 2. We address Problem 3 using
sample elimination [Yuksel 2015]. The resulting virtual light distribution significantly improves the
lighting estimation (Figure 3c).

3 VIRTUAL BLUE NOISE LIGHTING (VBNL)
The rendering pipeline with our VBNL method is centered around the idea of storing a non-uniform
emission profile per virtual light, akin to Rich-VPLs. When a virtual light stores an emission profile,
it represents more than a single light sub-path. Instead, it corresponds to a collection of light
sub-paths that reach the position of the virtual light. This concept allows decoupling the virtual
light placement from its emission profile computation.
A visualization of our pipeline can be seen in Figure 4. In our VBNL pipeline we propose

generating the virtual light positions by tracing camera sub-paths, instead of light sub-paths, to
address Problem 1 and Problem 2 (Section 3.1). We handle Problem 3 by using a parallel and
non-uniform version of the sample elimination method [Yuksel 2015] that results in a blue noise
distribution of virtual light positions (Section 3.2). We compute the emission profile of virtual lights
by first tracing a large number of photons from the light sources to estimate the incoming radiance
field at each virtual light and then converting it to an outgoing radiance field (Section 3.3).

3.1 Initial Virtual Light Placement
With any rendering method using virtual lights, light paths are formed by explicitly connecting
camera sub-paths to the virtual lights, each virtual light representing one or more light paths, as
shown in Figure 5. Therefore, only the virtual lights at points y that are visible from the end points
x of camera sub-paths can form valid light paths. Let X represent the set of all points x at the ends
of camera sub-paths that can be generated during rendering, and Y be the set of all scene points
y visible from any point x ∈ X. Then, a virtual light that is not on a surface point y ∈ Y cannot
contribute during rendering and leads to wasted computation and storage (i.e. Problem 1).
To avoid this problem, we place virtual lights only on points y ∈ Y by randomly sampling Y.

We achieve this by generating 𝑀 random camera sub-paths, each ending at a point x, and then

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:8 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

x

camera
sub-path

light
sub-path

y

Fig. 5. A light path generated by connecting the end point x of a camera sub-path with the light
sub-path of a virtual light at y.

randomly picking a reflection direction at x and tracing a ray to find a point y ∈ Y. To improve the
sample distribution, we use BSDF importance sampling at x.
Note that this process does not sample Y with a uniform probability. Instead, points y ∈ Y that

are visible from more points x ∈ X are chosen with a higher probability, including the geometry
term between x and y and the BSDF at x. This leads to a sampling density correlated with the
importance brought to the camera.

Nonetheless, the exact probability used for selecting a point y ∈ Y is not needed. This is because
these samples merely represent the selected virtual light positions, but not their emissions. Our
emission profile generation approach with photon splitting (Section 3.3) avoids the complexity of
estimating the probability of picking each virtual light sample y.

(a)
x

x

y

y

(b)
Fig. 6. Virtual lights can be placed (a) at the secondary hit after the primary hit or (b) at the next hit
after a secondary hit for specular reflections on highly-specular materials.

The camera path generation process used for generating the initial virtual light placement should
match the camera path generation used during rendering. For taking full advantage of virtual lights,
it is advisable to keep the camera paths short. The shortest camera path would only contain the
primary hit. Then, a virtual light can be placed at the secondary hit by picking a random reflection
direction at the primary hit via BSDF sampling (as in Figure 6a). For highly-specular materials,
however, the indirect illumination from these virtual lights may not provide sufficient resolution.
Therefore, when BSDF sampling picks specular reflection on a highly-specular material, we extend
the camera path to the secondary hit point, and a virtual light is placed at the next hit point after
this secondary hit (as in Figure 6b). When the secondary hit is also on a highly-specular material,
we can extend the camera path further. In general, wherever we decide to end the camera path, we
trace one more reflection ray and place a virtual light at that next hit point.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:9

(a) No Sample Elimination (b) Uniform Sample Elimination (c) Adaptive Sample Elimination

Fig. 7. Virtual light distribution in the Fireplace scene (a) without sample elimination, (b) with uniform
sample elimination, and (c) with adaptive sample elimination. The 𝑟max value for uniform sample
elimination is hand tuned in this test. Notice that adaptive sample elimination preserves the higher
virtual light density on the objects on the table and, therefore, properly resolves their specular reflections
on the table.

3.2 Virtual Light Placement with Sample Elimination
Our goal is to generate virtual light positions that form a blue noise distribution, which can
substantially improve the quality of the results given the same number of lights, particularly with
specular transport (Figure 3c). This addresses Problem 3.
We develop a variant of the sample elimination method [Yuksel 2015] to achieve a blue noise

distribution. Given 𝑀 randomly generated virtual light positions (as explained above), sample
elimination selects a subset of 𝑁 with 𝑁 < 𝑀 that exhibits blue noise characteristics.
Sample elimination uses weights computed using the maximum possible Poisson disk radius

𝑟max that can be achieved with 𝑁 samples within the sampling domain. Assuming perfect packing
on a 2D surface, we can write

𝑟max =

√
𝐴

2
√

3𝑁
. (1)

where 𝐴 is the total area of the surface. Unfortunately, we cannot directly apply this formula to
our sampling problem, since we do not know the total area of Y, the scene points where we can
place virtual lights. Also, a fixed 𝑟max value would lead to uniform distribution (i.e. uniform sample
elimination), which would overwrite the desired sample density we achieve during initial sample
generation described in Section 3.1.
We resolve these issues with our adaptive sample elimination by separately computing the

maximum radius value for each initial virtual light position sample, based on the local density, prior
to sample elimination. More specifically, we consider a local sample elimination problem where
out of𝑚 closest samples to a sample (𝑚 ≪ 𝑀), we target keeping 𝑛 of them, such that 𝑛/𝑚 = 𝑁 /𝑀 .
Let 𝑑𝑖 be the distance to the𝑚th closest sample to sample 𝑖 . We can write the maximum radius for
sample 𝑖 as

𝑟𝑖,max =

√
𝐴𝑖

2
√

3𝑛
=

√
𝑀𝐴𝑖

2
√

3𝑁 𝑚
, (2)

where 𝐴𝑖 is the estimated surface area around sample 𝑖 within 𝑑𝑖 distance. Assuming that all𝑚
samples around sample 𝑖 are on a flat surface, we can estimate the area as 𝐴𝑖 = 𝜋 𝑑2

