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Compacted CPU/GPU Data Compression
via Modified Virtual Address Translation

LARRY SEILER, Facebook Reality Labs
DAQI LIN, University of Utah
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We propose a method to reduce the footprint of compressed data by using modified virtual address translation
to permit random access to the data. This extends our prior work on using page translation to perform
automatic decompression and deswizzling upon accesses to fixed rate lossy or lossless compressed data.

Our compaction method allows a virtual address space the size of the uncompressed data to be used to
efficiently access variable-size blocks of compressed data. Compression and decompression take place between
the first and second level caches, which allows fast access to uncompressed data in the first level cache and
provides data compaction at all other levels of the memory hierarchy. This improves performance and reduces
power relative to compressed but uncompacted data.

An important property of our method is that compression, decompression, and reallocation are automatically
managed by the new hardware without operating system intervention and without storing compression data
in the page tables. As a result, although some changes are required in the page manager, it does not need to
know the specific compression algorithm and can use a single memory allocation unit size.

We tested our method with two sample CPU algorithms. When performing depth buffer occlusion tests,
our method reduces the memory footprint by 3.1𝑥 . When rendering into textures, our method reduces the
footprint by 1.69𝑥 before rendering and 1.63𝑥 after. In both cases, the power and cycle time are better than for
uncompacted compressed data, and significantly better than for accessing uncompressed data.

CCS Concepts: •Computingmethodologies→ Image compression;Graphics processors; •Computer
systems organization→ Processors and memory architectures.
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1 INTRODUCTION
Data compression is an important technique to reduce memory bandwidth. It is extensively used in
GPUs and can significantly reduce CPU memory bandwidth as well. Ideally, data compression
would be combined with compaction, to also reduce the footprint of data in memory. Compaction is
commonly used for streaming transmission and off-line storage [Le Gall 1991; Walls and MacInnis
2016], as well as to optimize page swapping in both Windows and Linux [Freedman 2000]. But
with these methods, the data is decompressed before being accessed by CPU programs, due to the
complication of allowing random access to compacted variable-rate compressed data.
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Compression methods that allow random access typically store the data in fixed size blocks of
memory, each of which is compressed independently. This allows simple array-based addressing of
the compression blocks. For lossy compression this imposes variable quality per block to meet the
fixed compression rate [Iourcha et al. 1999]. For lossless compression this requires allocating the
same footprint as needed for uncompressed data and also storing meta-data that specifies the type
of compression performed per block. Lossless compression is standard in modern GPUs [ARM 2017;
Brennan 2016] and has also been proposed for CPUs [Kanakagiri et al. 2017; Young et al. 2018].

We introduce a block-based compression method that supports random access while compacting
compressed blocks into a small footprint. This builds on our earlier work providing automatic fixed
rate compression and decompression by taking advantage of a new method for virtual address
translation [Seiler et al. 2020]. This method is suitable for both CPU and GPU implementation. In
integrated systems where CPUs and GPUs access the same memory, it allows both to access the
same data using shared virtual memory [Intel 2016]. Performance testing shows that our compaction
method is also beneficial for CPU-only use and we expect a similar benefit for GPU-only use.

Our method requires minimal involvement by the operating system page manager. In particular,
the operating system can allocate memory in a single size and does not need to know specifics of
the compression algorithm. As a result, a single operating system version can support a variety of
hardware-specific CPU and GPU compression methods.

Our system:
(1) Allows CPU software to access compacted compressed data as if it is stored uncompressed,
(2) Reduces the memory footprint with better performance than our prior method,
(3) Supports writes to compacted data that increase the compressed size of data blocks,
(4) Allows CPU support for dedicated GPU compression algorithms that use compaction,
(5) Fully supports cache coherent shared virtual memory between multiple CPUs and GPUs,
(6) Allows hardware-specific compression methods to be selected per memory resource,
(7) Allows compressed resource management in app/driver code instead of kernel code, and
(8) Adds no memory latency for accessing data in regular (i.e. uncompressed) memory resources.
The next section below describes previous work relevant to accessing compacted compressed data.

The remainder of the paper describes our method. First we describe how we reference compacted
data in the page table (Section 3), how we manage caching & recompression (Section 4), and
how compacted memory resources interact with the paging system (Section 5). Then we present
performance simulations for two test cases (Section 6). Finally we discuss possible future directions
for this work (Section 7).

2 BACKGROUND AND PRIOR ART
Supporting CPU random access to compacted compressed data requires changes to address transla-
tion and memory management. Address translation must map from an address range the size of the
uncompressed data to variable sized blocks of compressed data. Memory management must be able
to handle cases where the compression blocks get smaller or larger after writes. First we describe
three previous proposals for accessing compacted data from CPUs. Then we describe aspects of
our prior method for using page translation for fixed-rate compressed data [Seiler et al. 2020].

2.1 Compacted Compression via CPU Address Translation
We review several methods that have been proposed for using address translation to support
random access to compacted variable rate block compressed data on CPUs [Ekman and Stenstrom
2005; Kanakagiri et al. 2017; Pekhimenko et al. 2013]. Each makes different choices for how to solve
the problems involved.
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A major problem is the extent of changes required in the operating system memory manager.
Kanakagiri et al. [2017] avoids this complication by implementing a separate layer of address
translation and memory management in the memory controller. Eliminating dependencies between
the operating system and the compression system has significant advantages, but providing a
second address translation and memory management layer adds a great deal of complexity.
If we accept changes to the operating system, compacted compression can be specified using

the existing virtual address translation. Ekman and Stenstrom [2005] implement a three-level
hierarchical scheme to manage compression data, including size fields (meta-data) in the page table
along with pointers to the variable size compression blocks. Pekhimenko et al. [2013] implements a
much simpler system that reduces the amount of size information required in the page table to a
single size per page by compressing all cache lines within a page by the same amount. Both require
support for multiple physical page sizes and both store decompressed data in the L2 cache.
Storing block size information in the virtual pages [Ekman and Stenstrom 2005] forces TLB

