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ABSTRACT
Measured or simulated data for bidirectional reflectance distribu-
tion functions (BRDFs) of various materials is typically stored in
a tabulated form by discretizing incoming and outgoing directions
over the hemisphere. Since reflected radiance is usually strongly
nonuniform over the hemisphere, a uniform discretization of a BRDF
usually leads to poor quality at a given memory cost. Unfortu-
nately, there is no universally optimal nonuniform parameteriza-
tion. In this paper, we provide a mathematical framework for ana-
lyzing them with respect to the BRDFs they represent. We use our
framework to motivate a parameterization based on Bézier curves:
a novel approach that adapts to any given BRDF. Our test results
using measured and analytical BRDF models show that it provides
superior computational and spatial efficiency for equal quality, as
compared to simpler alternatives.

1. INTRODUCTION
A bidirectional reflectance distribution function (BRDF) defines

the reflectance properties of a material for all combinations of input
and output directions. Therefore, modeling this function accurately
is crucial for realistically reproducing material appearance. One
way to achieve this is using measured data.

Measured BRDFs are typically stored in a tabulated form. How-
ever, because of BRDFs’ non-uniformity, not all table axes have
the same importance. For example, direction combinations near
specular- or retro-reflections usually comprise high-frequency vari-
ation. If the distribution of tabulated BRDF samples over the hemi-
sphere does not match these frequencies, parts of the hemisphere
get over-sampled while other parts get under-sampled.

The distribution of the BRDF samples can be adjusted using a
parameterization. However, since BRDFs can differ substantially,
a single parameterization cannot be optimal for all BRDFs. While
the existence of non-uniform parameterizations is mentioned in
previous work (e.g. in [Matusik et al. 2003]), efficient parame-
terization methods for tabulated BRDFs have not been explored in
computer graphics to our knowledge.

In this paper, we discuss parameterizations of BRDFs and in-
troduce a new mathematical framework for developing and eval-
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uating them. Using this framework, we introduce Bézier param-
eterization, a computationally efficient model that can adapt to a
variety of BRDFs. We demonstrate its higher fidelity for real-
world examples–in particular, for measured data–for validating our
framework.

2. BACKGROUND
The BRDF fr is defined as the differential ratio of outgoing ra-

diance dLo in the direction of ωo to the incoming irradiance in the
direction of ωi at a surface point with surface normal n. In general,
the BRDF is a 4D or higher function, but for isotropic materials the
BRDF can be reduced to 3D.

There are many empirical BRDF models in computer graphics
[Blinn 1977; Ward 1992; Lafortune et al. 1997; Neumann et al.
1999; Ashikhmin and Shirley 2000] as well as physically inspired
models based on analysis of small-scale surface structure [Cook
and Torrance 1982; He et al. 1991; Oren and Nayar 1994; Löw et al.
2012]. While these analytic BRDF formulations provide a compact
representation, they often fail to represent the subtle variations of
a realistic material appearance [Ngan et al. 2005]. Realism can
be achieved by measuring BRDFs of real materials [Matusik et al.
2003]. For approximating measured data, researchers investigated
fitting analytical BRDFs [Ngan et al. 2005; Bagher et al. 2012;
Brady et al. 2014], multi-lobe models [Lafortune et al. 1997; Rump
et al. 2008; Yu et al. 2011], spherical Gaussian lobes [Wang et al.
2009], and dimensionality-reduction approaches [Ashikhmin 2007;
Pacanowski et al. 2012].

The generic coordinate frame for representing the BRDF is the
normal-vector basis (Figure 1). The incoming direction ωi is rep-
resented using two angles θi and φi; and the outgoing direction ωo
is represented similarly with θo and φo, such that 0 ≤ θi,o < π/2
and 0 ≤ φi,o < 2π. Isotropic BRDFs can be represented by re-
placing φi and φo with a single coordinate φ∆ = φo − φi, such
that 0 ≤ φ∆ ≤ π.

A popular alternative is the half-vector basis [Rusinkiewicz
1998], based on the half vector h between ωi and ωo, defined as
h = (ωi + ωo)/ |ωi + ωo|. h is represented using θh and φh (Fig-
ure 1). θd and φd are evaluated on the rotated hemisphere aligned
with h. In this formulation, 0 ≤ θh,d < π/2, 0 ≤ φh < 2π,
and 0 ≤ φd < π. Isotropic BRDFs are represented without φh.
More azimuthal samples are automatically provided near the spec-
ular lobe h ≈ n, the primary reason it has been favored by previ-
ous work [Matusik et al. 2003; Edwards et al. 2006]. On the other
hand, the half-vector basis does not automatically provide denser
longitudinal sampling. Also, there are values of θh, θd, and φd that
correspond to invalid directions for ωi and ωo. Therefore, more
than 38% of the table’s data is thus wasted.

