
High-Performance Graphics 2021
N. Binder and T. Ritschel
(Guest Editors)

Volume 40 (2021), Number 8

Hardware Adaptive High-Order Interpolation
for Real-Time Graphics

D. Lin1 and L. Seiler2 and C. Yuksel1

1 University of Utah
2Facebook Reality Labs

Abstract
Interpolation is a core operation that has widespread use in computer graphics. Though higher-order interpolation provides
better quality, linear interpolation is often preferred due to its simplicity, performance, and hardware support.
We present a unified refactoring of quadratic and cubic interpolations as standard linear interpolation plus linear interpo-
lations of higher-order terms and show how they can be applied to regular grids and (triangular/tetrahedral) simplexes Our
formulations can provide significant reduction in computation cost, as compared to typical higher-order interpolations and
prior approaches that utilize existing hardware linear interpolation support to achieve higher-order interpolation. In addition,
our formulation allows approximating the results by dynamically skipping some higher order terms with low weights for further
savings in both computation and storage. Thus, higher-order interpolation can be performed adaptively, as needed.
We also describe how relatively minor modifications to existing GPU hardware could provide hardware support for quadratic
and cubic interpolations using our approach for both texture filtering operations and barycentric interpolation.
We present a variety of examples using triangular, rectangular, tetrahedral, and cuboidal interpolations, showing the effective-
ness of our higher-order interpolations in different applications.

CCS Concepts
• Computing methodologies → Graphics processors; Texturing;

1. Introduction

Parameter interpolation is widely used in computer graphics. Most
commonly, it is performed linearly (i.e. bilinearly in 2D and trilin-
early in 3D). For example, 2D texture sampling on the GPU uses
bilinear interpolation to blend the color of the nearest four pixels,
and shading normal (or any other attribute on a triangle) is com-
puted using a linear combination of the three triangle vertex nor-
mals (or attributes).

However, linear interpolation is prone to visual artifacts like
Mach bands. Such problems can be resolved with high-order inter-
polations, such as quadratic or cubic, which are known to provide
superior quality.

Yet, lack of hardware support for high-order interpolation makes
it undesirable for real-time graphics applications with limited com-
putation budgets. This can be attributed to the computation cost
of high-order interpolation and the significant hardware changes
needed for supporting them directly.

In this paper, we present a unified mathematical formulation that
covers quadratic and cubic interpolation, expressing them as linear
interpolation plus some high-order difference terms. This provides
a simpler form than common high-order interpolation formulations

in 2D and 3D domains. We also explain how this approach can be
extended to interpolation in a simplex (triangles and tetrahedrons).

Our formulations require less computation than standard high-
order interpolation approaches and the state-of-art high-order inter-
polation methods performed on existing hardware [Csé18]. In ad-
dition, it is suitable for an efficient hardware implementation that
requires relatively minor changes to existing linear interpolation
pipeline on today’s GPUs, as we describe.

Moreover, it allows clamping high-order difference terms when
they are below a threshold, saving a sizeable amount of computa-
tion when high frequency details are sparse. This leads to an adap-
tive high-order interpolation solution, which incurs additional com-
putation over linear interpolation only when needed.

In applications not suitable for a hardware implementation, our
formulation allows skipping additional storage of high-order data,
saving substantial amount of storage and computation cost.

We show examples in a wide range of real-time graphics ren-
dering domains to show that our adaptive high-order interpolation
with our proposed hardware can significantly improve visual qual-
ity, using only 1× to 2×more computation than linear interpolation
in typical cases. Note that this is significantly cheaper than 5× to

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-5139-6418
https://orcid.org/0000-0002-1642-1016
https://orcid.org/0000-0002-0122-4159

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

7× more computation required by the state-of-art high-order inter-
polation on existing hardware [Csé18; Csé19].

We begin by providing the background and related prior work
in Section 2. In Section 3 we describe our high-order interpolation
formulations in grids and explain how they can be used in prac-
tical applications, such as texture filtering. Section 4 presents the
details of how the existing hardware texture filtering pipeline can
be modified to provide support for our high-order interpolation for-
mulations. Then, in Section 5 we describe our high-order interpola-
tions for simplexes, such as triangles and tetrahedra. Possible hard-
ware acceleration techniques for simplex meshes are described in
Section 6. We present our evaluation and results in Section 7 and
conclude in Section 8.

2. Related Work

Before we discuss the details of our approach, we summarize the
related prior work in this section.

2.1. Interpolation for Grids of Data

Many graphics applications require reconstructing smooth signals
from (1D, 2D, or 3D) grids of data, usually stored as images or
textures. For that, reconstruction filters are required. Bilinear or
trilinear interpolation provides a cheap way to generate continu-
ous signal out of discrete samples and they are supported by most
graphics hardware. Yet, cubic interpolation is known to signifi-
cantly improve the quality of texture filtering [SH05], volume ren-
dering [ML94], and temporal anti-aliasing [YLS20].

Keys [Key81] introduced a family of cubic cardinal splines that
interpolates the sampling data. Mitchell and Netravali [MN88] de-
rived BC-splines to describe a more general family of cubic re-
construction filters that may or may not interpolate the data. The
family of splines is parameterized by B and C. All cardinal splines
have B=0. A separable bicubic filter using the BC-spline family has
been implemented in shader code [Bjo04] to provide high quality
image magnification filtering. Sigg and Hadwiger [SH05] proposed
refactoring a bicubic/tricubic B-Spline filter (B=1,C=0), into a lin-
ear combination of four/eight hardware bilinear/trilinear taps.

By modulating the source image with a checkerboard pattern,
Csébfalvi [Csé18] solves the problem of negative bilinear/trilinear
weights, allowing Catmull-Rom spline filter to be partially accel-
erated by hardware in a similar way. Since Catmull-Rom spline
(B=0,C=1/2) interpolates the original data, it does not have the
over-blurring problem of B-Spline filters. In a survey by Moller
at al. [MMMY97], Catmull-Rom splines are verified to achieve the
lowest reconstruction error in the entire family of BC-Spline filters.

More recently, Csébfalvi [Csé19] proposed a method that uses
hardware trilinear interpolation results for gradient estimation to
do tricubic density filtering for volumes. This method closely ap-
proximates the result of Catmull-Rom spline interpolation but uses
fewer taps. However, even with partial hardware acceleration pro-
posed by these methods, bicubic and tricubic interpolation remain
significantly more expensive than bilinear and trilinear interpola-
tion.

Numerous works have proposed FPGA implementation of cu-
bic interpolation. Due to the high computational complexity of
bicubic interpolation, a direct FPGA implementation of bicubic
interpolation requires a lot of hardware resources [NA05]. To re-
duce the computational complexity, many FPGA implementations
[LSC*08; WDLY11; GNSS14] limit the scope to handle specific
image operation like scaling, where the bicubic weight pattern is
repeated across the whole image and only needs to be computed
once. Orthogonal methods like quantizing the interpolation weights
[ZLZ*10], approximating the cubic kernel with multiple piecewise
linear function [LSC*10; GNSS14], and using a mixture of cubic
and linear function [BBGB20] have been applied in FPGA imple-
mentations. Sanaullah et al. [SKH16] presented an FPGA imple-
mentation of tricubic interpolation for molecular dynamics simula-
tions. In comparison to these FPGA implementations, our method
adaptively reduces the computational cost, and only requires slight
modification to the existing GPU. Thus, our method can easily uti-
lize the power of existing texture units to provide high order inter-
polation for a wide range of graphics applications.

A graphics workstation system [MBDM97] has been made to
support hardware bicubic interpolation at half of the rate of trilin-
ear interpolation [Map06]. However, modern GPUs do not provide
extra hardware to support higher-order filtering. Hardware imple-
mentations of higher-order filtering into standard GPU texture units
cannot be justified if they require a large amount of dedicated logic
that could instead be devoted to performing more bilinear interpo-
lations per clock. Proposals to reuse existing texture logic require at
least four bilinear texture reads per sample, plus shader execution
time to select the bilinear sample positions [SH05; Csé18].

There is a category of adaptive interpolation techniques [MH15]
for image resizing that derives interpolation weights from local
spatial features (e.g. edge orientation statistics) of the images to
provide better visual quality than bicubic interpolation. However,
these methods generally involve expensive computation and are
highly specified for the task of image resizing. In comparison, our
approach is similar to the hierarchical form of high-order FEM
[ZTZ05], where the difference between the higher-order element
node values and lower-order element interpolation results are used
as part of the high-order element. We adaptively discard small high-
order terms purely based on the mathematical formulation of bicu-
bic (and other high-order) interpolation. Our method is targeted
at improving the performance of high order interpolation, and our
method handles a wide range of applications in real-time rendering.

2.2. Interpolation for Simplexes

Triangles and tetrahedrons are common building blocks of com-
puter graphics. Shading a triangular mesh relies on interpolating
vertex attributes, such asposition, normal, and texture coordinates.
Linear interpolation of triangle vertex attributes are widely sup-
ported by graphics hardware.

Higher order simplex interpolation has not been supported by
graphics hardware, but research work has revealed problems that
could benefit from higher order interpolation in triangles. Brown
[Bro99] proposed using quadratic Bézier triangles [Far93] to in-
terpolate an cosine highlight function over a triangle to approxi-
mate Phong shading [Pho75], avoiding the cost of renormalization

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

of normal vectors. Research work has proposed hardware that di-
rectly uses quadratic interpolation in screen space to interpolate a
variety of vertex attributes without the need for perspective division
[Sei98; ASS*01]. PN Triangles [VPBM01] constructs cubic and
quadratic Bézier patches on the fly from local triangle attributes to
achieve smooth visual appearance using low-poly meshes. With a
similar goal, Phong Tessellation [BA08] introduces a computation-
ally simple way to turn a triangle into a quadratic patch.

