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1. MLS-MPM Implicit Heat Solver.

1.1. Weak Form

MPM is a general spatial discretization scheme (just like FEM) and can be used to solve the
heat equation. A straightforward application in computer graphics is melting and freezing,
where mechanical material parameters depend on temperature. A more complex case is
thermo-elastoviscoplasticity, where thermal expansion and frictional heating effects are taken
into account through thero-mechanical coupled equations. Here we only focus on deriving the
weak form discretization on MLS-MPM (Hu et al., 2018) for the heat conduction equation.

Let’s start from the Eulerian-form heat equation

ρC
Dθ

Dt
−∇ · κ∇θ + qext(x) = 0,

where θ(x, t) is temperature, ρ(x, t) is density, c(x, t) is Eulerian specific heat capacity per unit
mass (with its Lagrangian counter part C(X, t)), κ(x, t) is heat conductivity, qext is external
body heat source (let’s ignore this term, this one is similar to gravity in the momentum
equation and can encode effects such as radiation). The Eulerian weak form of this PDE is∫

Ωt

ρc
Dθ

Dt
−∇ · κ∇θdx = 0.

We follow the same way of discretizing the momentum equation using a Galerkin style weak
form (Jiang et al., 2016). Commonly in MPM, we take an updated Lagrangian view and look
at tn. Now our temperature θ is like the velocity in the momentum equation. It relates to its
Lagrangian counter-part Θ as θn+1(x) = Θ(Φ−1(x, tn), tn+1) and θn(x) = Θ(Φ−1(x, tn), tn).

1.2. MLS Shape Functions

For any test function w(x, tn) in the proper function space, the time discretization reveals

1

∆t

∫
Ωtn

w(x, tn)ρ(x, tn)c(x, tn)
(
θn+1(x)− θn(x)

)
dx

=

∫
∂Ωtn

(
w(x, tn)κ(x, tn)∇θ(x, tn)

)
· nds(x)−

∫
Ωtn
∇w(x, tn) ·

(
κ(x, tn)∇θ(x, tn)

)
dx.

The next step is MLS style spacial discretization. Following (Hu et al., 2018), we adopt the
MLS shape function Φi(x) at each node near a particle to discretize both the test function
and the physical fields. That is, we do

wn = wn
i Φi, θn = θnj Φj, θn+1 = θn+1

j Φj. (1)

We refer to (Hu et al., 2018) for the construction of the MLS shape functions in a way that
is consistent with Element Free Galerkin (EFG) methods.
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Then

1

∆t

∫
Ωtn

wn
i Φiρ(x, tn)c(x, tn)θn+1

j Φjdx−
1

∆t

∫
Ωtn

wn
i Φiρ(x, tn)c(x, tn)θnj Φjdx

=

∫
∂Ωtn

(
wn
i Φiκ(x, tn)θnj ∇Φj

)
· nds(x)−

∫
Ωtn

wn
i ∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx.

Utilizing the MLS shape functions avoids differentiating B-spline kernels in high dimensions.
More specifically, if a linear polynomial space with quadratic B-spline weighting is chosen for
the MLS reconstruction, we have (Hu et al., 2018)

∇Φi(xp) = D−1
p Ni(x

n
p )(xi − xn

p ),

where Dp = 1
4∆x2 for quadratic B-spline weighting in Ni(x).

1.3. Lumped Mass

Similarly to how mass matrix was definened in the momentum case, we can define a “thermal
mass” matrix

Mn
ij =

∫
Ωtn

Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

and rewrite the equation as

1

∆t
wn
i θ

n+1
j Mn

ij −
1

∆t
wn
i θ

n
jMn

ij

=

∫
∂Ωtn

(
wn
i Φiκ(x, tn)θnj ∇Φj

)
· nds(x)−

∫
Ωtn

wn
i ∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx. (2)

Note that

Mn
ij =

∫
Ωtn

Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

Pull back from the Eulerian frame to the Lagrangian frame..

=

∫
Ω0

Φi(x(X))R(X, t)C(X, tn)Φj(x(X))J(X, t)dX

=

∫
Ω0

Φi(x(X))R(X, 0)C(X, tn)Φj(x(X))dX

Adopting one point quadrature over particle domains..

≈
∑
p

mpCpΦi(xp)Φj(xp)

Now in Equation 2 we choose

wn
i =

{
1, i = î
0, otherwise
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then∑
j

1

∆t
(θn+1

j − θnj )Mn
îj

=

∫
∂Ωtn

(
Φîκ(x, tn)θnj∇Φj

)
·nds(x)−

∫
Ωtn
∇Φî ·

(
κ(x, tn)θnj∇Φj

)
dx.

(3)

This is the equation for node î.