Other bases are possible. For example, several related barycen-
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Figure 1. Two major coordinate bases for representing reflectance
function parameterizations, where ωi and ωo are incoming and out-
going directions, n is the surface normal and t is a tangent vector.

tric bases were proposed by [Stark et al. 2005], and a variety of
bases were tested by [Marschner 1998]. For clarity of exposition,
in this paper we focus our analysis and provide example results for
the normal-vector basis only. However, our analysis and framework
apply to any basis based on angles.

3. PARAMETERIZATION FRAMEWORK
Given vectorsωi andωo, the respective θ and φ angles in normal-

vector basis are typically computed using dot-products of these
vectors with n or t (Figure 1). Let γ denote one of the angles
we would like to parameterize (one of θi,o, φi,o or one of θh,d,
φh,d). For γ ∈ [0, π] we can write γ = arccos (cos γ) where
the cos γ term can be computed inexpensively using a dot-product
of two vectors. We can introduce s ∈ [−1, 1] and a bijection
F : [−1, 1] → [−1, 1] for representing the value of the dot-
product, such that cos γ = F−1(s). Thus:

s = F (cos γ) and γ = arccos
(
F−1(s)

)
. (1)

This formulation allows us to relate, via a parameterization F , the
angle γ and the parameter s. In other words, the separation between
samples along γ is determined by dγ/ds and ultimately by F . This
allows existing parameterizations to be understood and reasoned
about in terms of angular density.

Using this formulation, a simple parameterization model is the
identity parameterization Fid(x) = x, which produces a sample
separation of dγ/ds = −1/

√
1− s2. Since dγ/ds approaches

negative infinity near s = ±1, fewer samples are placed as γ ap-
proaches 0 or π. Thus, the identity parameterization usually pro-
vides poor sampling, since these regions are direct specular lobes
in most BRDFs with high-frequency changes.

Another simple parameterization is the uniform param-
eterization, placing samples with constant angular separa-
tion. The constant derivative dγ/ds = −π/2, yields
Feq(x) = 1 − (2/π) arccos(x). Uniform parameterization is an
improvement over Identity parameterization, but still tends to over-
sample low-frequencies while under-sampling high-frequencies.
Additionally, it introduces an expensive arccos function, which is
computed every time the BRDF is accessed.

Motivated by these two examples, we observe that by carefully
picking a transformation function F , we can in-principle produce
any desired sample rate dγ/ds. Of course, one should balance sam-
pling performance and computational complexity–computationally
complex functions can be produced by, for example, integrating
some forms of dγ/ds. We introduce the Bézier parameterization
as a simple formulation that can produce a desirable sample distri-
bution. Using a specific quadratic Bézier curve

B(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2 (2)

-1 1

Bezier (α=0)
Uniform
Identity

π

0

γ

s

Figure 2. Plots of three parameterizations. Our framework allows
us to reason about and derive good models, such as the Bézier pa-
rameterization pictured here.

with three control points

P0 = (0, 0), P1 = (1, α), and P2 = (1, 1), (3)

where α is a parameter that can be adjusted according to the prop-
erties of the BRDF, the transformation is defined as

Fbz(Bx(t)) = By(t) for t ∈ [0, 1] and (4)
Fbz(−Bx(−t)) = −By(−t) for t ∈ [−1, 0) , (5)

yielding

Fbz(x) = sgn(x)(2− 2α)
(
1−

√
1− |x|

)
− (1− 2α)x.

Note that Fbz(x) is monotonically increasing for α ∈ [0, 1]
within the range x ∈ [−1, 1]. When α = 1 Bézier parameter-
ization becomes identical to identity parameterization and when
α ≈ 0.5841 it approximates uniform parameterization. However,
unlike either, it supports different angular densities by further vari-
ation of α, allowing to non-linearly and flexibly adjust sample den-
sity (Figure 2). In fact, Bézier parameterization can represent a
series of mappings between the blue and the green curves in Fig-
ure 2.

4. IMPLEMENTATION AND RESULTS
We implemented the above parameterizations using GLSL in

a deferred renderer, with BRDF samples stored in four-byte
RGB+exponent. We tested using all 100 materials in the MERL
BRDF database [Matusik et al. 2003] as well as analytical BRDF
models [Phong 1975; Ward 1992]. We use 3D textures for isotropic
BRDFs with texture dimensions corresponding to θi, θo, and φ∆

using different parameterizations with resolutions N , N , and 2N
respectively. For anisotropic BRDFs, we emulate 4D textures by
packing slices into 2D textures. The additional texture dimension
of φi is always sampled using the uniform parameterization with
resolution 2N . For Bézier parameterization, we use the same α
value αθ for both θi and θo, and another value αφ for φ∆. We
construct the BRDF using different combinations of αθ and αφ to
determine the right αθ and αφ values for a given BRDF.