Tetrahedral interpolation is widely used in Finite Element Meth-
ods [ZTZ05] for various kinds of simulation. Bargteil and Cohen
[BC14] proposes using quadratic elements to reduce the simulation
error and artifacts of deformable bodies. To reduce computation,
they adaptively choose between linear and quadratic tetrahedral el-
ements based on the difference of the predicted values of edge mid-
points interpolated by each method. Phong deformation [Jam20]
blends per-tet average gradients and per-vertex deformation gradi-
ents to achieve a quadratic tetrahedral interpolator to achieve higher
order of accuracy for embedded deformation.

Different from these methods, we propose a unified mathemati-
cal formulation for quadratic and cubic interpolation of simplexes
of different dimensions. Our adaptive high-order triangular interpo-
lation can benefit from hardware acceleration by slightly modifying
the existing hardware used for rasterization. If the the triangles or
the tetrahedrons are structured data, our method can use modified
texture units to accelerate interpolation.

3. High-Order Interpolation in Grids

Interpolation in 1D, 2D, and 3D grids are commonplace in com-
puter graphics for applications like texture filtering. Though high-
order is known to produce better quality, linear interpolation is
more popular in practice, because it has direct hardware support
on GPUs.

In this section, we discuss high-order interpolation in grids and
present how we can reorder the terms in quadratic and cubic inter-
polations to represent them as linear interpolation plus high-order
difference terms. This includes simplified forms using fewer data
points. We also describe how we can take advantage of our re-
ordering to provide adaptive high-order interpolation, such that lin-
ear interpolation is used wherever high-order interpolation would
not produce visible improvement. Finally, we present how our ap-
proach can be used in typical applications. Most importantly, our
reordering provides a convenient mechanism for modifying the ex-
isting hardware texture filtering system on GPUs to support high-
order filtering, as we describe in Section 4.

Notation: We use Pi, Pi j, and Pi jk to represent the data points
(i.e. grid vertices) to be interpolated in 1D, 2D, and 3D grids,
respectively, where i, j,k ∈ Z. The evaluation position within the
interpolation domain is represented using localized parameters
s, t,q ∈ [0,1]. The data points at the corners of the interpolation
domain correspond to i, j,k ∈ {0,1}. For representing values at el-
ement/edge centers, we use i, j,k = ½. The interpolation functions
are represented as ■CnD

m , where n ∈ {1,2,3} is the dimension and
m ∈N is the number of data points and high-order difference terms
used in the interpolation, using L for linear, Q for quadratic, and C

for cubic interpolations. We also present simpler interpolation func-
tions that omit one or more higher-order terms and are represented
as □CnD

m , as opposed to standard interpolation functions ■CnD
m that

include all terms.

3.1. 1D Interpolation

Let L1 represent the linear interpolation operator, such that

L1
s (P0,P1) = (1− s)P0+ sP1 .

Obviously, linear interpolation along an edge in 1D simply uses this
operator

■L1D
2 (s) = L1

s (P0,P1) . (1)

For defining quadratic interpolation along this edge, we can
specify the desired value P½ at the center of the edge. The resulting
quadratic interpolation can be written in Bézier form as

■Q1D
3 (s) = (1− s)2P0+2(1− s)sP∗+ s2P1 , (2)

where P∗ = 2P½−(P0+P1)/2. By expanding and rearranging the
terms, we can write

■Q1D
3 (s) = (1− s)P0+ sP1+4(1− s)s(P½−

P0+P1
2) . (3)

Here, the first two terms are the linear interpolation between P0 and
P1, and the last term includes the difference between the desired
center value P½ and the linear interpolation at the center. Therefore,
by defining this difference as

D½ = P½−
P0+P1

2 , (4)

we can write the quadratic interpolation as

■Q1D
3 (s) = ■L1D

2 (s)+4(1− s)s D½ . (5)

Thus, quadratic interpolation becomes linear interpolation plus a
second-order difference term.

For cubic interpolation, we consider the derivatives at the ver-
tices. Let P0⃗ and −P1⃗ represent the desired derivatives of the inter-
polated value at the two vertices. Along with the values at the ver-
tices, they uniquely define a cubic function. Similar to the quadratic
case, we define the difference values D0⃗ and D1⃗ between the de-
sired derivatives and the derivative of linear interpolation, such that

D0⃗ = P0⃗− (P1−P0) and D1⃗ = P1⃗− (P0−P1) .
Then, the cubic interpolation along an edge can be written as

■C1D
4 (s) = ■L1D

2 (s)+ (1− s)s L1
s (D0⃗,D1⃗) , (6)

where the first term is, again, linear interpolation and the second
term includes the third-order components with a linear interpola-
tion of the difference values.

These quadratic and cubic formulations in Equations 5 and 6
are mathematically identical to standard second-degree and third-
degree interpolations. Their advantage is purely in computation, as
they allow us to begin with linear interpolation and factor out all
high-order terms. This formulation will be particularly helpful for
modifying existing linear filtering hardware on GPUs to perform
higher-order interpolation, as we explain in Section 4.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

P00 P10

P01 P11

s

t

D½0

D1½

D½1

D0½
D½½

P00 P10

P01 P11

s

t

D00 D10

D01 D11

D00

D01

D10

D11

D11

D10

D01

D00
D

(a) Biquadratic (b) Bicubic

Figure 1: The difference terms of biquadratic and bicubic interpo-
lations in 2D.

3.2. 2D Interpolation

In 2D, we rely on the bilinear interpolation operator

L2
st(P00,P10,P01,P11) =(1− t)L1

s (P00,P10)+ tL1
s (P01,P11)

=(1− s)(1− t)P00+ s(1− t)P10

+ (1− s)tP01+ stP11

Bilinear interpolation simply uses this operator, such that

■L2D
4 (s, t) = L2

st(P00,P10,P01,P11) . (7)

Biquadratic interpolation involves 9 control points: 4 at the ver-
tices, 4 at the edge centers, and one at the middle of the rectan-
gle they form (Figure 1a). Similar to the 1D case, we can write
biquadratic interpolation using difference values at the edge cen-
ters D½0, D½1, D0½, D1½, and the difference value at the middle
position D½½. If we omit this middle difference value by taking
D½½ = 0, the resulting quadratic interpolation can be written as

□Q2D
8 (s, t) = ■L2D

4 (s, t)+4(1− s)s L1
t (D½0,D½1) (8)

+4(1− t)t L1
s (D0½,D1½) .

If the middle difference term D½½ is non-zero, biquadratic interpo-
lation becomes

■Q2D
9 (s, t) = □Q2D

8 (s, t)+16(1− s)s(1− t)t D½½ (9)

and D½½ can be written using the desired middle value P½½ as

D½½ = P½½−□Q2D
8 (½,½) . (10)

The standard bicubic interpolation involves 16 control points.
Similar to the quadratic case, if we omit the four difference terms in
the interior of the rectangle and only consider the edges (Figure 1b),
we get

□C2D
12(s, t) =■L2D

4 (s, t) (11)

+ (1− s)s L2
st(D0⃗0,D1⃗0,D0⃗1,D1⃗1)

+ (1− t)t L2
st(D00⃗,D10⃗,D01⃗,D11⃗) .

Note that, with this formulation, bicubic interpolation turns into
three linear interpolations: the first one interpolates the four vertex
values and the other two interpolate the difference in the deriva-
tives.

The standard bicubic interpolation with 16 control points ■C2D
16

can be written in a similar form by using the second derivatives,
such that the desired second derivatives

Pi⃗ j⃗ = (−1)i+ j ∂
2

∂s∂t ■
C2D

16(i, j) (12)

are achieved using difference terms

Di⃗ j⃗ = Pi⃗ j⃗− (−1)i+ j ∂
2

∂s∂t □
C2D

12(i, j)
= Pi⃗ j⃗ − (Pi j−P(1−i) j−Pi(1− j)+P(1−i)(1− j)) (13)

− (Di⃗(1− j)−Di⃗ j+D(1−i) j⃗−Di j⃗) .
for i, j ∈ {0,1}. With these internal difference terms, standard bicu-
bic interpolation can be written as

■C2D
16(s, t) =□C2D

12(s, t) (14)

+ (1− s)s(1− t)t L2
st(D0⃗0⃗,D1⃗0⃗,D0⃗1⃗,D1⃗1⃗) .

In this form, standard bicubic interpolation involves an additional
bilinear interpolation over □C2D

12 .

3.3. 3D Interpolation

This concept of representing higher-order interpolation as a sum of
linear interpolation and higher-order terms can be extended to 3D
as well. In 3D, we can use the trilinear interpolation operator

L3
stq(P000,P100,P010,P110,P001,P101,P011,P111) =

(1−q) L2
st(P000,P100,P010,P110)

+ q L2
st(P001,P101,P011,P111)

This operator linearly blends two bilinear operators and trilinear
interpolation simply uses it, such that

■L3D
8 (s, t,q) = L3

stq(P000,P100,P010,P110, (15)

P001,P101,P011,P111) ,
where Pi jk with i, j,k ∈ {0,1} are the data values at the eight ver-
tices of a cube.