𝑖 .
When using VSLs, we assign their radii as 𝑟𝑖 = 𝛼𝑟𝑖,max, where 𝛼 is a user-defined parameter

controlling the overlap of neighboring VSLs (we use 𝛼 = 2 in our tests).
Figure 7 shows virtual light distributions in an example scene without sample elimination,

with uniform sample elimination, and with our adaptive sample elimination. Notice that without

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:10 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

(a) Sequential Sample Elimination (26.3 s) (b) Parallel Sample Elimination (2.7 s)

Fig. 8. Sequential Sample Elimination vs Parallel Sample Elimination(1.3M samples eliminated to
0.13M samples). Parallel Sample Elimination is noticeably faster than Sequential Sample Elimination
without any noticeable distribution degeneration.

sample elimination the distribution includes many virtual lights that are closely placed together
(i.e. oversampling) and insufficient density elsewhere. Uniform sample elimination produces a blue
noise distribution, but loses the density variation of the original distribution. This results in loss
of detail for some parts of the image, particularly with specular transport. Our adaptive sample
elimination preserves the original density variations and achieves a blue noise distribution that
prevents placing virtual lights too close to each other.
To parallelize sample elimination, we split the sampling domain into a number of boxes and

perform sample elimination independently within each box in parallel. Since our sampling domain
Y is complex and our initial sample distribution is non-uniform, simply splitting the bounding box
of the initial samples into boxes of equal size leads to a highly non-uniform work distribution. For
better load balancing, we recursively split the bounding box into two boxes of (approximately)
equal number of samples along the axis that provides the most spatially even split. This process is
repeated until we reach a desired number of boxes, forming a (balanced) k-d tree.
Performing sample elimination independently for each box (i.e. leaf node) does not eliminate

samples near the boundaries of boxes that are too close to the samples of adjacent boxes. To avoid
this, we terminate sample elimination before we reach the target sample count in each box, leaving
some excessive samples. In our implementation this is controlled by a parameter determining what
percentage of excessive samples are eliminated before we terminate the process. We empirically
find that setting this parameter to 80% consistently gives us similar quality as sequential sample
elimination across all test scenes (Figure 8, Figure 12). Then, we continue sample elimination using
the parent nodes of the leaf nodes. We repeat this process until we reach the root node and eliminate
all of the remaining excessive samples in a single thread.

Each timewe restart sample elimination using a parent node’s box, wemust recompute the sample
elimination weights for each sample in the box. To minimize this overhead, our implementation
skips a few levels by joining 8 nodes under a common parent node. As can be seen in Figure 8, our
parallel sample elimination process produces a similar result as (though different than) the serial
implementation.

3.3 Computing Virtual Light Emission Profiles
The virtual lights positions generated from the camera subpaths do not carry any illumination
information. To compute their illumination profiles, we must estimate the incident radiance field at
each virtual light and use it to compute the reflected radiance field.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:11

We estimate the incident light via photon tracing by generating random light paths. At each
light path vertex, we convert the photon’s energy to a reflected radiance field and distribute it
to the nearby virtual lights, if any. We call this process photon splitting. Let 𝑤𝑖 be the portion of
the radiance field added to the virtual light 𝑖 . We must have a partition of unity (i.e.

∑
𝑖 𝑤𝑖 = 1) to

preserve energy or, if there are no nearby virtual lights,𝑤𝑖 = 0 for all virtual lights. A virtual light 𝑖
is considered nearby, if the distance to its center 𝑑𝑖 is less than its radius 𝑟𝑖 . We use 1 − (𝑑𝑖/𝑟𝑖)2 as
relative weights to compute𝑤𝑖 .

This process involves tracing a large number of photons. Fortunately, it does not require storing
any photons. Since photon tracing (without photon storage) is relatively cheap, we can efficiently
use a large number of photons. Obtaining the nearby virtual lights at any photon hit point can also
be performed efficiently, using a spatial partitioning structure for the virtual lights.
The most expensive component of this computation is evaluating the outgoing radiance, as

it involves all outgoing directions and performed for each photon hit. To accelerate this step,
we delay the outgoing radiance field computation. First, we complete tracing all photons and
store an incident radiance field per virtual light. Then, we convert the resulting incident radiance
field into an outgoing radiance field that represents the emission profile of the virtual light. This
later conversion can be performed in a lazy fashion, as needed, during rendering, though in our
implementation we complete the conversion for all lights in a separate pass, as the final step of
virtual light preparation.

4 RENDERINGWITH VIRTUAL BLUE NOISE LIGHTING
Our virtual lights can be used with any existing light sampling technique. However, the fact that
they provide a relatively uniform coverage of the indirectly visible surfaces Y opens up possibilities
for alternative light sampling and virtual light evaluation techniques for improving the lighting
estimation quality. More specifically, we propose treating virtual lights as photon lights with non-
uniform emission profiles and combining three light sampling strategies via multiple importance
sampling (MIS): power-based light sampling, BSDF sampling, and adaptive camera path extension.

A photon light is a VSL that does not include the simplifications of the VSL formulation [Hašan
et al. 2009]. VSLs approximate photon lights by treating them as point sources for visibility purposes
and an extra cosine factor to account for possible rays that intersect with the light’s sphere but not
the surface on which the light is placed. Instead, we use the photon light formulation by adding
a non-uniform emission function 𝐼𝑒𝑗 , such that the outgoing illumination at a point y towards a
direction 𝝎 from a virtual light 𝑗 placed at y𝑗 with radius 𝑟 𝑗 can be written as

𝐿𝑒𝑗 (y,𝝎) = 𝐼𝑒𝑗 (𝝎) (∥y − y𝑗 ∥ ≤ 𝑟 𝑗) . (3)