entries to be invalidated when the compression size changes, which can be a costly operation
if TLBs must be synchronized across multiple CPU and/or GPU cores. Limiting per-block size
variation [Pekhimenko et al. 2013] reduces the amount of compression achievable. The alternative
is to store meta-data in a separate array, as is done on modern GPUs [ARM 2017; Brennan 2016].
Young et al. [2018] notes that this works best when accesses exhibit good spatial locality, but spatial
locality is required for block compression to be effective unless the blocks are very small.
The final problem involves supporting multiple physical page sizes that each require a free

memory list. This requires the OS memory manager to migrate and coalesce smaller pages to create
larger pages when memory becomes fragmented [Ganapathy and Schimmel 1998; Khalidi et al.
1993]. Memory management is simpler if large pages are treated as a special case [Ausavarungnirun
et al. 2018]. Linux implementations exist for multiple free lists, but although Windows supports
multiple large page sizes, it only supports a free list for 4KB pages [Microsoft 2018].

2.2 Automatic Decompression via Page Translation
Our method for supporting compacted compression extends our previous work that supports
fixed-rate lossless and lossy compressed data using a new page translation system [Seiler et al.
2020]. Figure 1 shows how it maps a 64-bit virtual address to an offset into a 64KB physical page. It
uses a four level tree of 64KB page tables, each of which holds 4K 128-bit PTEs.
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Fig. 1. The page translation system of Seiler et al. [2020] maps 64KB physical pages.

Existing CPUs and GPUs support a paging system that is similar except for mapping a 48-bit
virtual address using 4KB pages of 64-bit PTEs. As a result, the primary change required in the
operating systemmemory manager is to support managing 64KB aligned blocks of physical memory
in place of (or in addition to) 4KB pages. Linux already supports this. Windows only fully supports
memory management on 4KB physical pages, but allocates virtual addresses in aligned 64KB chunks.
Therefore, the operating system change required to go from 4KB to 64KB pages is minimal.
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Seiler et al. [2020] also describes an address translation mode that divides a 64KB virtual page
into subpages, where the subpage size is a power of two from 16B to 32KB. Figure 2 illustrates the
subpage mapping, where bit 𝑛 determines the subpage size. PL3 (page level 3) to PL1 perform the
64KB mapping and PL0 performs the subpage mapping. A field in the PL1 PTE selects whether
to use subpages and what size to use. Allowed sizes are 16B (𝑛 = 4) to 32KB (𝑛 = 15). The size of
the PL0 table varies from 64KB (𝑛 = 4) to 32B (𝑛 = 15). Subpages can be used to allow support
for multiple physical page sizes or to allow page properties to be specified for subpages within a
64KB page. This allows operating systems to provide full backward compatibility for software or
hardware that assumes a 4KB page size.
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Fig. 2. Alternate page translation system of Seiler et al. [2020] that uses the PL1 page table entry to
select a PL0 table that selects smaller subpages. The subpage size can be from 16B to 32KB.

A key feature of this new page translation is that its 128-bit PTEs store both a Page Frame field
that selects a 64KB page and a Subpage Frame field that selects a 16B to 32KB subpage or a second
64KB page. Figure 3 illustrates how Seiler et al. [2020] uses page and subpage references in the PL1
PTE to support fixed rate lossless and lossy compression.
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Fig. 3. The page translation system of Seiler et al. [2020] supports both page and subpage references
in the PL1 PTE: (a) shows fixed size lossless compression with a 64KB page of compression data and a
64B subpage of meta-data; (b) shows lossy compression with a 16kB (4:1 compressed) subpage and a
64KB false page (not mapped to memory) to provide L1 physical address tags.

For lossless compression (Figure 3a), the Page Frame selects 64KB of compression blocks and
the Subpage Frame selects meta-data bits that specify the compression used for each block. For
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example, if the compression block size is 256B and there are 2-bits per block of meta-data, then 64B
covers the 256 × 2 bits = 512 bits of meta-data corresponding to each 256 × 256B = 64KB data page.
For lossy compression (Figure 3b) the Subpage Frame selects a block of compressed data that

expands to 64KB on decompression. E.g. for 4:1 lossy compression the subpage size is 16KB. The
Page Frame selects a 64KB false page, which is not mapped to memory and is used to provide
physical address tags for the uncompressed data in the L1 cache.

3 COMPACTING COMPRESSED DATA BLOCKS
We begin by describing how our new method stores compacted compressed data in memory. Our
method supports any compression scheme that uses a power of two for the compression block size
and the number of meta-data bits per block. The resulting compressed data need not be a power of
2 in size. The examples in this paper use the 256B lossless block compression method described
in Seiler et al. [2020], with 2-bits of meta-data per block and a maximum of 4𝑥 compression. The
principles described here apply equally well to other lossy or lossless variable rate compression
methods.

3.1 Storing Compacted Compression Blocks
A key requirement is to support random access to the compressed data. This is simple when all of
the compression blocks are the same size. When the blocks have variable sizes and are compacted
to eliminate gaps, this requires a separate page translation for each block of compressed data.

Figure 4a illustrates compaction using the 256B block lossless compression scheme described in
Seiler et al. [2020]. Each 256B block is compressed to 0B, 64B, 128B or 256B (the zero byte case fills
the block with a clear value). The compressed data sizes are all multiples of 64B, so each of the
compacted blocks can start on any 64B-aligned address. Each block requires a separate subpage
pointer to where that data is stored in physical memory. As a result, each 256B block requires its
own PL0 page table entry. This results in a lot of address translation overhead.
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Block

1KB
Block

1KB
Block

(b) Compressed 1KB Data Blocks
384B 512B1KB384B 512B1KB64B
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(a) Compressed 256B Data Blocks

256B 
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128B 256B

Fig. 4. The green arrows show how our method maps compressed blocks to memory. (a) shows four
256B blocks compacted 0:4, 1:4, 2:4, and 4:4. Each block is mapped into memory at 64B alignment with
no gaps in between. (b) shows four 1KB blocks that are each a 2x2 array of 256B blocks. Individual
blocks are compacted as in (a) and the Subpage Frame specifies where each 1KB block is mapped in
memory, again at 64B alignment with no gaps in between.