Again, for our quadratic and cubic interpolation functions, we
omit the higher-order difference terms inside the cube and on the
face centers of the cube, resulting

□Q3D
20(s, t,q) =■L3D

8 (s, t,q) (16)

+4(1− s)s L2
tq(D½00,D½10,D½01,D½11)

+4(1− t)t L2
sq(D0½0,D1½0,D0½1,D1½1)

+4(1−q)qL2
st(D00½,D10½,D01½,D11½)

□C3D
32(s, t,q) =■L3D

8 (s, t,q) (17)

+ (1− s)s L3
stq(D0⃗00,D1⃗00,D0⃗10,D1⃗10,

D0⃗01,D1⃗01,D0⃗11,D1⃗11)
+ (1− t)t L3

tqs(D00⃗0,D01⃗0,D00⃗1,D01⃗1,

D10⃗0,D11⃗0,D10⃗1,D11⃗1)
+ (1−q)q L3

qst(D000⃗,D001⃗,D100⃗,D101⃗,

D010⃗,D011⃗,D110⃗,D111⃗) .

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Note that standard triquadratic and tricubic interpolations ■Q3D
27 and

■C3D
64 use 27 and 64 control points, respectively. Therefore, the ver-

sions above that skip the interior difference terms save 7 and 32
control points for quadratic and cubic interpolation, respectively.

3.4. Adaptive High-Order Interpolation

Notice that all our high-order interpolation formulations contain
high-order difference terms, i.e. D-terms, defined as the difference
between a quantity approximated by lower-order interpolation and
the desired value. These D-terms are indicators of how well linear
interpolation approximates the desire values.

When the D-terms are close to zero, high-order interpolation pro-
duces results with relatively small difference from linear interpola-
tion. In such cases, simply using linear interpolation instead may be
an acceptable approximation. This opens up the possibility of adap-
tive high-order interpolation that skips the high-order difference
terms when they are close to zero, determined by a user-defined
threshold Dmin.

At first glance, this may appear as a minor simplification, partic-
ularly considering software interpolation. However, as we explain
in Section 4, adaptive interpolation can be used for more than dou-
bling the throughput of a hardware implementation.

3.5. High-Order Texture Filtering

Bicubic image filtering is known to produce superior image quality,
as compared to bilinear, and it is often used for enlarging raster
images. Using a Catmull-Rom spline, interpolation along 1D can
be written as

S1
s (P-1,P0,P1,P2) =− s(1− s)2/2 P-1

+((1− s)3
+3s(1− s)2

+ s2(1− s)/2) P0

+(s3
+3s2(1− s)+ s(1− s)2/2) P1

− s2(1− s)/2 P2

1D cubic interpolation can simply use this function

■C1D
4 (s) = S1

s (P-1,P0,P1,P2) . (18)

For our cubic interpolation, however, we must first compute the
D-terms. Using a Catmull-Rom spline (with uniform parameteri-
zation) that interpolates the data points P−1, P0, P1, and P2, the
D-terms can be written as

Di⃗ = Pi−
Pi−1+Pi+1

2 (19)

for i∈ {0,1}. Then, we can use our ■C1D
4 formulation in Equation 6.

Similarly, bicubic interpolation using a 4×4 block of texel sam-
ples shown in Figure 2 can be defined using Catmull-Rom splines,
such that

■C2D
16(s, t) = S1

s (S1
t (P-1-1,P-10,P-11,P-12), (20)

S1
t (P0-1, P00, P01, P02),

S1
t (P1-1, P10, P11, P12),

S1
t (P2-1, P20, P21, P22)) .

s

t
P00 P10

P01 P11

P22P12P02P-12

P2 -1P1-1P0 -1P-1-1

P21P-11

P20P-10

Figure 2: The texel data used for high-order filtering in 2D.

In our formulation, the Di⃗ j and Di j⃗ terms can be computed us-

ing Equation 19. These are sufficient for evaluating □C2D
12 in Equa-

tion 14. For ■C2D
16 we also need Di⃗ j⃗ with i, j ∈ {0,1}. They can be

computed using the desired second derivatives

Di⃗ j⃗ =Pi j−
P(1−i) j+Pi(1− j)+Pi(3 j−1)+P(3i−1) j

2 (21)

+
P(1−i)(1− j)+P(3i−1)(1− j)+P(1−i)(3 j−1)+P(3i−1)(3 j−1)

4

Note that computing these last four D-terms for ■C2D
16 involves com-

bining 9 data points Pi j within a 3×3 block.

Quadratic interpolation for texture filtering is not as popular.
This is because it involves accessing the same amount of texture
data as cubic interpolation and it cannot deliver the same quality.
Nonetheless, it is still superior to linear filtering and requires less
computation than cubic. Therefore, it might be preferable for some
applications.

We define quadratic interpolation similarly, using Catmull-Rom
splines. In this case, the D-terms ensure that the interpolation
matches the Catmull-Rom spline at the middle points. Thus, in 1D
we can write

D½ =
−P-1+P0+P1−P2

16
. (22)

In 2D, we can compute the D-terms for □Q2D
8 similarly. As for

■Q2D
9 , the computation of the middle difference term involves all

16 data points, using

D½½ = ■C2D
16(½,½)−□Q2D

8 (½,½) . (23)

Note that in both biquadratic and bicubic interpolations, evaluat-
ing the D-terms for □Q2D

8 and □C2D
12 are much simpler than the ad-

ditional D-terms needed for ■Q2D
9 and ■C2D

16 . Also, □Q2D
8 and □C2D

12
do not need to access the corner texels P-1-1, P2-1, P-12, and P22.
These corner texels are only needed for computing the internal D-
terms used by ■Q2D

9 and ■C2D
16 .

The equations for triquadratic and tricubic cases are similar.
Again, the D-terms for □Q3D

20 and □C3D
32 are much simpler to com-

pute than ■Q3D
27 and ■C3D

64 .

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

4. High-Order Hardware Texture Filtering

The versions for quadratic and cubic interpolations we present in
Section 3 provide convenient mechanisms for hardware implemen-
tation. In this section, we discuss the details of existing GPU texture
filtering hardware and how it can be modified to support high-order
interpolation using our formulations.

4.1. Texture Filtering on Current GPUs

Bilinear interpolation is a fundamental texture filtering operation
on the GPU. Current GPUs implement it in one of two ways
[MSY19]. The first way is to linearly interpolate pairs of texels
along one dimension, then linearly interpolate the results along the
other dimension, using 3 linear interpolations. The second way is
to compute a weight for each of the four texels, then multiply them
and add the four results. This requires an extra multiplier but al-
lows more parallelism. It also requires only one renormalization
for floating point textures instead of three. Our adaptive higher or-
der interpolation method works with both of these implementation
methods.

Texture units in GPUs perform certain filtering operations in
multiple steps. For example, trilinear filtering uses two bilinear op-
erations. The result of each bilinear operation, or BOP for short, is
scaled and accumulated to produce the trilinear result. This is il-
lustrated in Figure 3. Alternately, the GPU could perform the two
BOPs in parallel, linearly interpolating the pair of results. The area
involved is similar and the former method allows pure bilinear fil-
tering operations to go twice as fast, while supporting two two-step
trilinear operations in parallel, so the raw throughput of trilinear
operations is the same. Therefore, we will assume that the GPU im-
plements BOPs, although our method can also be adapted to work
with a GPU designed with trilinear filtering as the basic operation.

Figure 3: Texture filter unit on current GPUs. Bilinear operations
(BOPs) can be scaled and accumulted to perform more complex
filtering. The L1 texture cache is divided into four interleaved banks
to allow parallel access to an unaligned 2×2 of texels.

Another multi-step texture filtering operation is anisotropic fil-
tering. In this case, up to 16 individual bilinear or trilinear filter re-
sults are blended to approximate an elongated filter region. There-
fore, even if a texture unit implements trilinear filtering as its basic
operation, it still needs to scale and accumulate the results of mul-
tiple BOPs to support anisotropic filtering. Since the number of
BOPs is the bottleneck for computation, we use that to represent
the computational cost of our texture interpolation techniques.

4.2. Current Texture Cache Access Methods

Texture units in GPUs are fed by deep queues of pending filter op-
erations. This provides time to compute filter weights, determine
which texels will be accessed, and load the texels into caches. Typ-
ically there are multiple cache levels, e.g. a large cache shared over
the whole GPU that feeds L2 and specialized L1 caches that are
dedicated to individual texture units. The operation queue is typi-
cally sized to cover the latency of accessing off-chip memory, so
that BOPs can usually occur without off-chip memory read delays.

The L1 caches in texture units are specialized to allow a BOP
per cycle without cache read delays. Bilinear texture filtering re-
quires accessing an unaligned 2×2 of texels. For a standard cache
or memory this could require 1, 2, or 4 memory accesses, depend-
ing on how the unaligned 2×2 block maps onto the aligned blocks
that are stored in cache or memory. This is not a problem when
reading texels from memory or from the L2 cache, since nearby
texel values are likely to be used in later texture filter operations.
But requiring multiple read cycles from the L1 cache has obvious
problems for maintaining the desired texture processing rate of one
BOP per clock.

The standard solution is to divide the L1 texture cache into four
banks, based on the low order bits of the U and V indices of the
stored texture coordinates. The left side of Figure 3 illustrates how
this works: texels are stored in banks based on whether their U and
V indices are even or odd. Texture dimensions are padded to some
tile size, typically at least 4 texels, so for each texture, one quarter
of its texels fall into each of the four buffers. As a result, a bilinear
interpolation unit can receive an unaligned 2× 2 of texels on each
clock by computing the appropriate memory addresses for each of
the four banks of texture L1 cache.