4.1 Virtual Light Sampling
Because we are generating a large number of virtual lights, we must efficiently sample them during
rendering. Power-based importance sampling [Shirley et al. 1996] is a standard technique for
handling many lights. More recently, a number of more effective sampling techniques have been
proposed, such as light trees [Lin and Yuksel 2020; Moreau et al. 2019; Yuksel 2019] and ReSTIR
[Bitterli et al. 2020]. These methods are shown to outperform power-based light sampling. However,
when combined with our BSDF sampling and adaptive camera path extension, in our test we have
found that the simple power-based importance sampling strategy provides sufficient sampling
quality without the additional cost of these more advanced techniques (see Figure 9 for an example).
Nonetheless, we do not dismiss the possibility that in some scenes these more advanced techniques
might offer a practical advantage, in which case our power-based importance sampling can be
safely replaced with any of them.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:12 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

Light BVH Sampling ReSTIR Sampling Power-Based Sampling

⇑ rMAE: 0.219 ⇑ ⇑ rMAE: 0.250 ⇑ ⇑ rMAE: 0.159 ⇑
Fig. 9. Comparison of different light sampling techniques combined with our BSDF sampling via MIS.
All results rendered in 200 ms. Because of the runtime overhead of Light BVH [Moreau et al. 2019] and
ReSTIR [Bitterli et al. 2020], power-based sampling outperforms them, when combined with our BSDF
sampling. (140K Virtual Lights, 20M light Paths)

While estimating the illumination at a shaded point x, our power-based sampling strategy picks
a photon light with probability proportional to its emissive power 𝑃 𝑗 . Then, we pick a random
direction 𝝎 𝑗 towards the light within the solid angle that contains the light’s sphere with uniform
probability. Thus, the resulting probability of picking a light sample can be written as

𝑝 𝑗 (𝝎 𝑗) =
𝑃 𝑗∑
𝑘 𝑃𝑘

(
1

2𝜋 (1 − cos\ 𝑗)

)
, (4)

where \ 𝑗 is the half-angle of the cone that contains the light.
We compute visibility (i.e. shadows) by tracing a ray from the shaded point x along𝝎 𝑗 . Unless the

hit point y of this ray is within the light’s sphere, we consider the light occluded (as in Equation 3).
We combine our power-based importance sampling with BSDF sampling, which is a highly-

effective strategy, particularly with relatively specular materials. This strategy is enabled as a direct
outcome of our virtual light placement technique that provides a relatively uniform coverage of Y.
For BSDF sampling, we generate a random reflection direction 𝝎𝑟 with probability 𝑝BSDF (𝝎𝑟) and
trace it to find the corresponding hit point y𝑟 ∈ Y in the scene. Then, we gather all virtual lights
that contain y𝑟 within their radii, as shown in Figure 10a. We use these nearby virtual lights to
estimate the outgoing light at y𝑟 using Equation 3 (i.e. 𝐿𝑒𝑖 (y𝑟 ,−𝝎𝑟) = 𝐼𝑒𝑖 (−𝝎𝑟) for light 𝑖).
We combine our BSDF sampling with power-based light sampling using MIS. We compute an

MIS weights 𝑤𝑖 for each light 𝑖 near y𝑟 and 𝑤 𝑗 for the power-based light sample 𝑗 using power
heuristic

𝑤𝑖 =
𝑝2
BSDF (𝝎𝑟)

𝑝2
BSDF (𝝎𝑟) + 𝑝2

𝑖
(𝝎𝑟)

and 𝑤 𝑗 =
𝑝2
𝑗 (𝝎 𝑗)

𝑝2
BSDF (𝝎 𝑗) + 𝑝2

𝑗
(𝝎 𝑗)

. (5)

4.2 Adaptive Camera Path Extension
Virtual lights can provide a good estimate for distant illumination, but they often fall short when it
comes to properly estimating indirect illumination from nearby surfaces. There are two fundamental
reasons behind this shortcoming. The first one is the virtual light formulation. Indeed, VPLs are
notorious with geometry terms going to infinity, as the distance between the shaded point and the
virtual light goes to zero. VSLs improve this behavior and using photon lights with non-uniform

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:13

x

ωr

yyi yi

x

y

ωr

(a) BSDF Sampling (b) Camera path extension

Fig. 10. Illumination estimation with our VSLs. (a) A random direction𝜔𝑟 is generated by BSDF-based
or power-based importance sampling and the nearby VSLs to the hit point y are sampled. (b) When y
is too close to x, we extend the camera path and shade y first to find the reflected light towards x along
−𝜔𝑟 .

emission profiles computed using our method provide further improvement. The other reason is
virtual light density. Even though our virtual light placement approach significantly improves the
distribution, density can still be inadequate for handling nearby illumination, even when using a
large number of virtual lights.
Our solution is to avoid using virtual lights for nearby illumination and extending the camera

path, as needed, for handling nearby indirect illumination, similar to path tracing. Fortunately, our
virtual light sampling technique described above provides an efficient mechanism for adaptively
extending the camera path with minimal additional cost, separating our solution from similar ideas
in prior work [Kollig and Keller 2006; Walter et al. 2012].

We can write the incoming illumination 𝐿𝑖 (x,𝝎𝑟) to the shaded point x from a direction 𝝎𝑟 as a
weighted combination of illumination estimation from virtual lights 𝐿v and illumination sampled
via camera path extension 𝐿p, using

𝐿𝑖 (x,𝝎𝑟) = 𝑤v𝐿v (y,−𝝎𝑟) +𝑤p𝐿p (y,−𝝎𝑟) , (6)

where𝑤v +𝑤p = 1 are the blending weights and y is the hit point of the secondary ray from x along
𝝎𝑟 . We adjust the blending weights such that virtual lights are only used for distant illumination.