A more efficient scheme is shown in figure Figure 4b. Here, a 2x2 set of 256B blocks are packed
together into a single compacted 1KB data block. This cuts the number of PL0 page table entries
required by a factor of 4. However, it also means that to know the position of the data for three of
the 256B blocks in each 2x2, it is necessary to use the per-block meta-data to compute the size of the
previous 256B blocks. This is an inexpensive operation. Later sections discuss other implications of
sharing one subpage mapping among four 256B compression blocks.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 19. Publication date: August 2020.



19:6 Larry Seiler, Daqi Lin, and Cem Yuksel

3.2 Page Table Layout for Compacted Compression
Compacting the compression blocks requires accessingmore page references during page translation
than is needed for the fixed-rate compression illustrated in Figure 3. Our solution is to use the PL2
page table entry to reference two PL1 page tables, as illustrated in Figure 5.
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Fig. 5. Page walk for compacted compression. The page level 2 PTE references two PL1 tables. The
first PL1 table provides access to meta-data and the false data address ranges. The second PL1 table
provides access to compacted data and stores per-page state in the Page Frame field. The 1KB subpage
with compacted data is an unaligned region within a 64KB page (see text).

The following data is accessed during page translation for compacted data:
• False data: provides physical address cache tags for decompressed data, in the same way as
for fixed size block lossy compression.

• Meta-data: specifies the compression ratio for each 256B block, in the same way as for
uncompacted lossless compression.

• Compacted data: this is a zero to 1KB region of memory that stores the compression data. It
can start at any 64B aligned address and is variable length.

• Clear value: this is stored in the Page Frame field of the second PL1 table entry and specifies
the clear value to use for 4:0 compressed blocks in this physical page.

• Resource ID: also stored in the PL1 table entry’s Page Frame field. This specifies which
compacted resource these pages are part of (see Section 4 below).

In place of the false data page, Pekhimenko et al. [2013] tags caches with the compacted physical
address plus extra disambiguation bits. However, the number of disambiguation bits required
depends on the maximum compression ratio that is supported, so this method fails when a block
can be compressed to zero bytes. Another consideration is that CPU utility code and some GPU
blocks may access compressed data directly. Therefore, the physical address of the compressed data
must be tagged separately from the decompressed version of the same data.
Finally, note that each subpage of compacted data must be entirely within a single physical

page, so that page remapping always treats the compacted data as one contiguous unit. With 64KB
physical pages, the amount of unusable memory at the end of a page is minor. The size of the
compacted data and its starting address are specified in the PL0 PTE.
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4 MANAGING COMPACTED MEMORY BLOCKS
Getting good performance requires that all latency-critical operations be performed in hardware.
Operating system calls are notoriously slow, primarily because security requires transitioning
from user space code to protected kernel mode code whenever remapping physical memory. This
section describes how compression, decompression and reallocation of data blocks is performed in
hardware, without operating system intervention.

4.1 Compression Memory Path
In Seiler et al. [2020], compression and decompression occur between the L1 and L2 caches, so that
the L1 cache stores decompressed data, while all other caches and memory store compressed data.
Unlike that prior work, compacted compression requires being able to access compression blocks
that are aligned at arbitrary multiples of the smallest compression unit size. For our example 256B
block compression method, this means that compression blocks may be stored at arbitrary 64B
alignments, as illustrated in Figure 4. This is simple if the L2 cache width matches the alignment,
and is still relatively simple if the L2 cache is wider than the compressed data block alignment size.
Storing compressed data into the L2 cache raises an additional issue. Since four 256B blocks

are stored without gaps between them, changing the size of one of the 256B blocks may require
moving the others to different locations in memory. As a result, the L2 cache must store complete
2x2 blocks of compression data so that data can be moved within the cache if one of the blocks
changes size. Otherwise, flushing data to the L2 cache could require a memory read to complete.
As a result, our method works best for data structures that have a lot of access locality, so that the
other 256B blocks in the 2x2 are likely to be used.

4.2 Recompression In Place
A key issue for compacted compression is how to deal with writes that force recompression. When
a dirty compression block is evicted from the L1 cache, it must be recompressed to be stored in the
L2 cache. Figure 6 illustrates two cases. The upper green memory words show the compacted data
before the write. The lower green memory words show the recompacted data after the write.

Figure 6a illustrates the case where one of the blocks decreases in size. In this example, the third
1KB storage block compresses to 64B instead of 128B, as indicated by the black cross hatching. The
fourth block is moved over to start immediately after the third block, leaving 64B unused at the
end of the compression data.
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Fig. 6. Cases for recompressing 1KB storage blocks on write back from L1 cache: (a) the third 256B
block compresses to a smaller size after the write (indicated by black cross hatching), leaving a 64B
gap in the stored data, (b) the second 256B block compresses to a larger size after the write (indicated
by the blue cross hatching).
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It would be possible to keep track of such gaps for later reuse, but doing that would add significant
complication. Instead, our method records the size of the compression block in the PL0 PTE. With
compression sizes of 0, 1, 2, or 4 64B units, the possible sizes for the 1KB block are 0..14 and 16 64B
units, so this field can be encoded in 4-bits. As a result, the 64B gap in Figure 6a remains part of the
compression block and can be used at a later time if the compression data expands again.

4.3 Reallocating Compacted Blocks
Figure 6b illustrates the case of a 256B block increasing in size, as illustrated by the dark blue cross
hatching in the second block. As a result, the second 256B block expands from 64B to 128B and the
compression data no longer fits in the space allocated for it.

When the recompressed block has a larger size, new memory must be allocated to hold the data.
Further, this operation must be performed in hardware without operating system intervention.
This is important for performance, but more fundamentally, it may be impossible to switch tasks if
dirty data in the L1 cache cannot be flushed to memory without operating system intervention.