Finally, the number of L1 cache banks used depends on the num-
ber of texels that must be accessed in parallel. For example, GPUs
that perform a trilinear filter in a single clock cycle require eight
banks. Four of the banks provide an unaligned 2×2 access for even
mip levels or even slice numbers. The other four banks provide an
unaligned 2×2 access for odd mip levels or odd slice numbers.

4.3. High-Order Texture Filtering on Hardware

High-order filtering with our formulations begins with linear inter-
polation (using ■L2D

4 in 2D and ■L3D
8 in 3D). This is exactly what

the current hardware is designed to do. Then, we add the D-terms.
Notice that with all our quadratic and cubic formulations, except
for ■Q2D

9 , the D-terms can be processed in groups of 4. The com-
putation of each group is the same as a BOP multiplied by a scale
factor.

Computing the scale factors (e.g. (1− s)s, (1− t)t, etc.) needed
for the steps involving the D-terms can be pipelined, so they do not
require extra clock cycles. The amount of additional logic required
is relatively small as well. For example, with 8-bit precision (1−s)s
can be computed with an 8× 8 multiplier, though we used 32-bit
floating point numbers for tests in Section 7.

Computing the D-terms is also straightforward, given access to
the necessary texels. Figure 4 shows that the D-term calculation is

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Figure 4: Proposed texture filter unit for higher order interpola-
tion. The L1 texture cache is divided into 4, 8, 16, or 32 interleaved
banks to allow parallel access.

pipelined between the texel L1 cache read and the bilinear opera-
tion. Therefore, utilizing the existing BOP logic unit, we can in-
clude the D-terms for high-order filtering by simply using the same
unit multiple times. This way, high-order filtering simply involves
additional steps, similar to computing trilinear filtering with two
bilinear filtering steps or anisotropic filtering in multiple steps on
current hardware.

The cost of computing the D-terms depends on the filtering op-
eration being performed. Computing the D-terms along the edges
needed for quadratic and cubic interpolations □Q2D

8 , □C2D
12 , □Q3D

20 ,
and □C3D

32 , only require adders and bit-shifters (for division by a
power of 2), which do not require much extra area or power. The
internal D-terms for quadratic and cubic interpolations ■Q2D

9 , ■C2D
16 ,

■Q3D
27 , and ■C3D

64 involve more expensive operations to evaluate
from the data points P, so they require a greater area cost when
modifying existing texture filtering hardware. Based on the num-
ber of D-terms, we can process □Q2D

8 with 2 BOPs, □C2D
12 with 3

BOPs, □Q3D
20 with 5 BOPs, and □C3D

32 with 8 BOPs in total. The in-
terpolations that involve the internal D-terms, such as ■Q2D

9 , ■C2D
16 ,

■Q3D
27 , and ■C3D

64 , would require 3, 4, 6, and 16 BOPs, respectively.

These numbers imply a dramatic reduction of performance com-
pared to bilinear interpolation, but we can improve performance
by using adaptive high-order interpolation, as we discussed in Sec-
tion 3.4. Computation of the D-terms is pipelined in advance of per-
forming BOPs, so adaptive filtering can be implemented by check-
ing the four D-terms to be used for the next step. If they all are
below the given threshold Dmin, the bilinear step can be skipped. If
all of the D-terms are below the threshold, higher order interpola-
tion requires just 1 BOP and so has the same performance as linear
interpolation.

For high-order interpolation involving more than 2 steps, instead
of using pre-defined groups of D-terms, it is possible to group the
D-terms that pass the threshold for minimizing the number of steps.
However, this would require more complex logic, so we assume
pre-defined groups of D-terms in our evaluation (Section 7). Still,
it is possible to save power by simply turning off the multiplier for
any D-term that is below the threshold.

4.4. Texture Cache Access for Higher Order Filtering

High-order texture interpolation involves accessing more data, but
this does not necessarily inflate the off-chip memory bandwidth,

since the filter kernels near neighboring texels largely overlap.
Therefore, we can expect the higher level caches to efficiently han-
dle the data flow. However, the L1 cache must be changed to allow
accessing more texels in parallel.

As illustrated in Figure 4, using more banks in the L1 cache
allows computing the D-terms in parallel to achieve peak perfor-
mance. Then, groups of 4 D-terms can be passed to the existing
bilinear interpolation logic. The L1 cache can be implemented us-
ing 4, 8, 16, or 32 banks with different levels of performance, as we
discuss in Appendix A.

5. Extensions to Interpolation in Simplexes

In Section 3 we described our difference-based formulations of
quadratic and cubic interpolations for structured sample data in a
grid. In this section, we extend this concept to arbitrary simplexes,
such as line segments (1D), triangles (2D), and tetrahedra (3D).
Similar to our notation for grids, (cubic) interpolations are repre-
sented as △CnD

m , if they omit some terms, and ▲CnD
m , if they include

all terms, where n is the dimension and m is the total number of
interpolated data values, including the simplex vertices.

5.1. Interpolation in a Simplex

A simplex in n-dimensions is defined by n+ 1 vertices. Let Pi
where i ∈ {0, . . . ,n} represent the data values at the vertices and
w = [w0, . . . ,wn]T is the barycentric coordinates of the interpola-
tion point, forming a partition of unity, such that

n

∑
i=0

wi = 1 . (24)

Linear interpolation is defined as a simple weighted average, using

▲LnD
n+1(w) =

n

∑
i=0

wi Pi . (25)

P0 P1

P2

D01

D12D02

P0

P1

P2

P3

D01

D02

D13

D23

D12

Figure 5: The high-order difference terms for quadratic interpola-
tion on a triangle and in a tetrahedron.

For quadratic interpolation, we define high-order difference
terms Di j between each pair of vertices i and j with i < j, as shown
in Figure 5. Then, quadratic interpolation can be written as

▲QnD
(n+1)(n+2)/2(w) = ▲LnD

n+1(w)+
n−1

∑
i=0

n

∑
j=i+1

4wi w j Di j . (26)

There are n(n+ 1)/2 quadratic D-terms: a line has 1, a triangle

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

P0 P1

P2

D01 D10

D20 D21

D02 D12D012 P0

P1

P2

P3

D01
D10

D20

D21D02

D12
D012

D23

D32

Figure 6: The high-order difference terms for cubic interpolation
on a triangle and in a tetrahedron.

has 3, and a tetrahedron has 6. Thus, we get ▲Q2D
6 and ▲Q3D

10 for
triangles and tetrahedra, respectively.

For defining cubic interpolation, we use Di⃗ j to specify the de-
sired derivatives along each edge, as shown in Figure 6. Then, we
can write our cubic interpolation formulation as

△CnD
(n+1)2(w) = ▲LnD

n+1(w) (27)

+
n−1

∑
i=0

n

∑
j=i+1

wi w j (wi Di⃗ j+w j D j⃗i) .

This formulation defines △C2D
9 and △C3D

16 for triangles and tetrahe-
dra, respectively, only considering the derivatives along the edges
of the simplex. For triangles, however, cubic interpolation can also
specify a desired value P012 at the center using an interior dif-
ference term D012 = P012−△C2D

9 (wcenter), where wcenter = 1/3 is
the barycentric coordinates of the center of the triangle. Including
higher-dimensional simplexes, we can write

▲CnD
(n+1)(n2+1)(w) = △CnD

(n+1)2(w) (28)

+
n−2

∑
i=0

n−1

∑
j=i+1

n

∑
k= j+1

27wi w j wk Di jk .

Here, Di jk = Pi jk − △CnD
(n+1)2(wi jk

center), where wi jk
center is the

barycentric coordinates for the center of the triangle formed by
verices i, j,k of the simplex (e.g. for a tetrahedron, w012

center =

[1/3 1/3 1/3 0]T).

Note that this formulation provides n(n− 1)(n+ 1)/6 interior
D-terms: a triangle has 1 and a tetrahedron has 4. The resulting
interpolations for triangles and tetrahedra are ▲C2D

10 and ▲C3D
20 , re-

spectively.

5.2. Practical Interpolation Applications Using Simplexes

High-order interpolations within a grid described in Section 3 al-
low computing the D-terms from the data points on-the-fly. In the
case of arbitrary simplex meshes, however, a typical application-
needs to pre-compute the D-terms. This is because determining the
desired derivatives or the edge/triangle center values typically re-
quires traversing the simplex topology, using discrete differential
geometry operators [MDSB03].

There are exception, however. For example, reconstructing

smooth normals for shading a triangle, the D-terms can be com-
puted on-the-fly from the triangle’s vertex positions and normals
[VPBM01]. Also, the D-terms can be computed on-the-fly for
barycentric filtering using mesh color textures [Yuk17] or patch
textures [MSY19] for providing hardware texture filtering support
for mesh colors [YKH10], as they use structured triangular texel
distributions.

Another example is a regular simplex mesh in a grid, such as
a triangular mesh or a tetrahedral mesh with vertices on a regular
grid. A 2D grid cell can be represented using two triangles and
a 3D grid cell can be formed by 5 or 6 tetrahedra. Indeed, the
vertex data for such meshes can be stored in 2D or 3D textures.
This offers a cheaper alternative to texture filtering using fewer data
points, and it can be used for applications like color space conver-
sion [KNPH95] that can benefit from high-order filtering.