For determining the distance beyond which we can rely on virtual lights, we consider the material
at x and the virtual light density at y. This is because we can safely use relatively nearby virtual
lights when x is on a relatively diffuse surface and when there is sufficient virtual light density at y.
More specifically, we use the estimated sample footprint [Bekaert et al. 2003; Müller et al. 2021]

𝑎(x,𝝎𝑟) =
∥x − y∥2

𝑝BSDF (𝝎𝑟) | cos\𝑟 |
, (7)

where \𝑟 is the angle between −𝝎𝑟 and the surface normal at y. Multiplying 𝑎(x,𝝎𝑟) with the
estimated virtual light density 𝜌 (y) at y gives the estimated number of virtual lights that correspond
to the sampled specular lobe. We compute 𝜌 (y) by averaging the density estimation of each virtual
light 𝜌𝑖 , derived from Equation 2, such that

𝜌 (y) = 1
𝑛

𝑛∑
𝑖

𝜌𝑖 and 𝜌𝑖 =
𝛼2

2
√

3 𝑟 2
𝑖

, (8)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:14 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

Virtual Lights Only Thresholds: 4/8 Thresholds: 40/80 Thresholds: 400/800

Ground Truth

Fig. 11. Our results without camera extension or with camera path extension but using different 𝑛min
and 𝑛max. Top row: Relative squared errors compared to the path tracing reference. Middle row: results
of our method. Bottom row: visualization of the average path depth. Notice our method is capable
of handling materials with different roughness adaptively. For rougher materials, our method is able
to extend the path less frequently. On the bottom row, the transition zones on different metal plates
indicate an interpolation of path extension and termination.(125K Virtual Lights, 5M Light Paths)

where 𝑛 is the number of virtual lights that overlap with y. Using this, we define the blending
weight as

𝑤v = clamp(�̃�v, 0, 1) with �̃�v =
𝑎(x,𝝎𝑟) 𝜌 (y) − 𝑛min

𝑛max − 𝑛min
, (9)

where 𝑛min and 𝑛max are user-defined parameters, controlling the minimum and maximum number
of virtual lights that would be sufficient for relying on the virtual light estimation.
Our virtual light sampling method allows implementing camera path extension with minimal

additional cost. For each virtual light sample we generate via either power-based sampling or BSDF
sampling, we compute the corresponding blending weight 𝑤v. With power-based sampling, we
estimate the density using only the selected light. When𝑤v < 1, we simply use the hit point y as
the next vertex of the camera path (see Figure 10b). Note that when 𝑤v = 0, we do not need to
evaluate the virtual lights at all.

Our virtual light placement approach provides an almost complete coverage of Y, but a complete
coverage is not guaranteed. In some rare cases, BSDF sampling can hit a point y that does not
overlap with any virtual lights. When this happens, our camera path extension is automatically
triggered (with𝑤v = 0).
Our camera path extension not only improves the accuracy of the lighting estimation, but also

prevents the energy loss that is common with virtual light formulations near corners. We show a
detailed study about threshold parameter’s effects in Figure 11. From our experiments, we found
𝑛min = 40 and 𝑛max = 80 works well in most cases, because these settings provide a good balance
between performance and rendering quality.

5 IMPLEMENTATION AND RESULTS
We have implemented our virtual blue noise lighting approach in a GPU ray tracer, using NVIDIA
GameWorks’s framework Falcor [Benty et al. 2020]. All methods we compare against are also
implemented within the same rendering framework, using the same functions and data structures
when possible. All results are rendered with unlimited light bounces via Russian-Roulette. The
performance results are obtained on a computer with an AMD 3900X CPU with 3.8 GHz/12 Cores
and 32 GB RAM, and an NVIDIA RTX 3090 GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:15

For the initial virtual light generation, we split the screen space into tiles and generate an equal
number of random samples within each tile. For computing the emission profiles, we build a BVH
that contains all virtual lights. The nearest neighbour queries are handled using the GPU ray
tracing functionalities [Evangelou et al. 2021]. We use 16 × 16 directional entries per virtual light
(unless otherwise specified) to store the incoming radianceusing octahedron environment mapping
[Engelhardt and Dachsbacher 2008]. These are then converted to the final emission profiles of the
same resolution. For virtual lights on diffuse (i.e. Lambertian) surfaces, we do not explicitly store
directional emission profiles, since emission towards any direction can be easily computed from a
single light intensity value.

For accelerating power-based virtual light sampling, after we pick a random direction 𝝎 𝑗 towards
light 𝑗 , before we trace a ray in that direction to determine visibility, we first intersect the ray with
the disk that is centered at the light and aligned with the surface normal at the light’s position. If the
ray does not intersect the light’s disk, we assume that the light is not visible along the direction 𝝎 𝑗 .
While this test can produce false negatives that results in a small amount of error, it also provides
an average of 12% reduction of render time in our tests.

For our camera path extension, we use 𝑛min = 40 and 𝑛max = 80 in all examples (see Figure 11).
We use relative mean absolute error (rMAE) as our error metric, measuring the error relative

to the reference pixel intensity. Let 𝐼 and 𝐼ref represent the intensities of a rendered pixel and the
corresponding reference image pixel. rMAE is defined as the mean pixel error, which is calculated
using |𝐼 − 𝐼ref |/(𝐼ref + 𝜖), where 𝜖 = 0.01 ·mean(𝐼ref) is a scene-adaptive small bias value to avoid
division by zero.

5.1 Comparisons to Rich-VSLs
We begin with directly comparing our VBNL method with Rich-VPLs [Simon et al. 2015], as it is the
state-of-the-art for indirect illumination estimation with virtual lights. Our implementation of Rich-
VSLs use the same data structures for storing VSLs and their emission profiles. The differences are
in VSLs generation, distribution, emission profile computation, and VSL sampling during rendering.
Unlike our method, Rich-VSLs are generated from scene lights using photon tracing, selected based
on an importance map generated from the camera. The Rich-VSL distribution is computed via an
iterative relaxation algorithm and the emission profiles are computed with irradiance estimation
from a photon map. In our tests with Rich-VSLs, we cast 8 importons per pixel, generate a photon
map on the GPU that contains up to 100× photons than VPLs, and perform 20 relaxation iterations.
We use Falcor’s Light BVH sampling with Rich-VSLs, unless stated otherwise.

Figure 12 shows comparisons of our method to Rich-VSLs, using images rendered with the
same number of VSLs. In these comparisons we allow Rich-VSLs to use our entire virtual light
initialization time (i.e. for virtual light preparation) plus render time just for rendering.We also allow
additional initialization time for Rich-VSLs, which is significantly longer than our initialization
time. Visualizations of VSL distributions used in these images are presented in Figure 13. Notice
that, even though most scenes do not include particularly challenging illumination conditions, our
VSLs generated from the camera clearly improve the indirect illumination estimation, producing
closer results to the path tracing reference.