Inverting a full mass matrix is not possible in MPM due to its potential singularity. A common
strategy is diagonal mass lumping, meaning replacing M with its diagonal row-sums. Let’s
call each new entry M̂n

i , then

M̂n
i =

∑
j

Mn
ij

=
∑
j

∫
Ωtn

Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

=

∫
Ωtn

Φi(x)ρ(x, tn)c(x, tn)dx

Pull back..

=

∫
Ω0

Φi(x(X))R(X, 0)C(X, tn)dX

≈
∑
p

mpCpΦi(xp).

Now we use Mn
îj
≈ M̂n

î
δîj to rewrite Equation 3:

1

∆t
(θn+1

î
−θn

î
)M̂n

î
=

∫
∂Ωtn

(
Φîκ(x, tn)θnj∇Φj

)
·nds(x)−

∫
Ωtn
∇Φî ·

(
κ(x, tn)θnj∇Φj

)
dx. (4)

Let’s replace î with i to get the final equation for the temperature on node i:

1

∆t
(θn+1

i −θni )M̂n
i =

∫
∂Ωtn

(
Φiκ(x, tn)θnj∇Φj

)
·nds(x)−

∫
Ωtn
∇Φi ·

(
κ(x, tn)θnj∇Φj

)
dx. (5)

Note that mC is called thermal mass and is fixed on each particle.

1.4. Heat Force

Now let’s deal with the right hand side. Let’s look the second one (volume integral):∫
Ωtn
∇Φi ·

(
κ(x, tn)θnj∇Φj

)
dx ≈

∑
p

(
∇Φi(xp)

)
·
(
κ(xp, t

n)θnj∇Φj(xp)
)
V n
p .

This is the ’internal force’ for heat equation. Note that to go implicit we need to change the
known θnj to the unknown θj . We have

fi(θ) =
∑
p

(
∇Φi(xp)

)
·
(
κpθj∇Φj(xp)

)
V n
p (6)
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=
∑
j

∑
p

(
∇Φi(xp)

)
·
(
κpθj∇Φj(xp)

)
V n
p (7)

=
∑
j

∑
p

κpV
n
p ∇Φi(xp) · ∇Φj(xp)θj (8)

=
∑
j

Hijθj (9)

where Hij =
∑

p κpV
n
p ∇Φi(xp) · ∇Φj(xp). We can see the force is linear in θ. It is easy to

verify that if we use a linear basis, and one particle per cell center, then this is equivalent to
finite difference Laplacian operator.

The boundary term

hi =

∫
∂Ωtn

(
Φi(x)κ(x, tn)θnj∇Φj

)
· nds(x)

is the heat flux boundary condition. To apply this, quantity η(x, tn) = (κ(x, tn)∇θ) · n is
specified at the boundary. This is analygoous to the traction boudnary conditon in MPM.

1.5. Summarization

Finally, let’s summarize the implicit formulation of heat equation assuming no boundary heat
flux:

1

∆t
(θi − θni )M̂n

i = −
∑
j

∑
p

κpV
n
p ∇Φi(xp) · ∇Φj(xp)

 θj , (10)

where θi is temperature of node i, M̂n
i =

∑
pmpCpΦi(xp) is lumped thermal mass, Cp is

specific heat capacity per unit mass, κp is heat conductivity. The resulting implicit system is
SPD and can be efficiently solved with Conjugate Gradient on the GPU.

2. Unilateral Sand Constitutive model.

2.1. Notations

The letter d ∈ {2, 3} denotes the spatial dimension of the problem. We use F to denote the
deformation gradient of the flow-map ϕ. For isotropic constitutive model, it is useful to work
with the singular value decomposition of F = UF̂VT (Bonet and Wood, 2008). We write

F̂ =

(
f̂0 0

0 f̂1

)
(in 2D), or F̂ =

f̂0 0 0

0 f̂1 0

0 0 f̂2

 (in 3D). (11)
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Sometimes, it’s convenient to use an abuse of notation and to write F̂ as a vector

F̂ =

(
f̂0

f̂1

)
(in 2D), or F̂ =

f̂0

f̂1

f̂2

 (in 3D). (12)

Mast (2013) and Klár et al. (2016) have shown the usefulness of Hencky-strain in modeling
granular material. The Hencky-strain h is the logarithm of the singular values of F, i.e.

ĥ = log(F̂). (13)

Figure 1. Full v.s. unilateral. Two-dimensional depiction of the full and
unilateral quartic energy density function in the Hencky-strain space.