When the D-terms cannot be computed during interpolation and
must be pre-computed, adaptively skipping some D-terms can pro-
vide storage, memory bandwidth, and computation savings at run
time.

6. Hardware Interpolation for Simplex Meshes

For providing hardware-accelerated interpolation, there are two
cases to consider: regular simplex meshes on a grid and arbitrary
simplex meshes.

The data for regular meshes of triangles or tetrahedra can be
stored in 2D or 3D grids. In that case, hardware interpolation can
be supported in a similar way as described in Section 4. The only
differences are the interpolation functions and the subsets of the
texel data blocks used in the interpolation (Section 6.1).

Arbitrary simplex meshes, however, cannot be handled similarly
and require a different treatment (Section 6.2).

6.1. Hardware Interpolation for Regular Simplexes

For regular triangles on a grid, the existing bilinear interpolation
unit can be modified to support barycentric linear interpolation
[MSY19]. One of the four texels is weighted as zero and the other
three use weights that produce the same result as barycentric inter-
polation. This can be done for both methods of designing the bilin-
ear operation block, that is using three linear interpolation units or
using four parallel multipliers.

Our method for supporting nonlinear triangular interpolation ex-
tends this method. Reading an unaligned 4× 4 array of texels al-
lows D-terms to be computed. These are then fed into the bilinear
operation block, along with appropriate weights. In general, up to
three D-terms can be retired per cycle through the bilinear opera-
tion logic.

A similar method may be used for regular tetrahedra in a 3D grid.
Linear interpolation can be achieved with an unaligned 2× 2× 2
array of texels. Four of the texel values are used and the rest are
ignored. The four chosen vertices are gathered into a single BOP. If
the BOP is implemented using four multipliers, these get the four
barycentric parameters. If the BOP is implemented using three lin-
ear interpolations, the weights for the first pair are w0/(w0+w1)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Reference □C2D
12 , Ratio of ∣D∣ ≥ 0.048 □C2D

12 , Ratio of ∣D∣ ≥ 0.2 □Q2D
8 , Ratio of ∣D∣ ≥ 0.0095 □Q2D

8 , Ratio of ∣D∣ ≥ 0.0315
240(cos(0.0008(x2+ y2))+1) (25% clamped) (50% clamped) (25% clamped) (50% clamped)

(a) (b) (c) (d) (e)

Figure 7: We test with a sinusoidal function (the image spans a parameter range from (0,0) to (1,1)). The reference image (left) is sampled
using 1024× 1024 resolution (the compared insets are highlighted), while our tested methods upsample a 128× 128 resolution input to
1024× 1024 resolution. We visualize the ratio of D-terms in bicubic interpolation that are above a threshold (middle and right). Dark red
stands for 1 (all 8 D-terms for the pixel are above the threshold), and dark blue stands for 0.

and w2/(w2+w3). The weight for the linear interpolation that
combines them is (w0+w1)/(w0+w1+w2+w3).

Our method for supporting nonlinear tetrahedral interpolation
extends this method. All D-terms to be computed using an un-
aligned 4×4×4 array of texels. They are then fed into the bilinear
operation block as barycentric operations, along with appropriate
weights. In general, up to four D-terms can be retired per cycle
through the bilinear operation logic.

6.2. Hardware Interpolation for Arbitrary Simplexes

Linear barycentric interpolation for triangles can be performed ei-
ther in hardware or using code attached to the start of the fragment
shader. Either way, it typically supports multiplying three barycen-
tric coefficients times three parameter values.

D-terms for quadratic and cubic triangular interpolation can be
generated e.g. in a geometry shader and then passed to the frag-
ment shader. The interpolation can be performed using either logic
or shader code that computes products of the barycentric terms and
multiplies them in turn by the D-terms. In hardware this could be
performed using multiple passes through the existing logic, elim-
inating the extra hardware multiplies where the D-terms are zero.
Typically, GPU shader instructions support testing conditionals in
parallel with ALU operations, so testing to see if D-terms can be
eliminated does not need to reduce the performance of a shader
code implementation, either.

Tetrahedral interpolation is performed in the same way, except
with four barycentric terms instead of three. This is not needed in
pixel shaders, but can be useful in vertex shaders (as illustrated
in Section 7.5) as well as geometry shaders. As for the software
implementation of unstructured triangles, shader code computes D-
terms for unstructured tetrahedra and then performs the necessary
multiplies and adds for non-zero sets of D-terms.

7. Evaluation

We demonstrate the effectiveness of our hardware adaptive high-
order interpolation method in 5 different real-time rendering ap-
plications to cover all of rectangular, triangular, tetrahedral, and

cuboidal cases. In each application, we compare the quality of our
result to linear interpolation. We show how our result achieves sim-
ilar quality as non-adaptive high-order interpolation by only com-
puting high-order interpolation when necessary. By exploiting the
sparseness of high-frequency information, our method can discard
most high-order terms in many applications, making it run at a com-
parative performance or use similar amount of storage as linear in-
terpolation. We also compare with the state-of-art high-order inter-
polation method for the application, if one exists and show how our
method improves the performance while delivering similar quality.

For interpolations in grids, we use the number of BOPs com-
puted as the performance metric for comparing different methods.
For simplex mesh examples targetting software implementation,
we report shader execution times on current hardware.

7.1. 2D Texture Filtering

First, we present results using a synthetic texture that contains
a variety of frequencies, shown in Figure 7. Given a threshold
Dmin = 0.048 for bicubic interpolation □C2D

12 , 25% of the D-terms
are eliminated (Figure 7b-c). The higher frequency region shows
higher ratio of D-terms with magnitude greater than the threshold.
Below a certain frequency, all D-terms are below the threshold. Us-
ing Dmin = 0.2, 50% of the D-terms are clamped. The observation
is similar for biquadratic interpolation □Q2D

8 (Figure 7d-e). With
Dmin = 0 we turn off clamping and all D-terms are used.

A comparison between different interpolation methods using
parts of the same synthetic texture can be found in Figure 8. Our
bicubic interpolation □C2D

12 with Dmin = 0 generates almost identical
result as standard bicubic interpolation ■C2D

16 . This shows that the
impact of omitting the 5th and 6th order terms is relatively minor
in this example. When increasing Dmin to 0.048 to clamp 25% of
the D-terms, the difference is hard to notice. With Dmin = 0.2, the
low-frequency inset begins to show patterns related to bilinear in-
terpolation, because most D-terms are clamped. However, the high-
frequency inset still looks unchanged, because higher-frequency
regions contain more pixels with larger D-terms. Our □Q2D

8 bi-
quadratic interpolation also produces almost identical result as the
more expensive ■Q2D

9 version. Dmin affects the results similarly to
the bicubic case.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Our Bicubic Interpolation Our Biquadratic Interpolation

Reference ■C2D
16 □C2D

12 □C2D
12 (-25%D) □C2D

12 (-50%D) ■Q2D
9 □Q2D

8 □Q2D
8 (-25%D) □Q2D

8 (-50%D) Bilinear
(Standard Bicubic) No Clamp Dmin = 0.048 Dmin = 0.2 No Clamp No Clamp Dmin = 0.0095 Dmin = 0.0315

MSE: 0 (reference) 0.01304 0.01362 0.01365 0.01408 0.01413 0.01458 0.01462 0.01520 0.02429

Figure 8: A comparison of different interpolation method for upsampling the sinusoidal function from 128× 128 to 1024× 1024. The first
and third row: insets. The second and fourth row: 4 × and 1 × difference images with respect to the reference.

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0% 20% 80% 100%

M
SE

40% 60%
Percentage of clamped

Bilinear
(Bicubic)

(Biquadratic)

Standard Bicubic

Figure 9: Comparing MSE of different interpolation method using
different Dmin (only our bicubic and biquadratic interpolation is
affected) for the sinusoidal function upsampling.

In Figure 9, we compare mean square error (MSE) of differ-
ent interpolation methods. With Dmin = 0, our bicubic interpola-
tion □C2D

12 produces a slightly higher MSE than the standard bicu-
bic interpolation ■C2D

16 , due to the omission of 5th and 6th or-
der terms. Our biquadratic interpolation □Q2D

8 produces a slightly
higher MSE. Nonetheless, MSE for all high-order interpolations is
much lower than bilinear. As expected, MSE grows with increasing
Dmin.

We compare the performance of our approach to Csébfalvi’s
method [Csé18], the most efficient implementation of standard
bicubic interpolation on current GPU hardware. This method uses
5 bilinear operations (4 bilinear texture access on the GPU plus 1
bilinear operation for combining 4 terms with weights) to produce
the same result as standard Catmull-Rom bicubic interpolation. The

0

1

2

3

4

5

B
ili

ne
ar

 o
pe

ra
tio

ns
 p

er
 p

ix
el

[Csébfalvi 2018]

Bilinear

(Bicubic)
 Ideal Case
(Biquadratic)

0% 20% 80% 100%40% 60%
Percentage of clamped

Figure 10: Comparing average bilinear operations per pixel of dif-
ferent methods for the sinusoidal function upsampling.

texture is modified by modulating the input texture with a check-
board pattern of 1 and −1 values.