In the Kitchen scene (Figure 12 top row) and the Sibenik scene (Figure 12 second row), Rich-VSLs
struggle with resolving specular reflections and produce an overall darker scene. This darkening can
be remedied by generating a lot more VSLs. In the Modern Room Scene (Figure 12 third row), Rich-
VSLs still have low convergence due to the inefficiencies of the virtual light sampling method. In
the Veach Door scene, Rich-VSLs suffer from a sparse virtual light distribution (Figure 13) inside the
room. In this scene, we use 10 million photons generated from 1.5 million light paths for Rich-VSLs,
but only a small percentage of photons enter the room and the others remain outside. This severely

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:16 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

Path Tracing Path Tracing Rich-VSLs VBNL
(Same render time) (Same total time) [Simon et al. 2015] (Ours)

⇑ 1.4 s, rMAE = 0.521 ⇑ 7 s, rMAE = 0.368 ⇑ (69+7) s, rMAE = 0.426 ⇑ (5.6+1.4) s, rMAE = 0.105

⇑ 1.6 s, rMAE = 0.297 ⇑ 7 s, rMAE = 0.168 ⇑ (48+7) s, rMAE = 0.616 ⇑ (5.4+1.6) s, rMAE = 0.067

⇑ 1.8 s, rMAE = 0.295 ⇑ 6 s, rMAE = 0.178 ⇑ (62+6) s, rMAE = 0.389 ⇑ (4.2+1.8) s, rMAE = 0.104

⇑ 1.4 s, rMAE = 0.842 ⇑ 8 s, rMAE = 0.460 ⇑ (304+8) s, rMAE = 0.681 ⇑ (6.6+1.4) s, rMAE = 0.082

Fig. 12. Comparison of our virtual blue noise lighting method to Rich-VSLs in the Kitchen, Sibenik,
ModernRoom, and Veach Door scenes. Notice that, unlike our VBNL method, Rich-VSLs miss various
important illumination details, mainly because of virtual light placement/distribution. Both methods
use 140K VSLs in all scenes.For ours and Rich-VSLs, the total time is given as a sum of preparation
time plus render time. Note that in all scenes the render time we use for Rich-VSLs is equal to the sum
of our reparation and render time. In addition, Rich-VSLs in these examples are given much longer (7×
to 38×) extra time for preparation.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:17

Rich-VSL [Simon et al. 2015] VBNL (Ours)

Fig. 13. VSL distributions of Rich-VSLs [Simon et al. 2015] and our VBNL method for the images in
Figure 12. Notice that our method provides a more uniform blue noise distribution and better adjusts
the VSL density to camera importance.

limits the possible virtual light positions for Rich-VSLs inside the room, resulting in undersampled
illumination. Instead, most virtual lights generated by our method are well distributed inside the
rendered room.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:18 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

10,000,000 paths
Photon Tracing Time: 0.70s

100,000,000 paths
Photon Tracing Time: 1.02s

1,000,000,000 paths
Photon Tracing Time: 4.02s

Fig. 14. Results rendering with different numbers of photon paths used for computing the emission
profiles of virtual lights in the Veach Door scene (using 𝑛min = 40 and 𝑛max = 80). Due to complex light
transport of this scene, most light paths are terminated in advance. The emission profiles of virtual
lights still have high variance even after 10M light paths are traced. As the number of the light paths
grows, the illumination from virtual lights converges. All images are rendered using 140K virtual lights
in this example.

One important advantage of our method over Rich-VSLs is the VSL placement/distribution
(Figure 13), playing a significant role in the resulting differences (Figure 12). Note that our method
automatically places VSLs with a higher density where prominent specular reflections appear. In
particular, notice the high-density VSL distribution with our method in the Sibenik scene on parts
of the pillars, which are indirectly visible on the specular reflections on the floor. Similar increase
in VSL density can be observed in all scenes that are indirectly visible via specular reflections. Such
adaptive density variations are needed for properly resolving specular transport. Therefore, using
our method specular reflections of the objects are properly resolved and corner darkening on the
floor near the walls are avoided, producing closer results to path tracing in all scenes.
Another source of improvement is the number of photons used for the emission profile com-

putation of our method. Since our method does not require storing any photons, we could use
significantly more photon paths than the Rich-VSL examples in Figure 12 in much shorter virtual
light initialization time in Table 1. In Figure 12, Rich-VSLs use 1.5 million photon paths for all
scenes, while our method uses 20 million photon paths for the first three scenes and 200 million
for the Veach Door scene. As can be seen in Figure 14, using a small number of photons in the
Veach Door scene does not provide sufficient convergence for the virtual light emission profiles,
resulting in visible fluctuations in the illumination estimation. Our method can efficiently use a
massive number of light paths to handle such challenging illumination cases.

In comparison to Rich-VSLs, our method also consumes less memory and provides faster initial-
ization. Detailed breakdowns of computation times and storage cost for both methods are provided
in Table 1. Notice that the emission computation of Rich-VSLs using photon density estimation
consumes most of the initialization time in most scenes. In comparison, our emission computation
can be performed significantly faster. In terms of memory cost, our method does not need to store
a photon map or an importon map. This results in storage savings with our method, even though
both methods have identical storage per VSL.
Our method also benefits from our adaptive path extension strategy. A visualization of the

average path lengths with our method is shown in Figure 15. In the supplemental document, we

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:19

Table 1. Performance breakdown of Rich-VSLs and our VBNL for the results in Figure 12.

Kitchen Modern Room Sibenik Veach Door

Ri
ch
-V
SL

s

VSL Placement 8.46 sec 4.95 sec 5.05 sec 225.76 sec
Relaxation 9.99 sec 5.36 sec 6.75 sec 6.61 sec
Emission Comp. 50.10 sec 51.40 sec 35.74 sec 71.70 sec
Shading 7.00 sec 6.00 sec 7.00 sec 8.00 sec
Total Time 75.55 sec 67.71 sec 54.54 sec 312.07 sec
VSL Storage 333.31 MB 349.16 MB 103.43 MB 568.45 MB
Importon Storage* 427.38 MB 374.48 MB 215.00 MB 206.96 MB
Photon Storage* 361.76 MB 67.65 MB 401.86 MB 341.11 MB

O
ur

s

VSL Placement 1.19 sec 1.09 sec 1.19 sec 1.05 sec
Sample Elim. 2.55 sec 2.00 sec 2.46 sec 2.28 sec
Photon Tracing. 1.42 sec 0.76 sec 1.54 sec 1.30 sec
Convert. 0.42 sec 0.37 sec 0.26 sec 2.02 sec
Shading 1.42 sec 1.78 sec 1.55 sec 1.35 sec
Total Time 7.00 sec 6.00 sec 7.00 sec 8.00 sec
VSL Storage 298.21 MB 234.61 MB 145.85 MB 548.56 MB
Initial Candidate Storage* 192.31 MB 168.50 MB 193.52 MB 186.31 MB

* Used during initialization and can be freed prior to rendering.

show a study of applying our light sampling method to Rich-VSLs. Although the rendering quality
of Rich-VSLs can be improved using our light sampling, the resulting images still contain excessive
noise and sampling artifacts as compared to our method due to the differences in virtual light
distribution and emission profile generation.