A solution to these requirements is to allocate an extra 64KB page for each writable compacted
memory resource. Then hardware can reallocate expanded compression blocks into this extra page.
Doing so requires changing the page table entry and flushing the corresponding TLB entries.
When the free space on this overflow page passes some defined threshold, the hardware must

signal the operating system (like a page fault, but without waiting), so that there is time for the
operating system to allocate another overflow page. If a compacted memory read could result in a
recompression write that doesn’t fit in the overflow page, then the hardware must declare a page
fault and wait for a new overflow page to be allocated. This way, it is always possible to flush the
L1 cache without operating system intervention.
Ideally, each memory resource (e.g. separate array of compacted data) would have its own

independent overflow page, so that different memory resources do not mix accesses on the same
64KB page. This could improve cache efficiency within a given application. More importantly, it
allows different memory resources to be page managed separately, as described in Section 5.
To achieve this, a compacted page’s Resource ID is used to index into an array of per-resource

data that is managed by the operating system. The per-resource data structure would store the
current overflow page, the current offset within that page, and the next overflow page, if one has
been allocated. The operating system would manage the page addresses in the data structure and
the hardware would access it and modify it when blocks are reallocated, without operating system
intervention. The address and bounds of this resource array are part of the per-process state.

Finally, there is the question of what to do with the gaps left when a block is recompressed to a
different location. The simplest solution is to leave the gaps in place. E.g. if an application performs
only a small number of writes, very few gaps will be present. More complex solutions could be
considered, where the per-resource data structure contains lists of gaps that are sorted by size.
Then the hardware could select an existing gap when recompressing to a new location.

5 MANAGING COMPACTED MEMORY RESOURCES
Using our method, the operating system page manager is not involved in compressing or decom-
pressing blocks of data. However, it does need to provide some operations to support compacted
memory resources. These operations are independent of the specific compression and compaction
methods that are used, so that new compression and compaction methods may be introduced
without requiring an operating system update.

The following subsections cover issues related to the operating system page manager and the
ways that applications may interact with it when using compressed or compacted pages. It is
essential that there be no change in the complexity or efficiency of managing uncompressed pages.
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5.1 Initialization and Gap Removal
At present, when an application wants to create a memory resource in virtual memory, it specifies
how much memory it wants and what the page protections should be, e.g. whether writes are
enabled. The operating system then sets up the necessary page tables for the desired range of
memory. Although the current page size is 4KB, Windows allocates virtual addresses in aligned
units of 64KB [Chen 2003] and Linux can do so as well.

The change applications must make to support compacted compression is to allocate compacted
memory resources with separate operating system calls from those to allocate the rest of their
virtual memory. Setting up a compacted virtual memory range requires the application to specify the
array size and a compression method, which determines a small number of additional parameters:

• Compression block size and alignment
• Compression method identifier to store in the Select field
• Meta-data size and the value that specifies using the clear color
• Clear color and a generated Resource ID

Given these parameters, the page manager sets up a virtual address range and initializes the per-
resource data structure. Initially, all compression blocks are set to use the clear color, so that all of
the compacted memory blocks are stored in zero bytes. Virtual address ranges for compressed (not
compacted) memory resources can be allocated by a similar process, minus some of the parameters.
The next step is to load data into the compacted memory resource, if the clear color isn’t the

desired initial value. For efficiency, this should be done a compaction block at a time. The result is
that when each compaction block is written, it is reallocated into the overflow page. But no gap is
left by this reallocation because the initial clear color compaction blocks use no bytes of memory.
So a compacted memory resource may be created and initialized without introducing any gaps.
The same method may be used to remove gaps embedded in an existing compacted resource.

The application allocates a new memory resource that is initialized to the clear color. Then the
application copies the existing compacted resource into it, a compaction block at a time. Finally,
the old memory resource is deallocated.

5.2 Compressed Page Management
Our prior work [Seiler et al. 2020] does not consider the question of how the operating system
manages shared pages. Even with fixed-size uncompacted compression, multiple PL1 PTEs can
reference the same page of meta-data or the same page of lossy compressed data. This is an issue
because of how operating systems manage pages.
Operating system page managers typically contain a Frame Table, which is also called a Page

Frame Number Database. This table specifies information about each physical page, including
statistics, its current state, and which process’s virtual page maps to this physical page, if any. This
data is used when remapping virtual pages to physical pages [Russinovich and Solomon 2004].

For uncompressed data, there are normally zero or one virtual addresses mapped to each physical
page. Mapping two or more virtual addresses to the same page is referred to as address aliasing.
Aliasing is used for specialized purposes, e.g. to allow one process to write data into memory that
is read by another process. Address aliasing is typically a rare event that is costly to support in the
page manager, since the Frame Table itself can only specify one virtual page per physical page.

Compressed pages as per Seiler et al. [2020] map multiple virtual pages to each meta-data page
or lossy compressed page. This does not alias memory, since virtual pages of the same process
access disjoint subpages of the shared physical page. E.g., with 2-bits of meta-data per 256B lossless
block, up to 1K virtual pages can each access their own 64B out of a shared meta-data page. Still, in
terms of the Page Frame, the page addresses are aliased.
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A simple solution to the problem (not mentioned in Seiler et al. [2020]) is to mark the Frame
Table as storing compressed data and point it to the first virtual address that maps to that page. All
other virtual pages that map to the same physical page will use successively larger virtual addresses.
Therefore the complete set of virtual addresses that map to subpages of the same physical page can
be easily discovered by stepping through the page table and checking the physical page mappings.

5.3 Compacted Page Management
With our compacted compression method, reallocated blocks can result in non-contiguous virtual
addresses being mapped to the same physical page. So the page manager can’t store a single virtual
address in the Frame Table and directly use that to find the other virtual addresses that reference
the same physical page.

The Resource ID provides a solution to the problem. In our method, each 64KB page of compacted
memory specifies a 16-bit resource ID that allows the hardware to look up memory resource
dependent information such as the overflow page(s) for reallocating compacted blocks. The virtual
address of the array that the Resource ID indexes to find this information is the only additional
machine state that must be stored for the process on a context switch.
The information indexed by the Resource ID can also include the virtual address range of the

resource. For compacted pages, the page manager can store in the Page Frame any virtual address
that references that physical page. Then the memory manager can use that virtual address to read
the Resource ID and use it to look up the virtual address range of the resource, which includes all
of the virtual addresses that may reference that physical page.