In Figure 10, we visualize the average BOPs per pixel for each
method. We see that even using Dmin = 0, our bicubic interpolation
(3 per pixel) has fewer number of BOPs than Csébfalvi’s method
(5 per pixel). Using adaptive higher-order filtering with Dmin > 0,
we can improve the performance further. The solid line for □C2D

12
shows the performance when groups of 4 D-terms are formed in a
predefined order and a BOP is skipped only when all D-terms in a
group are below the threshold. The dashed line shows the ideal case
that dynamically groups the D-terms for maximum performance.
Our biquadratic interpolation starts at a cheaper cost of 2 BOPs at
Dmin = 0 and decreases slowly with increasing Dmin.

To see how our bicubic rectangular interpolation works in prac-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Our Bicubic Interpolation (□C
2D
12) Dmin = 0.2 bilinear operation heatmap

Bilinear □C
2D
12 ,Dmin = 0.2 □C

2D
12 , No Clamp Standard Bicubic

MSE: 6.9×10−4 MSE: 1.6×10−4 MSE: 4.6×10−6 MSE: 0 (reference)
BOPs/read: 1 BOPs/read: 1.57 BOPs/read: 3 BOPs/read: 5

Figure 11: Comparing texture magnification filtering quality of bi-
linear interpolation and our bicubic interpolation with no clamp-
ing and adaptive clamping with Dmin = 0.2. A bilinear operation
heatmap at Dmin = 0.2 is provided (Red: 3 bops, Yellow: 2 bops,
Blue: 1 bop). Third and fifth row: 4× difference images with respect
to standard bicubic interpolation of the insets in the rows above.

tice, we test the texture filtering quality in the San Miguel scene,
shown in Figure 11. We observe that our □C2D

12 produces indis-
tinguishable result to standard bicubic interpolation ■C2D

16 . Setting
Dmin = 0.2 produces visually very similar result with only 1.57
BOPs on average, in contrast to 3 BOPs without clamping, and 5
BOPs with Csébfalvi’s method [Csé18] for standard bicubic inter-
polation.

7.2. Temporal Anti-aliasing

Another use case of bicubic interpolation is temporal anti-aliasing
(TAA). TAA is widely used in today’s game engines. It reuses sub-
pixel samples accumulated in previous frames to achieve the ef-
fect of supersampling. This is done by jittering the camera to cover
many sample positions in each pixel across several frames. When
the camera or the scene objects are moving, motion vectors need to
be calculated to fetch the pixel that corresponds to the same shading
point in the history buffer (i.e. reprojection).

One problem of TAA is known as resampling blur [YLS20]. This

No TAA TAA TAA 64×
TAA (bilinear lookup) (bicubic, adaptive) (bicubic lookup) Supersampling

Figure 12: A comparison of 3 different history buffer lookup meth-
ods. Note that jagged edges can be seen when not using TAA. A ren-
dering using 64× supersampling is provided as the ground truth.
Note that bicubic lookup avoids the blurring of object edges and
texture details in as can be seen in result using bilinear lookup.
Bicubic adaptive lookup using Dmin = 0.003 produces highly simi-
lar result to using no clamping.

is due to reprojected positions landing at fractional pixel locations,
which requires interpolation to gather colors from nearby pixels.
As can be seen in Figure 12, using bicubic interpolation reduces
resampling blur as compared to bilinear interpolation.

Using our method with hardware modification, it is possible to
bring down the cost of bicubic interpolation to a level close to bi-
linear interpolation, while preserving most of the quality, as shown
in Figure 13. Without clamping, our □C2D

12 brings down the BOPs
per pixel to 3 to produce visually identical results standard bicubic
interpolation. Using Dmin = 0.003, more than 80% of bilinear op-
erations related to higher-order terms can be skipped. The result is
that only 39% more bilinear operations than pure bilinear interpola-
tion are executed to achieve a result almost identical to full bicubic
interpolation. The bilinear operation heatmap in Figure 13 shows
that these discarded bilinear operations are mainly in regions with
slowly varying color, while bicubic interpolation are preserved at
high frequency regions like object edges and texture gradient edges,
which suffers more from resampling blur. Even though these results
use many state-of-art TAA improvement techniques provided by
the Falcor engine [Kar14], including neighborhood clamping and
adaptive blending, they are insufficient for removing the resam-
pling blur caused by bilinear interpolation. Bicubic interpolation,
however, visibly improves the results.

7.3. Volume Rendering

We use volume rendering as an application to test our tricubic in-
terpolation □C3D

32 . Our test scene contains a volumetric teapot with
isotropic scattering and a directional light shown in Figure 14. The
density data of the volume is defined in a 3D grid. We use ray
marching to compute the radiance reaching the camera. At each
ray marching step, a density value is queried for computing the ex-
tinction coefficient. The lighting is gathered from a directional light
with the visibility along the shadow ray computed via ray march-
ing. We compare our performance to Csébfalvi’s tricubic volume
density filtering method [Csé19]. Note that the Csébfalvi’s method
uses 7 trilinear taps on the current hardware, which is equivalent
to 14 bilinear operations. In comparison, our method only uses 8

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Our Bicubic Interpolation (□C
2D
12) Dmin = 0.003 bilinear operation heatmap

Bilinear □C
2D
12 ,Dmin = 0.003 □C

2D
12 , No Clamp Standard Bicubic

MSE: 4.0×10−5 MSE: 7.7×10−6 MSE: 7.2×10−7 MSE: 0 (reference)
BOPs/read: 1 BOPs/read: 1.39 BOPs/read: 3 BOPs/read: 5

Figure 13: Comparing TAA results using bilinear history lookup
and our bicubic history lookup with and without clamping. The
results are obtained by repeatly shaking the camera horizontally
and freezing the rendering. A bilinear operation heatmap at Dmin =

0.003 is provided (Red: 3 bops, Yellow: 2 bops, Blue: 1 bop). Third
and fifth row: 8× difference images in comparison to the standard
bicubic interpolation.

bilinear operations. Note that our □C3D
32 function is mathematically

identical to Csébfalvi’s method, but our formulation needs fewer
bilinear operations.

The performance advantage of our method is improved with
adaptive high-order interpolation. By using a low threshold of
Dmin = 0.01, our method reduces more than 80% of bilinear in-
terpolations related to high-order interpolation, most of which are
at the center region of the teapot (with almost uniform density) and
the region outside the teapot (with zero density). By exploiting the
sparseness of high frequency signal, our adaptive tricubic interpo-
lation only uses about 1.5× the bilinear operation required for tri-
linear interpolation, while producing visually identical quality as
full tricubic interpolation using □C3D

32 (4× more bilinear operation
than trilinear).

Our Tricubic Interpolation (□C
3D
32) Dmin = 0.01 bilinear operation heat map

Trilinear □C
3D
32 ,Dmin = 0.01 □C

3D
32 , No Clamp

MSE: 2.3×10−4 MSE: 9.0×10−7 MSE: 0 (reference)
BOPs/read: 2 BOPs/read: 2.98 BOPs/read: 8

Figure 14: Comparison of trilinear and our tribubic interpolation
with and without clamping. The heatmap shows the number of bi-
linear operations per pixel. For clamping with Dmin = 0.01, only
16.5% bilinear operations related to high-order interpolation are
executed. Only 11% of total D-terms are non-zero. Third and fifth
rows: 8× differences from tricubic interpolation with no clamping.

7.4. Precomputed Radiance Transfer

In precomputed radiance transfer (PRT) [SKS02], transfer vectors
and transfer matrices are precomputed for all vertices in spherical
harmonic (SH) basis such that given an incoming radiance field ex-
pressed in SH basis, the exitant radiance field can be easily obtained
using vector dot product (for diffuse reflection) or matrix-vector
product (for specular refleciton). This allows real-time, noise-free,
high-fidelity self-shadowing and self-reflection of a object in any
dynamic, low frequency lighting environments (e.g. a rotating en-
vironment map).

We limit our evaluation to 1-bounce diffuse reflection with self-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Our Quadratic Interpolation (▲Q2D
6) Dmin = 0.015 heat map of edge storage

Linear ▲Q2D
6 ,Dmin = 0.015 ▲Q2D

6 , No Clamp Path Tracing
MSE: 2.4×10−5 MSE: 1.6×10−5 MSE: 1.4×10−5 MSE: 0 (reference)
14.3 MB (1) 26.4 MB (1.84×) 58.4 MB (4.08×) Storage: N/A
0.06 ms (1) 0.19 (3.17×) 0.30 ms (5.00×) Shader time: N/A

Figure 15: Comparison of linear triangular interpolation of trans-
fer vectors to our quadratic triangular interpolation with and
without clamping for precomputed radiance transfer. With Dmin =

0.015, only 25% of edge data are stored and 23% three-multiplies
related to quadratic terms are executed in the fragment shader, as
compared to no clamping. The heatmap visualizes the number of
edges with storage in the corresponding triangle of the pixel. The
third and fifth rows: 4× differences from path tracing reference.

shadowing, using the Happy Buddha model, shown in Figure 15.
We precompute a (RGB) transfer vector using the first 5 SH bands
(52× 3 = 75 floats) for each vertex. To enable quadratic interpola-
tion, we also precompute a transfer vector (in fact, the difference
terms) at the mid point of each edge. We traverse 4096 shadow
rays to precompute a shadowed diffuse transfer vector in SH basis.
When using linear interpolation, dot product between transfer vec-
tor and the lighting vector is computed in vertex shader, and the re-
sulting color is interpolated automatically for the fragment shader.
When using quadratic interpolation, we perform manual interpo-
lation of quadratic D-terms (of ▲Q2D

6) in the fragment shader and
dot product with lighting vector, then add the result on top of the
color from hardware linear interpolation. Thus, only the high-order
terms are handled in software. Notice that quadratic interpolation
avoids the faceted appearance produced by linear interpolation and
provides closer results to the path tracing reference (Figure 15).