2.2. Energy density function

The original St. Venant-Kirchhoff with Hencky strain model is (Klár et al., 2016)

ψ̂(F̂) = µtr
(

(log F̂)2
)

+
λ

2

(
tr(log F̂)

)2
. (14)

In lieu of the original model, we propose a quartic energy density function

ψ̂(F̂) = aµ

d−1∑
i=0

(log(f̂i))
4 +

aλ

2

(
tr(log(F̂))

)4
. (15)

The coefficient a is chosen to be 6.254421582537118, which is the solution of the following
minimization problem

a = argmina

∫ 1

0.25

(
ax4 − log(x)2

)2
dx. (16)
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In order to mitigate numerical cohesion that occurs in a semi-implicit time integration scheme
(where the elastic response is computed using an implicit time-integration scheme and plas-
ticity is done as a post-process), we also consider the unilateral version of (15), namely

ψ̂(F̂) = aµ
d−1∑
i=0

(log(f̂i))
4H{log(f̂i)<0}(log(f̂i)) +

aλ

2

(
tr(log(F̂))

)4
H{tr(log(F̂))<0}(tr(log(F̂))),

(17)

which is twice continuously differentiable. The function HI denotes an indicator function, i.e.
given a set I ⊆ R, we have

HI(x) =

{
1 if x ∈ I
0 otherwise.

2.3. Stress-strain relationship

Let P be the first Piola-Kirchhoff stress tensor. All of the models above are isotropic, and as
such P can be written as

P = UP̂V>, (18)

with

P̂ =
∂ψ̂

∂F̂
. (19)

The Cauchy stress tensor is given by

σ = J−1PF> = J−1UP̂V>VF̂U> = J−1UP̂F̂U>, (20)

which motivates us to define

σ̂ := P̂F̂. (21)

The Kirchhoff stress is τ = Jσ. Arguably, this is a better stress measure for our purposes
since we’re avoiding a division by J . From (20), we have

τ = Uσ̂U> =⇒ τ̂ = Jσ.

The stress-strain relationship for the constitutive model defined by (15) is

σ̂ = 4aµ(ĥ)3 + 2aλ tr(ĥ)31, (22)

with 1 denoting the all-ones vector and (ĥ)3 is defined component-wise.
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2.4. Yield surface

To model sand, we use the Drucker-Prager yield criterion. For completeness, we’ll include its
form for both the Cauchy and Kirchhoff stress

ŷ(σ̂) = tr(σ̂)α+

∥∥∥∥σ̂ − tr(σ̂)

3
I

∥∥∥∥
F

≤ 0, (Cauchy), (23)

ŷ(τ̂ ) = tr(τ̂ )α+

∥∥∥∥τ̂ − tr(τ̂ )

3
I

∥∥∥∥
F

≤ 0, (Kirchhoff). (24)

Combined with (22), we can derive the yield function in terms of the Hencky-strain ĥ. We
denote this relationship by

ȳ(ĥ) ≤ 0. (25)

Figure 2. Yield surface in Hencky-strain space. The outer green surface
is the yield function corresponding to the proposed quartic energy density
and the inner red cone corresponds to the regular St. Venant-Kirchhoff with
Hencky strain model. The line denotes the hydrostatic axis.

2.5. Trial and projected strain

We adopt the following notation

Principal strain Hencky strain Cauchy stress

trial state F̂tr ĥtr σ̂tr

projected state F̂ ĥ σ̂
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The relationship between the trial state and the projected state is given by

ĥ = δγĜ|ĥ + ĥtr. (26)

where

Ĝ = dev

(
∂ŷ

∂τ̂

)
. (27)

which is completely determined by the yield surface.

2.6. Solving the system of equations

In the projection step, there are d + 1-unknowns, namely δγ and the projected strain ĥ.
Equations (26) and (25) gives a total of (d+ 1)-equations to be satisfied.

2.6.1. Solving the system of equations in three-dimensions. It can be proven that
the solution h lies in the space of span{(1, 1, 1)>,dev(ĥt)}. The deviatoric part of h is

dev(ĥt) =

−2ĥ0 + ĥ1 + ĥ2

ĥ0 − 2ĥ1 + ĥ2

ĥ0 + ĥ1 − 2ĥ2

 .

So we can write

ĥ = po + qdev(ĥt). (28)

We can substitute this to (26) and solve for p (see mathematica tech doc.nb) to get

p =
ĥt0 + ĥt1 + ĥt2

3
. (29)

The yield function as a function of p and q is quite long. Its form and its derivative is attached
in the mathematica document. One can solve for the zero of this function using Newton’s
method.

The algorithm pseudocode is

p← (htr
0 + htr

1 + htr
2 )/3

if y(htr) ≤ 0 then
return

else if p ≥ 0 then
h← (0, 0, 0)

else
dev← (−2htr

0 + htr
1 + htr

2 , h
tr
0 − 2htr

1 + htr
2 , h

tr
0 + htr

1 − 2htr
2 )

q ← −1./3.
solve q using Newton
h← p(1, 1, 1) + q dev
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