A simple though coarse grain way for the page manager to use the Resource ID is to deallocate
all physical pages mapped to that memory resource. This is useful e.g. when the application is
done using a particular memory resource. Another alternative is for the application to use multiple
Resource IDs for a single logical resource. Then the logical resource can be deallocated in sections.
Another simple alternative is for the hardware to identify when a compacted page contains

non-contiguous virtual addresses. This occurs when the overflow page is used, other than during
a sequential initialization operation. In that case, a bit could be set in the Frame Table entry that
indicates that the physical page has discontiguous virtual addresses mapped to it. If there aren’t
many writes to the compacted memory resource, then relatively few pages will be discontiguous. If
a page is discontiguous, the page manager could search, starting at the specified virtual address,
to identify pages with the same Resource ID that map to that physical page. If the bit is clear, the
simple method defined above for compressed resources could be used. More complex mechanisms
could also be defined if usage requires them, without affecting the hardware implementation.

Finally, we need to consider the impact of an operating system call on the compression and com-
paction hardware. Calling the operating system kernel normally results in flushing the translation
lookaside buffer (TLB) that is used to optimize address translation. For our method, the TLB also
stores information on how to recompress data that is stored in the L1 cache. So a kernel call will
flush all decompressed data from the L1 cache to the L2 cache. However, it will not have any other
impact on the compression hardware beyond its impact on noncompressed data.

6 PERFORMANCE EVALUATION
Our work provides a way to enable compacted storage of variable-rate compressed data and
allows that data to be shared between CPUs and GPUs. The key goal is to reduce the footprint
of the compressed data in memory, without increasing power or cycle time relative to using
compressed data without compaction. This can make both CPU-only and GPU-only applications
more efficient. It also allows applications on integrated CPU/GPU systems to perform operations
on whichever processor is more power efficient for each stage. At present, this can only be done by
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decompressing data when passing it from the GPU to the CPU, which makes most such integrated
use cases impractical.
To evaluate whether our method achieves this goal, we created two sample applications. One

performs occlusion testing on the CPU using a depth buffer and the other uses the CPU to blend
pregenerated text into textures. Both the depth buffer and the textures are assumed to be generated
on a GPU using lossless compression, but our tests cover only the CPU operations performed to
access memory. We measure each application in three test cases:
(1) Uncompressed (standard case): The GPU data is decompressed prior to access by the CPU.
(2) Compressed ([Seiler et al. 2020]): Compressed GPU data uses the full uncompressed footprint.
(3) Compacted (our method): The CPU accesses compressed and compacted GPU data.
Our primary result is that compaction greatly reduces the memory footprint required to store

compressed data: the memory footprint is 33% of the bytes for the occlusion test and 59% of the
bytes before the text rendering test. Further, reallocating compacted blocks that no longer fit in
their old location increased the footprint by just 2.4%. This validates that the simple method of
reallocating to an overflow page, rather than attempting to perform gap filling, can be a viable
strategy for solving the reallocation problem.
Another important result of our work is that in both tests, compaction uses less power and

fewer memory access cycles than compression without compaction, in the range of about 2% to
8%. This benefit is despite the added complexity of tracking variable sized compression blocks. So
for applications such as rendering that have sufficient access locality, there is no need to make a
trade-off: compaction is uniformly better for power and performance, and dramatically better for
memory footprint. This benefit applies to CPU-only applications, as well as for exchanging data
between CPUs and GPUs. We expect it to apply to GPU-only applications as well.

6.1 Simulation Methodology
For the most part, our simulation methodology follows that reported in Seiler et al. [2020]. In
particular, we use the same compression method, which performs 4:4, 4:2 or 4:1 compression but
does not support a clear value. However, there are four key areas where this simulation differs.

First, we assume that the data is accessed in swizzled form. That is, each 1KB chunk of memory
contains 32x16 16-bit depth values for the occlusion test, or 16x16 32-bit pixels for the rendering test.
This matches the way that GPUs typically store blocks of data in order to achieve best performance,
but it differs from Seiler et al. [2020], which uses row-major arrays.
Second, for each of the three methods we prefetch into the L2 cache the data required for a

1KB uncompressed block, instead of a 256B block as in Seiler et al. [2020]. This is required for our
compaction method and actually improves performance for the uncompressed and compressed
cases. So using this prefetching for all three cases allows a more uniform comparison.
Third, we changed the decompression latency from 50 cycles to 25 cycles. Discussions with

silicon designers led us to conclude that even 25 cycles is a conservative added latency for an
optimized design. We retained the assumption that only one block is decompressed at a time.

Finally, we changed from scalar processing to using SSE-128 vector instructions, which provide
sixteen 128-bit vector registers. This lets CPU code issue 256B of memory reads before waiting for
data to come back from cache or memory. This change was applied to all three test cases.

6.2 Memory Path Simulation
In our method, compression and decompression occur between the L1 and L2 caches, as in [Seiler
et al. 2020]. The CPU we simulate is based on the standard 2010 Intel core i7 configuration, which
has a clock speed of 3.2 GHz and a single channel 16GB DDR3-1600 DRAM.
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The configuration of the cache system is shown in Table 1. There is no L3 cache because we
tested a single-core configuration (see end of Section 7). All reads and writes are pipelined, but a
simplified policy is enforced such that if a read miss happens in the L1 cache, the pipeline stalls for
data to come back from the L2 cache or from the DRAM.

Table 1. Detailed configuration of hardware components, based on the 2010 Intel core i7 CPU.