Our adaptive quadratic interpolation both reduces the edge stor-
age and the computation in the fragment shader. Figure 15 shows
that using Dmin = 0.015, edge storage is eliminated in relatively flat
surface regions such that only 25% of the edge storage remains and
the quality is almost identical to full quadratic interpolation. This
makes the total edge and vertex storage for adaptive quadratic inter-
polation less than twice the vertex storage for linear interpolation.
This is a significant reduction compared to non-adaptive quadratic
interpolation that requires more than four times total storage than
linear interpolation. Even only testing the performance on the cur-
rent hardware, skipping reading and computing quadratic terms
adaptively in the fragment shader translates to actual performance
improvement. The shader execution time on the GPU is reduced
from 0.30 ms to 0.19 ms when using adaptive interpolation, mak-
ing it closer to the 0.06 ms required by linear interpolation. With the
proposed hardware support, edge colors can be computed in geom-
etry shader and the fragment color would be automatically inter-
polated. Without clamping, this would double the three-multiplier
passes required by linear interpolation. With Dmin = 0.015, only
1.43× more passes are required (since only 43% of the triangles
have non-zero edge storages).

7.5. Embedded Deformation

FEM simulation on high-poly tetrahedral mesh (tet-mesh) can be
expensive. A popular way to overcome this problem is embedded
deformation that simulates on a low-poly tet-mesh and interpolates
the deformation to produce the vertex position for the high-poly
triangular mesh that is used for rendering.

Linear interpolation Quadratic interpolation

Figure 16: A comparison of linear interpolation and our quadratic
interpolation for embedded deformation of a sphere. Edge mid
points generated using vertex gradients computed using the method
in Phong Deformation [Jam20].

Linear interpolation with embedded deformation produces un-
desirable faceted artifacts when the deformation is large, as can be
seen in Figure 16. Phong deformation [Jam20] solves this problem
by computing per-vertex gradients from neighboring tetrahedra and
blending them with per-tetrahedron gradients used for linear inter-
polation to provide a result with a reduced truncation error than
linear interpolation.

Figure 17 shows a more complex example. Our quadratic tetra-
hedral interpolation ▲Q3D

10 produces identical results to Phong de-
formation, but requires more storage, as shown in Table 1. Phong
deformation stores a 3×3 matrix (vertex gradient) at each vertex,
while▲Q3D

10 stores 3D vector positions on each edge of the tet mesh.
Although each vertex stores three times more data than each edge, a
tetrahedral mesh can have 7× as many edges as vertices, requiring

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

Our Quadratic Tetrahderal mesh Dmin = 0.0015
Interpolation (▲Q3D

10) edge storage heat map

Linear ▲Q3D
10 ,Dmin = 0.0015 ▲Q3D

10 , No Clamp
MSE: 1.5×10−5 MSE: 2.8×10−7 MSE: 0 (reference)

Figure 17: Embedded deformation of a mesh (69664 vertices) us-
ing a tet-mesh with only 1654 vertices. We compare the quality of
linear tetrahedral interpolation to our quadratic interpolation with
and without clamping. Notice that quadratic interpolation reduces
the faceted appearance (looks like darkend "dents" under lighting).
The third and fifth rows: 4× differences w.r.t to No Clamp. The heat
map visualizes the density of edge storage (number of edges in the
corresponding tetrahedra that are not clamped).

more storage when using ▲Q3D
10 [Jam20]. However, we show that

using ▲Q3D
10 , the shader execution time for embedded deformation

can be reduced, as compared to Phong deformation.

Frames from an animation sequence are shown in Figure 18. In
our implementation, we precompute and store the D-terms on edges
for a pre-generated deformation sequence of the enclosing tet-mesh
and invoke a vertex shader each frame to deform the embedded tri-
angular mesh. Such edge value precomputation would need to be

Frame 0 Frame 24 Frame 49 Frame 74 Frame 99

Figure 18: A visualization of the entire deformation of 100 frames.
The tet-meshes are generated from FEM simulation in Houdini
18.5. Note that less edge data are clamped as the amount of de-
formation increases (Frame 0 is the rest pose). The color legend is
the same as in Figure 17.

Table 1: Average shader execution times and total storage cost
of interpolation methods for embedded deformation shown in Fig-
ure 18.

Method Time Storage
Linear Interpolation 109 µs 2.0 MB
Our ▲Q3D

10 (No clamp) 141 µs 12.7 MB
Our ▲Q3D

10 (Dmin = 0.0015) 147 µs 9.8 MB
Phong Deformation 166 µs 7.8 MB

done at each frame if the deformation is simulated on the fly. This
introduces an additional step, as compared to Phong deformation.
In our evaluation, however, we do not consider the additional pre-
computation time and only compare the shader execution time with
precomputed values for the entire sequence. Since we have shorter
vertex shader execution time, we expect that when the embedded
triangular mesh is much more complex than the enclosing tet-mesh,
the vertex shader cost will be much higher than computing and stor-
ing the edge data for the tet-mesh, making our method faster for the
on-the-fly deformation.

0

20

40

60

80

100

120

140

0 10 20 30 40 60 70 80 90

St
or

ag
e

(K
B

)

50
Frame ID

Ours (Adaptive) LinearOurs [James 2020] Ours (Adaptive,
edge data only)

Figure 19: Per-frame storage of different interpolation methods for
the test scene in Figure 18. Ours (Adaptive) uses Dmin = 0.0015.

Figure 19 shows the storage costs of different methods for the
sequence in Figure 18. As expected, our quadratic interpolation
with no clamping requires more storage than Phong deformation
on average. We can reduce the storage using adaptive interpolation

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

by setting Dmin = 0.0015 to obtain a result almost identical to no
clamping. This reduces the storage by more than 50% in the best
case, though we still require more storage than Phong deformation.
In Figure 19, we also include a dashed line that shows the stor-
age of only the edge data of our method. Notice that at Frame 0,
no edge data is required, because all D-terms are zero. Adaptive
interpolation also needs an additional buffer to keep the offsets in
the compressed edge data for each edge. This results in additional
storage and shader execution times.

0

4.0E-6

8.0E-6

1.2E-5

1.6E-5

0 10 20 30 40 50 60 70 80 90

M
SE

Frame ID
Ours (Adaptive)Linear

Figure 20: A comparison between linear interpolation and our
adaptive quadratic interpolation using Dmin in terms of mean
square error (MSE) of the triangular mesh vertex positions with re-
spect to the full quadratic interpolation positionin all 100 frames.
The test scene is shown in Figure 18.

The interpolation errors for linear and our adaptive interpolation
for the animation squence in Figure 18 are shown in Figure 20. In
comparison to linear interpolation, which shows increasingly larger
error as the deformation progresses, our quadratic adaptive interpo-
lation shows a stable amount of error that is also much smaller than
the average error of linear interpolation.

8. Conclusions

We have presented high-order interpolation for grids and sim-
plexes. We have introduced a unified, computationally-efficient
mathematical formulation which adds higher-order terms on top of
linear interpolation to achieve quadratic and cubic interpolation.
Our formulation allows adaptively skipping computation of high-
order terms. We propose relatively minor modifications to existing
graphics hardware to support our adaptive high-order interpolation.
Our proposed hardware implementation can bring the cost of adap-
tive high-order interpolation close to linear interpolation, dramat-
ically improving the visual quality of a wide range of real-time
graphics applications at low cost.

References
[ASS*01] ABBAS, AM, SZIRMAY-KALOS, L, SZIJARTO, G, et al.

“Quadratic interpolation in hardware rendering”. Spring Conference of
Computer Graphics. 2001 3.

[BA08] BOUBEKEUR, TAMY and ALEXA, MARC. “Phong Tessellation”.
ACM Trans. Graph. 27.5 (Dec. 2008). ISSN: 0730-0301 3.

[BBGB20] BOUKHTACHE, SEYFEDDINE, BLAYSAT, BENOIT, GRÉDIAC,
MICHEL, and BERRY, FRANCOIS. “Alternatives to Bicubic Interpolation
Considering FPGA Hardware Resource Consumption”. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems (2020) 2.

[BC14] BARGTEIL, ADAM W and COHEN, ELAINE. “Animation of de-
formable bodies with quadratic Bézier finite elements”. ACM Transac-
tions on Graphics (TOG) 33.3 (2014), 1–10 3.

[Bjo04] BJORKE, KEVIN. “High-quality filtering”. GPU Gems 2
(2004), 391–415 2.

[Bro99] BROWN, RUSS. Modeling specular highlights using Bézier trian-
gles. Sun Microsystems, Inc., 1999 2.

[Csé18] CSÉBFALVI, BALÁZS. “Fast Catmull-Rom Spline Interpola-
tion for High-Quality Texture Sampling”. Computer Graphics Forum.
Vol. 37. 2. Wiley Online Library. 2018, 455–462 1, 2, 10, 11.

[Csé19] CSÉBFALVI, BALÁZS. “Beyond trilinear interpolation: higher
quality for free”. ACM Transactions on Graphics (TOG) 38.4 (2019), 1–
8 2, 11.

[Far93] FARIN, GERALD. “Chapter 18 - Bézier Triangles”. Curves and
Surfaces for Computer-Aided Geometric Design (Third Edition). Ed. by
FARIN, GERALD. Third Edition. Boston: Academic Press, 1993, 321–
351. ISBN: 978-0-12-249052-1 2.