5.2 Virtual Light Placement
Generating virtual light positions starting from the camera is an important component of our
method. Figure 2 shows comparisons of different methods for placing VSLs.

Notice that the typical method of using light paths (Figure 2a) can waste virtual lights by placing
them where they have no contribution to the rendered image (Problem 1) and oversample high-
probability light paths (Problem 2). As a result, the indirect illumination estimation in the rendered
image lacks smaller-scale details, particularly on glossy surfaces, due to undersampling, as only a
relatively smaller percentage of virtual lights are actually used during rendering.

Using an importon map [Simon et al. 2015] to guide the virtual light placement using light paths
can help (Figure 2b), but it can still oversample high-probability light paths (Problem 2), as can
bee seen in the Veach Door scene (Figure 13 bottom-left). If light paths going through hot zones
(Problem 2) with high photon density rarely directly contribute to illumination of the final image,
it will lead to an overall darker result as the Veach Door result of Rich-VSLs shows in Figure 12
bottom.
Our virtual light placement using camera paths (Figure 2c) resolves both of these problems,

producing a desirable coverage of the indirectly-visible scene surface (i.e. Y).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:20 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

(a) Kitchen (b) Modern Room

(c) Sibenik (d) Veach Door

0 1 2 3 4 5

Fig. 15. Visualizations of average path length in above scenes. For Kitchen and Sibenik, our method is
able to terminate most of camera paths early. For Modern Room, because the floor is highly specular,
we extend the camera path more on it with high probability. Zero means no path extension.

5.3 Emission Profiles
Storing an emission profile per virtual light [Simon et al. 2015] can significantly improve the
quality. Our supplemental document includes a comparison of our method to regular VPLs and
VSLs generated using the same number of photon paths, showing that our method improves both
the rendering quality and performance.

Our delayed computation of the emission profiles (by first accumulating the directional incoming
radiance data per light and then converting it to emission profiles, as explained in Section 3.3)
results in some minor error due to quantization of the directional information, but it significantly
improves the computation time. An example showing two orders of magnitude speed difference is
included in our supplemental document.

In our implementation, we store all emission profiles of all virtual lights in a single texture, where
each 16 × 16 pixel block belongs to a virtual light. To implement highly specular reflection effects,
it might be preferred to useemission profiles with higher resolution. For example, we show our
method is capable of handling detailed caustics to some extent using 32 × 32 blocks for emission
profiles as Figure 16 shows.
During photon splitting, this texture stores the incoming radiance. Then, we convert it to the

outgoing radiance. Note that not all emission values stored in this texture are used during rendering,
because not all virtual lights are sampled from all directions. Therefore, a lazy conversion that
computes parts of the emission profiles as needed can provide further optimization. Nonetheless, in

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:21

(a) Ours (b) Reference

0 1 2 3 4 5
(c) Path Length

0% 25% 50% 75% 100%

(d) Relative Absolute Error

Fig. 16. Our method can handle high frequency caustics with some blurring: (a) our method with 53k
32 × 32 virtual lights placed on these metal rings (250M Light Paths), (b) reference results, (c) average
path length during shading, and (d) relative absolute error (rMAE = 0.0126).

our tests we have found that 70% of the data in our texture are accessed during rendering. Therefore,
any savings with lazy initialization might be limited, especially considering potential overhead it
might incur.

5.4 VSL Sampling
Figure 17 shows results rendered by different configuration of our sampling method in 2 seconds.We
can clearly notice the individual effect of a single technique and their composition. BSDF sampling
significantly improves the overall sampling quality. Multiple Importance sampling compensates
BSDF sampling results by sampling the virtual lights based on power. Path Extension fixes the
undersampling of the corner part of the scene thus improve the details of rendering results.

Our samplingmethod is designed to be coupled with our virtual light generationmethod.Without
a stable blue noise distribution spreading over the indirectly visible surface, the quality of BSDF
sampling drops significantly. In addition, our path extension terminates a path based on whether
the virtual light distribution is sufficient enough (controlled by the 𝑛min and 𝑛max parameters).
Noticing the similarity between our BSDF sampling of virtual lights and photon mapping with

final gathering, we provide an equal-time, equal-photon comparison with photon mapping in the
supplemental document where our method shows clearly better quality.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:22 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

Light Sampling BSDF Sampling MIS Sampling MIS + Path Extension

⇑ rMAE: 0.776 ⇑ ⇑ rMAE: 0.315 ⇑ ⇑ rMAE: 0.240 ⇑ ⇑ rMAE: 0.231 ⇑
Fig. 17. Ablation of our sampling method. All images are rendered in 2s. We can find that BSDF
sampling can significantly improve the efficiency of virtual light sampling. In addition, we can find
that the path extension strategy can improve the corner quality a lot. All images are rendered using
140K virtual lights and 50M light paths.

100 101 102 10310−2

10−1

rM
A

E

Kitchen

100 101 102 103

Time (s)

10−2

10−1

Modern Room

100 101 102 103

Time (s)

10−2

10−1

Sibenik

100 101 102 103

Time (s)

10−2

10−1

Veach Door

Time (s)

rM
A

E

rM
A

E

rM
A

E

Ours (Adaptive SE, Path Extension)
Ours (Adaptive SE, No Path Extension)

Ours (Uniform SE, Path Extension)
Ours (Uniform SE, No Path Extension)

Ours (No SE, Path Extension)
Ours (No SE, No Path Extension)Path Tracing

Fig. 18. Log-log plots of render time vs. rMAE, showing the convergence of path tracing and variants of
our method with different virtual light distribution (no sample elimination, uniform sample elimination,
and our adaptive sample elimination) and sampling during rendering (with and without adaptive path
extension).

