
High-Performance Graphics (2019) Short Paper
Author preprint

Mach-RT: A Many Chip Architecture for Ray Tracing

E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel
School of Computing, University of Utah

I$ L1
RSB

RSB

TP TP TP TP

Execution
Units

Ray-Triangle
Intersectors

Ray-Box
Intersectors

(a) Thread Multiprocessor (TM) (b) Streaming Processor Chip (SPC)

Scene Data Ray Data Frame Info

Scene
Bu�er

Frame
Bu�er L2

TM TM TM TM

Stream
Scheduler

(c) Multi-Chip Board

Generic ConnectionOther Data

Wide Vector Bu�er

DRAM Chips

Memory Controller

L3

SPC SPC SPC SPC

.

. . .

Figure 1: Overview of Mach-RT – our multiple chip architecture for high-performance ray tracing. We propose a solution that integrates
many chips on a board sharing main (scene) memory, while keeping all rays stored in on-chip memory distributed across those chips. Each
chip contains a number of Thread Multiprocessors which in turn are comprised of many small Thread Processors operating in parallel.

Abstract
We propose an unconventional solution to high-performance ray tracing that combines a ray ordering scheme that minimizes
access to the scene data with a large on-chip buffer acting as near-compute storage that is spread over multiple chips. We
demonstrate the effectiveness of our approach by introducing Mach-RT (Many chip - Ray Tracing), a new hardware architecture
for accelerating ray tracing. Extending the concept of dual streaming, we optimize the main memory accesses to a level that
allows the same memory system to service multiple processor chips at the same time. While a multiple chip solution might seem
to imply increased energy consumption as well, because of the reduced memory traffic we are able to demonstrate, performance
increases while maintaining reasonable energy usage compared to academic and commercial architectures.

CCS Concepts
• Computing methodologies → Ray tracing; Graphics processors; • Computer systems org. → Parallel architectures;

1. Introduction

The tremendous rendering performance of commercial GPUs is
due to two important properties of the rasterization algorithm: its
high level of parallelism, which provides a great fit for GPUs with
many parallel cores, and the perfectly predictable manner in which
rasterization accesses the scene data. The second property is as im-
portant as the first one, if not more so, since it allows GPUs to
completely hide memory latency. Indeed, memory operations are
the bottleneck of most computing problems today and rasteriza-
tion circumvents this performance penalty by streaming data from
memory in a sequential order.

Ray tracing, on the other hand, does not provide such a pre-

dictable streaming access to the scene data. Instead, the spatial par-
titioning structures used for accelerating ray tracing lead to effec-
tively random, non-sequential accesses to the scene data that pre-
vent prefetching. Therefore, most recent work on accelerating ray
tracing concentrates on improving memory behavior, by coalesc-
ing memory accesses [SKKB09; KSBD10; AL09] or compress-
ing scene data [LV16; YKL17; BWWÁ18]. Nonetheless, closing
the performance gap between rasterization and ray tracing requires
fundamentally restructuring ray tracing such that it can produce the
predictable streaming access to scene data that rasterization en-
joys. The Dual Streaming method [SGK*17] is one such method
that restructures the memory access pattern of ray tracing into two
perfectly predictable streams: a scene stream and a ray stream.

Author preprint

E. Vasiou, K. Shkurko, E. Brunvand, & C. Yuksel / Mach-RT: A Many Chip Architecture for Ray Tracing

While the scene stream reduces the scene data transferred from
main memory to its absolute minimum, the additional ray stream
dominates the memory traffic and hinders the performance of this
approach.

In this paper, we propose an unconventional solution to the mem-
ory access problem. We begin with the ray ordering scheme of the
dual streaming approach that minimizes the memory traffic for the
scene data. We then eliminate the ray stream by storing ray data in
on-chip buffers. Unfortunately, such buffers on a single chip cannot
be large enough to store all rays needed for achieving high render-
ing performance. Indeed, a large buffer would lead to overheads not
only in area and manufacturing costs, but also in performance, as
each access to the allocated memory would be progressively more
costly in latency and energy the larger the memory block is. Our
solution is spreading this cost over multiple chips, all of which are
connected to the same main memory system. This leads to much
smaller chips that can be manufactured cost-effectively, and buffers
on these chips that can operate with reduced latency and energy
consumption. Adding an off-chip L3 cache shared among all chips
reduces the workload on the main memory, allowing a single mem-
ory system to effectively service multiple chips.