Component Capacity
Associ-
ativity

Access
Latency

Read
Energy

Write
Energy

L1 Cache 32,768 B 8-way 4 cycles 0.0813 nJ 0.0816 nJ
Meta L1 Cache 32,768 B 8-way 4 cycles 0.0813 nJ 0.0816 nJ
L2 Cache 262,144 B 8-way 10 cycles 0.1802 nJ 0.1998 nJ
TLB (Level 1) 64 entries 4-way 1 cycle 0.0308 nJ 0.0289 nJ
TLB (Level 2) 512 entries 4-way 6 cycles 0.0449 nJ 0.0513 nJ

Tables in the following two sections compare the three test cases based on memory statistics,
energy use, and number of clock cycles required to access memory. Columns give the energy or
cycle time for categories and subcategories, the percentage of the total within each category, and
the ratio of how this value compares to case (2), which is based on Seiler et al. [2020]. Cycle counts
specify the number of cycles to deliver data to the next stage plus the number of cycles the next
stage is stalled waiting for data. For example, the line labeled Data L1 Read counts one clock cycle
for each L1 hit since the L1 cache is pipelined, but counts 4 clocks to restart the pipeline on a miss.

6.3 Software Occlusion Application
Our first application uses the CPU to perform software occlusion culling. This involves pre-
computing whether a large number of complex but small objects, e.g. characters, are occluded
by the scene background. The background objects are referred as occluders and their positions
form the content of the depth buffer. The foreground objects being tested are referred as occludees.
Figure 7 shows the occlusion scene that we used.

Fig. 7. The left image shows a sample scene of the software occlusion test that contains 27,025
meshes with 476 meshes being visible. Ground, wall, and buildings are occluder in the scene. The
right image shows a global overview of scene, which contains many repetitive objects (like wooden
baskets, containers, and stands) but most are occluded from the ground view. Notice that objects outside
are culled by the viewing frustum before culling using 2D axis aligned bounding boxes (AABBs). On
average more than 10,000 2D AABBs are tested against the depth buffer.

We adapted our test from the scene and implementation provided by Intel [Kuah 2016] to
make it more efficient in our CPU/GPU environment. While the Intel implementation uses SIMD
instructions to draw the depth buffer on the CPU, we assume in all three cases that the depth buffer
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has already been rendered on the GPU and that the CPU can read the depth buffer directly. This is
in contrast to methods that need to copy data from GPU and deswizzle and/or decompress the data
before the CPU can access it.
To simplify the occlusion test, we use 2D screen-space axis aligned bounding boxes (AABBs)

instead of the 3D AABBs used in the Intel implementation. Since we use 2D AABBs, we conserva-
tively use the nearest z of the object as the depth value such that an object is only invisible if the
nearest z is farther than the z value in the depth buffer. We also changed the bit depth of the depth
buffer from 32 bit to 16 bit. The algorithm steps are as follows:
(1) Use the GPU to render a 16-bit depth buffer of the background objects, several frames ahead.
(2) Find the 2D bounding box of each object for which occlusion is to be tested.
(3) Read the depth buffer within the bounding box and compare to the object depth (for simplicity,

we use a single conservative object depth over the entire bounding box).
(4) Schedule the object for rendering if any part of it is in front of the depth buffer.

Table 2. Memory and cache usage statistics in the software occlusion culling test.

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

ratio ratio ratio
Lines read from memory 10.95 M 2.93 3.74 M 1.00 2.88 M 0.77
L1 hit rate 87.5 % 0.88 99.6 % 1.00 99.6 % 1.01
L2 hit rate 94.5 % 1.16 81.3% 1.00 85.4% 1.05
Memory footprint 398.44 MiB 1.00 398.83 MiB 1.00 129.85 MiB 0.33
–Meta Data Footprint 0 0.00 0.39 MiB 1.00 0.39 MiB 1.00
–Data Footprint 398.44 MiB 1.00 398.44 MiB 1.00 129.44 MiB 0.32
Valid Data Size 398.44 MiB 3.08 129.44 MiB 1.00 129.44 MiB 1.00

Table 2 shows that our memory compaction method reduces the memory footprint to 1/3 of that
required for uncompressed data or for compressed data this is not compacted. More surprisingly,
our method also reduces the lines read from memory relative to (2) by 23%. This turns out to be
due to getting a better L2 hit rate, which in turn is due to compacted data packing more efficiently
into the L2 cache. Also note that the L1 hit rate is higher for (2) and (3) than for (1). This is because
in (1) a single cacheline is loaded into L1 on a miss, whereas for (2) and (3) all four cachelines of a
compression block are loaded. This also explains why the L2 hit rate is higher in (1) than in (2).

Table 3. Energy Breakdown of hardware components in millijoules in the software occlusion culling
test, with ratios of uncompressed and compacted data to the compressed data in column (2).

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

energy % ratio energy % ratio energy % ratio
TLB 0.10 0.04 % 0.99 0.10 0.08 % 1.00 0.17 0.17 % 1.82
L2-TLB 0.01 0.01 % 0.44 0.03 0.03 % 1.00 0.05 0.05 % 1.82
Data L1 8.06 3.48 % 1.00 8.07 7.06 % 1.00 8.23 7.86 % 1.02
Meta L1 0.00 0.00 % 0.00 0.27 0.23 % 1.00 0.27 0.25 % 1.00
L2 35.49 15.33 % 10.74 3.30 2.89 % 1.00 3.36 3.21 % 1.02
Codec 0.00 0.00 % 0.00 6.17 5.40 % 1.00 6.20 5.92 % 1.00
Memory 187.80 81.14 % 1.95 96.37 84.31 % 1.00 86.52 82.54 % 0.90
Total (rendering) 231.45 100.00 % 2.02 114.31 100.00 % 1.00 104.81 100.00 % 0.92
Initialization 91.45 (extra) ∞ 0.00 - - - 0 0.00 - - - 0
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Table 3 shows a comparison of the energy consumption related to memory loads for the three
test cases. Compression results in over 2x power savings relative to using uncompressed data. Our
compaction method (3) reduces power by another 8%. This is primarily due to our method using
less memory power, which in turn is due to the better L2 hit rate and reduced memory reads, as
described above.

Table 4. Time Breakdown in CPU cycles in the software occlusion culling test, with ratios of uncom-
pressed and compacted data to the compressed data in column (2).