For simplicity, our coarse evaluation of each combination is
based on the total intensity of the generated BRDF texture, mea-
sured in angular space. This total intensity metric is directly indica-
tive of how well high-energy portions of the BRDF are sampled.
Roughly speaking, the larger the intensity, the more resolution is
allocated to the key (high-energy) features of the BRDF. We pick
the αθ and αφ combination that produces the largest total intensity
without unduly affecting quality elsewhere.

We found that the metric favors αφ = 0 for all materials in the
MERL BRDF database, allocating more samples near the specu-
lar, Fresnel, and retroreflection peaks of the materials, which corre-
spond to φ∆ ≈ 0 and φ∆ ≈ π. We also found that the most com-
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Figure 3. The total BRDF texture intensity of the Bézier, uniform, and identity parameterizations, normalized to the total intensity of Bézier.
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Figure 4. Utah teapot rendered using several BRDFs and environ-
ment mapping with 2000 samples per pixel using 64 × 64 × 128
BRDF textures with (left) uniform parameterization and (middle)
our Bézier parameterization. (Right) the reference images are com-
puted using 256× 256× 512 BRDF textures or an analytic model.

mon αθ value is either αθ = 0 (allocating more samples for the
Fresnel peak) or αθ = 1 (allocating more samples for ωi, o direc-
tions near the surface normal). However, this trend is less strong;
varying values are due to the conflicting goals of representing both
high-angle and glancing reflections well.

Figure 3 shows a comparison of parameterizations based on this
metric for all materials in the MERL BRDF database. The ratios
of the total intensities show that Bézier parameterization produces
significantly higher-intensity textures, suggesting that it can better
allocate more samples for the high-energy portions of the BRDF
data. The differences between total intensities are especially high
for highly glossy materials such as metals, a classic difficult case

Figure 5. An anisotropic BRDF rendered using Bézier parameter-
ization under different illuminations.

Performance (fps) RMS Error

N = N =

Figure 6. The performance of different parameterizations mea-
sured on an NVIDIA GTX 580M GPU and their RMS errors for 10
environment rays per pixel.

for tabular BRDFs.
Figure 4 shows rendered images with example BRDFs using

Bézier and uniform parameterizations.The difference between the
two is particularly prominent for materials with sharp specular
lobes, where Bézier parameterization can allocate more samples to
it. For other materials, the differences between the two parameteri-
zations are less noticeable. However, Bézier parameterization pro-
duces a smaller RMS error in all cases. Figure 5 shows examples
of an anisotropic BRDF rendered using Bézier parameterization.

We compare parameterizations’ performance and RMS error for
different BRDF table resolutions in Figure 6. Although the square
root calculation in Bézier parameterization is substantially faster
than trigonometric functions, we found that performance is largely
bound by working-set size, leading to broadly identical perfor-
mance characteristics among the three methods presented here.
However, Bézier parameterization achieves nearly an order-of-
magnitude better accuracy, particularly for higher-resolution data.

In all comparisons, we found that Bézier parameterization out-
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Figure 7. The effect of higher order filtering. Notice the elliptical
contours on the left image due to linear interpolation.

performs simpler parameterizations. This demonstrates that our
framework is capable of generating new parameterizations with su-
perior efficacy at representing BRDFs, particularly those that are
highly specular. However, Bézier parameterization does not nec-
essarily provide the optimal sample distribution for any BRDF and
no single parameterization can be optimal for all BRDFs.

Particularly prominent for highly specular BRDFs, sampling us-
ing trilinear filtering (or quad-linear for anisotropic BRDFs) pro-
duces interpolation artifacts (Figure 7). Therefore, it is important
to use higher-order reconstruction. In our implementation, we used
cubic B-splines [Keys 1981] to filter the sample value, which can
also be implemented efficiently on the GPU [Sigg and Hadwiger
2005]. Note that, this filtering problem (and its solution) apply to
all tabular representations, and it is orthogonal to our aim of devel-
oping a mathematical framework for BRDF parameterization.

5. CONCLUSION AND FUTURE WORK
In this paper we introduce a mathematical framework for gen-

erating high-quality parameterizations for representing BRDF data
and validate it by using it to develop the well-performing Bézier
parameterization.

While we presented results on BRDFs, our parameterization
framework can be easily extended to bidirectional scattering dis-
tribution functions (BSDFs) as well. An interesting future work
would be experimenting with other parameterizations that could be
generated using our framework and other bases.
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