5.5 Convergence
In Figure 18, we visualize longer time convergence (up to 1000 seconds) using the scenes in Figure 12
(with the same settings). Our method (green solid line) produces much lower error than path tracing
(purple line) within pre-visualization time range (1-10 seconds), but eventually converges to a
biased result. Note that the error of our full method is still less than path tracing within 100 seconds
in all scenes, and even after 1000 seconds in the Veach Door scene.
In the same plots, we also perform an ablation study to understand the importance of adaptive

sample elimination for virtual light distribution (different line colors) and path extension for render-
ing (dashed vs. solid lines). Sample elimination (green and orange lines) produces results with lower
error than a random distribution of virtual lights (red lines). Adaptive sample elimination produces
results with lower error when emission profiles virtual lights are sufficiently converged (Kitchen,
Modern Room, and Sibenik scenes). Otherwise, it is possible that adaptive sample elimination
produces higher error than uniform sample elimination, since regions with high virtual light density
can have higher variance with insufficient photon path count (Veach Door scene). Note that having
a higher error in a single rendering does not mean the bias is higher. Our method generally produces
blurring in the results (as can be seen in Figure 16), and adaptive sample elimination can reduce
blurring compared to uniform sampling elimination, thus having lower bias. In all scenes and

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

Virtual Blue Noise Lighting 3:23

(a) Exposure = 0 (b) Exposure = 4 (c) Exposure = 8

Fig. 19. Light leakage of our method in a Cornell Box scene split down the middle by an infinitely
thin wall, separating the half that contains the light source from the other half that is supposed to be
completely dark. The same rendered image is displayed with different exposures (rMAE = 0.003). In
this example, some small amount of light leakage can be seen with exposure = 8.

virtual light distributions, we can see that path extension (solid lines) reduces error faster than not
using path extension (dashed lines) as the render time increases and eventually produces results of
lower error.

6 CONCLUSIONS AND FUTUREWORK
We have introduced the virtual blue noise lighting that improves the indirect illumination estimation
pipeline using virtual lights. Unlike typical virtual light generation that relies on light paths, our
method uses camera paths for virtual light placement. We combine this approach with an adaptive
sample elimination strategy that leads to a blue noise distribution with a varying density. These two
methods combined provide an effective algorithm for virtual light placement that produces superior
illumination sampling quality for virtual lights. Furthermore, we describe a photon splitting method
that can efficiently use a large number of photon paths for generating the emission profiles of
virtual lights.

We have also presented techniques that improve the illumination estimation from our virtual
lights during shading. More specifically, we combine BSDF sampling and power-based sampling
with MIS. Moreover, we have described an adaptive camera path extension technique for improving
the near under-sampled illumination.

Our results show clear improvements over prior indirect illumination estimation methods using
virtual lights. Yet, since our method is based on virtual lights, it inherits some limitations of this
approach. First and foremost, our VBNL approach does not provide an unbiased rendering method.
Distributing and gathering energy from virtual lights with non-zero radius can introduce some
smoothing and light leaking in the results (see Figure 19). Storing emission profiles for a large
number of virtual lights is expensive. Our implementation uses a small table per light with a fixed
number of quantized directions, which limits the estimation quality. An adaptive emission profile
storage would be an interesting direction for future research. This is particularly important, because
virtual lights with emission profiles can consume a considerable amount of memory and rendering
with them can quickly become memory bound.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

3:24 Tianyu Li, Wenyou Wang, Daqi Lin, and Cem Yuksel

ACKNOWLEDGMENTS
We thank Mohi Montazer for his preliminary experiments of our virtual light generation and
distribution approaches. This project was supported in part by a grant by the Epic MegaGrants
program.

REFERENCES
Philippe Bekaert, Philipp Slusallek, Ronald Cools, Vlastimil Havran, and Hans-Peter Seidel. 2003. A custom designed density

estimation method for light transport. (2003).
Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim Foley, Matthew Oakes, Conor Lavelle, and Chris

Wyman. 2020. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal

reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 39, 4 (July 2020).

Per H Christensen. 2010. Point-based global illumination for movie production. In ACM SIGGRAPH. 40.
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable realistic

rendering with many-light methods. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 88–104.
Tomáš Davidovič, Iliyan Georgiev, and Philipp Slusallek. 2012. Progressive lightcuts for GPU. In ACM SIGGRAPH 2012 Talks.

ACM, 1.
T Davidovic, J Krivnek, M Hasan, P Slusallek, and K Bala. 2010. Combining global and local lights for high-rank illumination

effects. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 29, 5 (2010).
Thomas Engelhardt and Carsten Dachsbacher. 2008. Octahedron Environment Maps.. In VMV. 383–388.
Alejandro Conty Estevez and Christopher Kulla. 2018. Importance sampling of many lights with adaptive tree splitting.

Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25.
I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021. Fast Radius Search Exploiting Ray Tracing Frameworks.

Journal of Computer Graphics Techniques (JCGT) 10, 1 (5 February 2021), 25–48.
Iliyan Georgiev, Jaroslav Krivánek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex

connection and merging. ACM Trans. Graph. 31, 6 (2012), 192–1.
Iliyan Georgiev and Philipp Slusallek. 2010. Simple and Robust Iterative Importance Sampling of Virtual Point Lights.. In

Eurographics (Short Papers). 57–60.
Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport

simulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–10.
Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual spherical lights for many-light rendering of

glossy scenes. In ACM SIGGRAPH Asia 2009 papers. 1–6.
Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix row-column sampling for the many-light problem. ACM

Transactions on Graphics (TOG) 26, 3 (2007), 26.
Peter Hedman, Tero Karras, and Jaakko Lehtinen. 2017. Sequential monte carlo instant radiosity. IEEE transactions on

visualization and computer graphics 23, 5 (2017), 1442–1453.
Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hujun Bao. 2015. A matrix sampling-and-recovery approach for

many-lights rendering. ACM Transactions on Graphics (TOG) 34, 6 (2015), 210.
Henrik Wann Jensen. 1996. Global illumination using photon maps. In Eurographics workshop on Rendering techniques.