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

# of cycles % ratio # of cycles % ratio # of cycles % ratio
VA Translation 10.91 M 1.90 % 0.79 13.85 M 3.47 % 1.00 37.05 M 9.51 % 2.67
– TLB Read 3.09 M 0.54 % 0.99 3.11 M 0.78 % 1.00 5.67 M 1.45 % 1.82
– L2-TLB Read 1.77 M 0.31 % 0.44 3.99 M 1.00 % 1.00 7.25 M 1.86 % 1.82
– Data L1 Read 0.66 M 0.12 % 0.82 0.81 M 0.20 % 1.00 5.68 M 1.46 % 7.03
– L2 Read 0.67 M 0.12 % 0.70 0.95 M 0.24 % 1.00 3.40 M 0.87 % 3.57
– Memory Read 4.71 M 0.82 % 0.95 4.99 M 1.25 % 1.00 15.05 M 3.86 % 3.02
Load 561.95 M 98.10 % 1.46 385.51 M 96.53 % 1.00 352.63 M 90.49 % 0.91
– Data L1 Read 191.31 M 33.40 % 1.36 140.51 M 35.18 % 1.00 144.33 M 37.04 % 1.03
– Meta L1 Read 0.00 M 0.00 % 0.00 13.09 M 3.28 % 1.00 13.16 M 3.38 % 1.00
– L2 Read 123.07 M 21.48 % 3.61 34.08 M 8.53 % 1.00 34.24 M 8.79 % 1.00
– Memory Read 247.57 M 43.22 % 2.06 120.46 M 30.16 % 1.00 83.17 M 21.34 % 0.69
– Codec Delay 0.00 M 0.00 % 0.00 77.37 M 19.37 % 1.00 77.73 M 19.95 % 1.00
Total (rendering) 572.86 M 100.00 % 1.43 399.36 M 100.00 % 1.00 389.68 M 100.00 % 0.98
Initialization 151.97 M (extra) ∞ 0 - - - 0 0 - - - 0

Table 4 shows a comparison of the number of processor cycles related to memory access between
for the three test cases. The VA translation time is higher in our method, but this is counteracted by
reduced memory read time into the L2 cache, due to a better L2 hit rate as described above. Overall,
our method is 2% faster than compressed data and using uncompressed data is 43% slower than
compressed data. That is without considering the time needed to copy and decompress data from a
GPU if the CPU requires uncompressed data, as shown on the bottom line of the table.

6.4 Text Rendering Application
To test our method in the context of writable data, we perform a text rendering task (Figure 8) on
the same 668 game asset textures (from Zero Day [Beeple 2015], San Miguel, Crytek Sponza, and
Amazon Lumberyard Bistro [McGuire 2017]) that we used in Seiler et al. [2020]. These include 5GB
of albedo maps, normal maps, opacity maps, and specular color maps to provide a range of data
types and compression ratios on 32-bit pixels. Figure 8 illustrates the operation.

Fig. 8. An illustration of the text rendering test, which blends 64×16 to 256×64 blocks of pregenerated
random text into 668 textures that contain a wide variety of different kinds of data.
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For this test we blend 10,000 single-line prerendered anti-aliased rectangular blocks of text into
random textures at random positions and measure the performance of memory operations in terms
of energy consumption and processor cycles. The sizes of the text blocks range from 256 × 64 to
64× 16. This requires reading and then writing back the texture data to combine the text block with
the texture. Generating the rasterized text blocks is not included in the test, since we are measuring
accesses to the compacted texture data.

Table 5. Memory and cache usage statistics in the text rendering test, with ratios of our methods to
the with ratios of uncompressed and compacted data to the compressed data in column (2).

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

ratio ratio ratio
Lines read from memory 9.78 M 1.49 6.57 M 1.00 5.75 M 0.88
L1 hit rate 86.8 % 0.91 95.9 % 1.00 95.9 % 1.00
L2 hit rate 91.5 % 1.27 72.2 % 1.00 76.2 % 1.06
Memory footprint 4654.76 MiB 1.00 4659.31 MiB 1.00 2749.34 MiB 0.59
–Meta Data Footprint 0 0.00 4.55 MiB 1.00 4.55 MiB 1.00
–Data Footprint 4654.76 MiB 1.00 4654.76 MiB 1.00 2679.33 MiB 0.58
–New Allocation 0.00 MiB 1.00 0.00 MiB - - - 65.46 MiB ∞
Valid Data Size 4654.76 MiB 1.74 2679.33 MiB 1.00 2679.33 MiB 1.00

Table 5 presents memory statistics for this test. Unlike the occlusion test, this application writes
data back to memory and therefore faces the reallocation problem described in Section 4.3. We
tested the simple method of allocating new memory any time a 1KB storage block recompresses to
a larger size. The result is that the footprint of the compacted data increases by just 2.4% as a result
of running the test. Even after running the test, our compaction method saves 41% of the memory
footprint required without compaction.

Table 6. Energy Breakdown of hardware components in millijoules in the text rasterization test, with
ratios of uncompressed and compacted data to the compressed data in column (2).

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

energy % ratio energy % ratio energy % ratio
TLB 0.00 0.00 % 1.00 0.00 0.00 % 1.00 0.02 0.02 % 4.89
L2-TLB 0.01 0.00 % 1.00 0.01 0.01 % 1.00 0.02 0.02 % 2.85
Data L1 2.63 1.87 % 1.00 2.63 2.51 % 1.00 2.69 2.68 % 1.02
Meta L1 0.00 0.00 % 0.00 0.19 0.19 % 1.00 0.22 0.22 % 1.12
L2 12.96 9.23 % 4.92 2.64 2.52 % 1.00 2.85 2.84 % 1.08
Codec 0.00 0.00 % 0.00 3.17 3.03 % 1.00 3.54 3.53 % 1.12
Memory 124.88 88.89 % 1.30 96.02 91.75 % 1.00 90.95 90.69 % 0.95
Total (rendering) 140.49 100.00 % 1.34 104.66 100.00 % 1.00 100.29 100.00 % 0.96
Initialization 1239.65 (extra) ∞ 0.00 - - - 0 0.00 - - - 0

Table 6 and Table 7 show the energy and power used for the text rasterization test cases. The
saving of energy and time of (2) and (3) over the uncompressed data is smaller than in the software
occlusion test. This is expected since this test has a smaller compression ratio (1.74x vs. 3.08x).
Still, the uncompressed data case (1) uses 34% more energy than the compressed case (2), and our
method (3) beats that by 4%. For memory access cycles, the uncompressed case uses 12% more
cycles than compressed (2) and our compacted method (3) beats that by 2%. This means that the
extra cost for virtual address translation (caused by smaller page size) and the cost of allocating
new space are offset by the larger savings of having a compacted representation of the data.
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Table 7. Time Breakdown in CPU cycles in the text rasterization test, with ratios of our methods to
the with ratios of uncompressed and compacted data to the compressed data in column (2).