[GNSS14] GOUR, PRANAV NARAYAN, NARUMANCHI, SUJAY, SAURAV,
SUMEET, and SINGH, SANJAY. “Hardware accelerator for real-time im-
age resizing”. 18th International Symposium on VLSI Design and Test.
IEEE. 2014, 1–6 2.

[Jam20] JAMES, DOUG L. “Phong deformation: a better C 0 interpolant
for embedded deformation”. ACM Transactions on Graphics (TOG) 39.4
(2020), 56–1 3, 13, 14.

[Kar14] KARIS, BRIAN. “High Quality Temporal Supersampling”. ACM
SIGGRAPH Courses: Advances in Real-Time Rendering in Games
(2014). SIGGRAPH ’14. New York, NY, USA: Association for Com-
puting Machinery, 2014 11.

[Key81] KEYS, ROBERT. “Cubic convolution interpolation for digital im-
age processing”. IEEE transactions on acoustics, speech, and signal pro-
cessing 29.6 (1981), 1153–1160 2.

[KNPH95] KASSON, JAMES M, NIN, SIGFREDO I, PLOUFFE, WIL, and
HAFNER, JAMES LEE. “Performing color space conversions with three-
dimensional linear interpolation”. Journal of Electronic Imaging 4.3
(1995), 226–250 8.

[LSC*08] LIN, CHUNG-CHI, SHEU, MING-HWA, CHIANG, HUANN-
KENG, et al. “The efficient VLSI design of BI-CUBIC convolution in-
terpolation for digital image processing”. 2008 IEEE International Sym-
posium on Circuits and Systems. IEEE. 2008, 480–483 2.

[LSC*10] LIN, CHUNG-CHI, SHEU, MING-HWA, CHIANG, HUANN-
KENG, et al. “An Efficient Architecture of Extended Linear Interpolation
for Image Processing.” J. Inf. Sci. Eng. 26.2 (2010), 631–648 2.

[Map06] MAPLESON, IAN. Infinite Reality Technical Report. 2006. URL:
http://www.sgidepot.co.uk/onyx/IR_techreport.
pdf 2.

[MBDM97] MONTRYM, JOHN S, BAUM, DANIEL R, DIGNAM, DAVID
L, and MIGDAL, CHRISTOPHER J. “InfiniteReality: A real-time graph-
ics system”. Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. 1997, 293–302 2.

[MDSB03] MEYER, MARK, DESBRUN, MATHIEU, SCHRÖDER, PETER,
and BARR, ALAN H. “Discrete differential-geometry operators for tri-
angulated 2-manifolds”. Visualization and mathematics III. Springer,
2003, 35–57 8.

[MH15] MAHAJAN, SHRUTI H and HARPALE, VARSHA K. “Adaptive and
non-adaptive image interpolation techniques”. 2015 International Con-
ference on Computing Communication Control and Automation. IEEE.
2015, 772–775 2.

[ML94] MARSCHNER, STEPHEN R and LOBB, RICHARD J. “An evalua-
tion of reconstruction filters for volume rendering”. Proceedings Visual-
ization’94. IEEE. 1994, 100–107 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://www.sgidepot.co.uk/onyx/IR_techreport.pdf
http://www.sgidepot.co.uk/onyx/IR_techreport.pdf

D. Lin & L. Seiler & C. Yuksel / Hardware Adaptive High-Order Interpolation for Real-Time Graphics

[MMMY97] MOLLER, TORSTEN, MACHIRAJU, RAGHU, MUELLER,
KLAUS, and YAGEL, RONI. “Evaluation and design of filters using a
Taylor series expansion”. IEEE transactions on Visualization and Com-
puter Graphics 3.2 (1997), 184–199 2.

[MN88] MITCHELL, DON P and NETRAVALI, ARUN N. “Reconstruction
filters in computer-graphics”. ACM Siggraph Computer Graphics 22.4
(1988), 221–228 2.

[MSY19] MALLETT, IAN, SEILER, LARRY, and YUKSEL, CEM. “Patch
textures: Hardware implementation of mesh colors”. (2019) 6, 8.

[NA05] NUÑO-MAGANDA, MARCO AURELIO and ARIAS-ESTRADA,
MIGUEL O. “Real-time FPGA-based architecture for bicubic interpo-
lation: an application for digital image scaling”. 2005 International
Conference on Reconfigurable Computing and FPGAs (ReConFig’05).
IEEE. 2005, 8–pp 2.

[Pho75] PHONG, BUI TUONG. “Illumination for Computer Generated Pic-
tures”. Communications of the ACM 18.6 (June 1975), 311–317. ISSN:
0001-0782 2.

[Sei98] SEILER, LARRY. “Quadratic interpolation for near-Phong quality
shading”. ACM SIGGRAPH 98 Conference Abstracts and Applications.
1998, 268 3.

[SH05] SIGG, CHRISTIAN and HADWIGER, MARKUS. “Fast third-order
texture filtering”. GPU gems 2 (2005), 313–329 2.

[SKH16] SANAULLAH, AHMED, KHOSHPARVAR, ARASH, and HER-
BORDT, MARTIN C. “FPGA-Accelerated Particle-Grid Mapping”. 2016
IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE. 2016, 192–195 2.

[SKS02] SLOAN, PETER-PIKE, KAUTZ, JAN, and SNYDER, JOHN. “Pre-
computed radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments”. Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques. 2002, 527–
536 12.

[VPBM01] VLACHOS, ALEX, PETERS, JÖRG, BOYD, CHAS, and
MITCHELL, JASON L. “Curved PN triangles”. Proceedings of the 2001
symposium on Interactive 3D graphics. 2001, 159–166 3, 8.

[WDLY11] WANG, XIANG, DING, YONG, LIU, MING-YU, and YAN,
XIAO-LANG. “Efficient implementation of a cubic-convolution based
image scaling engine”. Journal of Zhejiang University SCIENCE C 12.9
(2011), 743–753 2.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh colors”. ACM Transactions on Graphics 29.2 (2010), 15:1–15:11.
ISSN: 0730-0301 8.

[YLS20] YANG, LEI, LIU, SHIQIU, and SALVI, MARCO. “A survey of
temporal antialiasing techniques”. Computer Graphics Forum. Vol. 39.
2. Wiley Online Library. 2020, 607–621 2, 11.

[Yuk17] YUKSEL, CEM. “Mesh color textures”. Proceedings of High Per-
formance Graphics. 2017, 1–11 8.

[ZLZ*10] ZHANG, YUNSHAN, LI, YUHUI, ZHEN, JIE, et al. “The hard-
ware realization of the bicubic interpolation enlargement algorithm
based on FPGA”. 2010 Third International Symposium on Information
Processing. IEEE. 2010, 277–281 2.

[ZTZ05] ZIENKIEWICZ, OLEK C, TAYLOR, ROBERT L, and ZHU, JIAN
Z. The finite element method: its basis and fundamentals. Elsevier,
2005 2, 3.

Appendix A: L1 Cache Banking for High Order Filtering

Consider 2D cubic interpolations □C2D
12 and ■C2D

16 . They require
reading texels in an unaligned 4× 4 block in parallel so that all
D-terms can be computed in one clock cycle. That in turn permits
the filter operation to be completed in one clock if all D-terms are
below the threshold Dmin, so that the operation reduces to linear
interpolation.

Note that □C2D
12 does not need the four corner texels of the 4×4

block, so a small amount of power can be saved by not reading
from those banks. 4× 4 banks are still required since the texels
emerge from the banks in rotated order, as described at the end of
Section 4.2. Therefore, the unused texels could come from any of
the 16 banks, depending on the alignment of the 4×4 block.

Next, consider 3D cubic interpolations □C3D
32 and ■C3D

64 . They re-
quire reading texels in an unaligned 4× 4× 4 block (though □C3D

32
does not use the corner values). However, if all D-terms are below
Dmin and the filter operation reduces to trilinear interpolation, they
require two BOP cycles to process 2×2×2 texels. Therefore, it is
only necessary to be able to read 4×4×2 texels in parallel on each
of two clocks to allow cubic cuboid interpolation to perform at the
same speed as trilinear interpolation.

Biquadratic and triquadratic filtering are also supported using
unaligned 4× 4 or 4× 4× 4 arrays of texels. The mid-edge val-
ues are computed from the larger array. So, although the quadratic
filtering modes require fewer D-terms, they require accessing the
same number of texels.

Therefore, to accommodate peak performance we must access
up to 32 texels per clock from the texel L1 cache. The left side of
Figure 4 illustrates this. The 32 banks are interleaved based on the
low order two bits of each of the U and V indices and the low order
bit of the slice number for the 3D texel array. Then, two accesses
provide the unaligned 4×4×4 of texels needed to perform tricubic
interpolation.

It is not necessary for an implementation to support 32 banks
of texel L1 cache in order to support tricubic interpolation. E.g. if
only 16 banks were supported, tricubic interpolation would require
a minimum of four cycles instead of two. This would also reduce
the cost of computing the D-terms, since only one quarter of them
would need to be computed per clock.

Similarly, an implementation could choose to provide only 8
banks. This would cause bicubic interpolation to take a minimum of
two cycles because it takes two accesses to read an unaligned 4×4
of texels from the texel L1 cache. Therefore, the cost of increasing
the number of texel L1 cache banks can be traded off against the
desired performance for higher order filtering.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