Springer, 21–30.
Henrik Wann Jensen. 2001. Realistic image synthesis using photon mapping. Vol. 364. Ak Peters Natick.
Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics and interactive

techniques. 49–56.
Alexander Keller, Ken Dahm, and Nikolaus Binder. 2014. Path space filtering. (07 2014).
Thomas Kollig and Alexander Keller. 2006. Illumination in the presence of weak singularities. InMonte Carlo and Quasi-Monte

Carlo Methods 2004. Springer, 245–257.
Jaroslav Krivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. 2005. Radiance caching for efficient global

illumination computation. IEEE Transactions on Visualization and Computer Graphics 11, 5 (2005), 550–561.
Daqi Lin and Cem Yuksel. 2019. Real-Time Rendering with Lighting Grid Hierarchy. Proc. ACM Comput. Graph. Interact.

Tech. 2, 1 (2019), 8–1.
Daqi Lin and Cem Yuksel. 2020. Real-Time Stochastic Lightcuts. Proceedings of the ACM on Computer Graphics and Interactive

Techniques 3, 1 (2020), 1–18.
Yifan Liu, Kun Xu, and Ling-Qi Yan. 2019. Adaptive BRDF-oriented multiple importance sampling of many lights. In

Computer Graphics Forum, Vol. 38. Wiley Online Library, 123–133.
Mohi Montazer. 2017. Blue noise virtual point lights for global illumination. Master’s thesis. University of Utah.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

https://github.com/NVIDIAGameWorks/Falcor

Virtual Blue Noise Lighting 3:25

Pierre Moreau, Matt Pharr, and Petrik Clarberg. 2019. Dynamic Many-Light Sampling for Real-Time Ray Tracing.. In High
Performance Graphics (Short Papers). 21–26.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time neural radiance caching for path
tracing. arXiv preprint arXiv:2106.12372 (2021).

Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Progressive virtual beam lights. In
Computer Graphics Forum, Vol. 31. Wiley Online Library, 1407–1413.

Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Virtual ray lights for rendering
scenes with participating media. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–11.

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: matrix slice sampling for the many-lights problem. ACM Trans. Graph. 30, 6
(2011), 179–1.

Eric Paquette, Pierre Poulin, and George Drettakis. 1998. A Light Hierarchy for Fast Rendering of Scenes with Many Lights.
Computer Graphics Forum 17, 3 (1998), 63–74.

Ingmar Peter and Georg Pietrek. 1998. Importance driven construction of photon maps. In Eurographics Workshop on
Rendering Techniques. Springer, 269–280.

Benjamin Segovia, Jean Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006. Bidirectional Instant Radiosity.. In
Rendering Techniques. 389–397.

Benjamin Segovia, Jean Claude Iehl, and Bernard Péroche. 2007. Metropolis instant radiosity. In Computer Graphics Forum,
Vol. 26. Wiley Online Library, 425–434.

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques for direct lighting calculations. ACM
Transactions on Graphics (TOG) 15, 1 (1996), 1–36.

Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015. Rich-VPLs for improving the versatility of many-light
methods. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 575–584.

Ben Spencer and Mark W Jones. 2009. Into the blue: Better caustics through photon relaxation. In Computer Graphics Forum,
Vol. 28. Wiley Online Library, 319–328.

Jamorn Sriwasansak, Adrien Gruson, and Toshiya Hachisuka. 2018. Efficient Energy-Compensated VPLs using Photon
Splatting. Proc. ACM Comput. Graph. Interact. Tech. 1, 1 (2018), 16–1.

Wolfgang Tatzgern, Benedikt Mayr, Bernhard Kerbl, and Markus Steinberger. 2020. Stochastic Substitute Trees for Real-Time
Global Illumination. In Symposium on Interactive 3D Graphics and Games. 1–9.

Greg Turk. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. Acm Siggraph Computer Graphics 25, 4
(1991), 289–298.

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering.
Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination

sampling. ACM Transactions on Graphics (TOG) 37, 4 (2018), 125.
Petr Vévoda and Jaroslav Křivánek. 2016. Adaptive direct illumination sampling. In SIGGRAPH ASIA 2016 Posters. ACM, 43.
Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimensional Lightcuts. ACM Transactions on

Graphics (Proceedings of SIGGRAPH ’06) 25, 3 (2006), 1081–1088.
Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P Greenberg. 2005. Lightcuts:

a scalable approach to illumination. In ACM SIGGRAPH 2005 Papers. 1098–1107.
Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional Lightcuts. ACM Transactions on Graphics 31, 4,

Article 59 (2012), 11 pages.
Gregory J Ward, Francis M Rubinstein, and Robert D Clear. 1988. A ray tracing solution for diffuse interreflection. In

Proceedings of the 15th annual conference on Computer graphics and interactive techniques. 85–92.
Cem Yuksel. 2015. Sample Elimination for Generating Poisson Disk Sample Sets. Computer Graphics Forum (Proceedings of

EUROGRAPHICS 2015) 34, 2 (2015), 25–32.
Cem Yuksel. 2019. Stochastic Lightcuts. In High-Performance Graphics (HPG 2019) (Strasbourg, France). The Eurographics

Association, 27–32.
Can Yuksel and Cem Yuksel. 2017. Lighting grid hierarchy for self-illuminating explosions. ACM Trans. Graph. 36, 4 (2017),

110–1.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 3. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Lights and Light Transport
	2.2 Evaluating Many Lights
	2.3 Virtual Light Placement

	3 Virtual Blue Noise Lighting (VBNL)
	3.1 Initial Virtual Light Placement
	3.2 Virtual Light Placement with Sample Elimination
	3.3 Computing Virtual Light Emission Profiles

	4 Rendering with Virtual Blue Noise Lighting
	4.1 Virtual Light Sampling
	4.2 Adaptive Camera Path Extension

	5 Implementation and Results
	5.1 Comparisons to Rich-VSLs
	5.2 Virtual Light Placement
	5.3 Emission Profiles
	5.4 VSL Sampling
	5.5 Convergence

	6 Conclusions and Future Work
	Acknowledgments
	References