(1) Uncompressed (2) Compressed (3) Compacted
(standard) [Seiler et al. 2020] (our method)
4KB pages 64KB pages, 4KB subpages 64KB pages, 1KB subpages

# of cycles % ratio # of cycles % ratio # of cycles % ratio
VA Translation 13.31 M 5.09 % 0.67 19.99 M 8.60 % 1.00 30.39 M 13.38 % 1.52
– TLB Read 0.13 M 0.05 % 1.00 0.13 M 0.06 % 1.00 0.65 M 0.29 % 4.89
– L2-TLB Read 0.80 M 0.31 % 1.00 0.80 M 0.34 % 1.00 2.28 M 1.00 % 2.85
– Data L1 Read 1.03 M 0.39 % 0.92 1.11 M 0.48 % 1.00 2.72 M 1.20 % 2.44
– L2 Read 0.78 M 0.30 % 0.67 1.16 M 0.50 % 1.00 1.58 M 0.70 % 1.37
– Memory Read 10.58 M 4.05 % 0.65 16.29 M 7.01 % 1.00 22.56 M 9.93 % 1.38
– Queueing Delay 0.00 M 0.00 % 0.00 0.50 M 0.21 % 1.00 0.60 M 0.27 % 1.22
Load 229.21 M 87.71 % 1.18 193.82 M 83.35 % 1.00 178.01 M 78.38 % 0.92
– Data L1 Read 42.53 M 16.27 % 1.66 25.63 M 11.02 % 1.00 25.63 M 11.29 % 1.00
– Meta L1 Read 0.00 M 0.00 % 0.00 4.83 M 2.08 % 1.00 4.83 M 2.13 % 1.00
– L2 Read 42.03 M 16.09 % 3.01 13.96 M 6.00 % 1.00 13.96 M 6.15 % 1.00
– Memory Read 143.64 M 54.97 % 1.21 118.43 M 50.93 % 1.00 109.75 M 48.32 % 0.93
– Queueing Delay 1.01 M 0.39 % 0.09 11.03 M 4.74 % 1.00 3.89 M 1.71 % 0.35
– Codec Delay 0.00 M 0.00 % 0.00 19.95 M 8.58 % 1.00 19.95 M 8.78 % 1.00
Store 18.73 M 7.17 % 1.00 18.73 M 8.05 % 1.00 18.73 M 8.25 % 1.00
Total (rendering) 261.31 M 100.00 % 1.12 232.54 M 100.00 % 1.00 227.12 M 100.00 % 0.98
Initialization 2023.09 M (extra) ∞ 0 - - - 0 0 - - - 0

7 DISCUSSION AND FUTUREWORK
Our work shows that it is practical and useful to support compacted data compression on CPUs to
reduce the memory footprint, even when not sharing data between CPUs & GPUs. The footprint
reduction for our two example applications range from about 1.5x to 3x, even with the simple
compression scheme that we tested. Further, for the applications that we tested, performance and
power modestly improve when using compaction instead of just using compression.
There are a great many kinds of data structures that can benefit from compacted compression,

whether they run on CPUs, GPUs, or both. In general, these would be any data structure that allows
significant compression and has sufficient locality of access to make multi-cacheline reads into the
caches efficient. Some examples of benefits for data structures shared by CPUs and GPUs are:

• Vertex and index buffers: generated on the CPU with compaction and then read on the GPU.
• Streaming buffers: generated compacted on the GPU to be saved for later use.
• G-buffer data: written once and read once, so reallocation is not required.
• Multisampling: most pixels require just 1 or 2 fragment colors.
• Texture compression: allow the bit-rate per block to vary based on visual quality.

Supporting the same compacted compression methods on both CPU and GPU allows integrated
systems to select the best processor for each task, without concern for data transfer or reformatting.
E.g., font rasterization may be more efficient on a CPU [Hartmeier 2016] and depth buffer generation
may be more efficient on a GPU [Kuah 2016].

There are a number of directions for future work with this compaction method:

• Experiment with more elaborate compression schemes, including using constant fill colors.
• Use it support existing or new page-on-demand decompression methods.
• Try using compaction with additional applications, including GPU-only applications.
• Support more efficient streaming transmission by increasing the use of compaction.
• Test configurations that include an L3 cache and run the application on multiple cores.
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8 CONCLUSION
We have described a way to modify the CPU page translation system to support compacted storage
of randomly addressable, variable compression rate data. Our proposed method requires a new logic
block between the L1 and L2 caches that performs compression, decompression, and reallocation.
This added logic has minimal impact on the CPU memory access path.

Our method allows dramatic reductions in the memory footprint needed for compressed data.
Despite the complexity of tracking the locations of variable sized blocks, performance and power
usage in our test cases is better than using compression without compaction, which in turn is
significantly better than using uncompressed data.

Further, our method has minimal impact on the operating system page manager, which doesn’t
require any knowledge of the compression or decompression methods. The page manager only
needs to support one page size, so that support for compaction has minimal impact on the efficiency
or complexity of the page manager when processing uncompacted memory resources.

We believe that our method is practical for hardware implementation in CPUs and GPUs and for
software implementation in operating system page managers. Our results show that it could provide
significant footprint reduction and associated performance improvement & power reduction for
combined CPU/GPU applications as well as for applications running only on CPUs or GPUs.
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