We introduce Mach-RT (Many chip - Ray Tracing), a new hard-
ware architecture for accelerating ray tracing, as a proof of concept
to evaluate our approach. An important advantage of Mach-RT is
that it uses general-purpose compute cores that can execute diverg-
ing instructions Moreover, our system is entirely programmable
and the test renderer is written entirely in standard C++ with cus-
tom instructions for ray-triangle and ray-box intersections. One in-
spiration for this approach are the so-called processor in memory
(PIM) or near-data processing (NDP) architectures that focus on
large memories while moving processing closer to that memory.
By focusing on moving the processing closer to the required mem-
ory, data movement can be minimized and the entire system can be
made more efficient.

One might falsely expect a multi-chip architecture to consume
significantly more energy than a single processor chip. On the con-
trary, we observe in our results that this assumption is incorrect and
indeed a multi-chip architecture can improve performance while
reducing the total energy consumption. This is an important con-
tribution as in fact, energy consumption is a growing concern for
real-time rendering, especially considering recent commercial ef-
forts on cloud computing for online gaming.

We demonstrate the capabilities of the new Mach-RT archi-
tecture by comparing against academic architectures such as
STRaTA [KSS*13] and Dual Streaming [SGK*17] and to highly-
optimized ray tracing software/hardware products from the in-
dustry, including Intel’s Embree [WWB*14] and Microsoft’s
DXR [WHSB18] running on NVIDIA’s recent Turing architecture
with hardware support for ray tracing [NVI18], showing that our
system can provide substantially improved performance.

2. Background

It is not a new observation that accessing memory is a primary
concern when accelerating ray tracing. One approach has been to
propose specialized fixed-function traversal units integrated into

processors [WBS06; KKK12; LSL*13; NKK*14]. However, fixed-
function units do not necessarily optimize data requests from the
memory system hierarchy.

Some researchers have focused on reordering how ray and scene
data is accessed by utilizing a form of streaming [WGBK07; GR08;
Bik12; BA14], or collecting ray and scene data requests through
software means [GDS*08; KJJ*09; SKKB09; ALK12].

Memory traffic can be reduced by exploiting the BVH struc-
ture [NFLM07; AK10] or by modifying it to get better perfor-
mance [MB18; Tsa09]. Even in cases where the proposed archi-
tecture is designed to keep rays on chip [KSS*13; KSS*15], it is
still limited in the number of rays it can process simultaneously.
While a pool of work is focused on compressing the acceleration
structure [Kee14; LV16; YKL17; LMSS18] even the most aggres-
sive of those schemes cannot realistically enable storing all rays on
chip as rendering a single frame can require tens of millions of rays.

Dual Streaming Algorithm Our proposed system is inspired by
the Dual Streaming architecture’s approach to restructuring and
minimizing the scene data stream [SGK*17]. In that approach the
scene stream consists of BVH treelets [AK10], each containing
both nodes and geometry (e.g. triangles). Each treelet fits into sev-
eral DRAM row buffers for efficient streaming from main memory,
and can be processed separately in parallel.

Dual Streaming processes rays as wavefronts, each of which con-
tains all rays in flight at the same depth, making up the ray stream.
The ray stream is split into ray queues, one per treelet, and stores
only basic ray data (i.e. origin and direction), but not the traver-
sal stack per ray. During traversal, the ray queue associated with a
given treelet is drained fully before a new treelet is acquired.

Rays visit treelets in a fixed traversal order, strictly from a par-
ent node into its children without returning up. This ensures that
treelets are loaded from the main memory at most once per ray
wavefront. Both scene treelet data and its corresponding ray queue
are prefetched onto the chip ahead of traversal. If a treelet has no
rays for processing, then the entire scene subtree is skipped. Traver-
sal continues until all ray queues are empty. When a ray encounters
an exit from the current treelet into one of its children, the ray is
duplicated into the child queue and continues traversing the current
treelet until all exit points are found.

Dual Streaming relies on a single shared hit record for each set
of ray duplicates, which requires atomic updates whenever any ray
in the set finds a hit. One disadvantage of this approach is that using
the hit record for early ray termination becomes non-trivial because
a duplicate could be traversing a different treelet with a closer hit.

3. Mach-RT: A Multi-Chip Architecture

It is well known in the computer architecture community that
memory traffic, especially DRAM traffic, is the largest contribu-
tor to latency and energy increases in computing systems [WM95;
BABD00; BKC14; KSS*15]. That is specifically the case for ray
tracing as well [VSM*18]. Dual Streaming minimizes DRAM traf-
fic for scene data at the cost of adding ray data traffic, which is sig-
nificantly larger. Therefore, if one can eliminate the ray data traffic,

Author preprint

E. Vasiou, K. Shkurko, E. Brunvand, & C. Yuksel / Mach-RT: A Many Chip Architecture for Ray Tracing

DRAM could handle the predictable scene data requests efficiently.
One way to achieve this is by storing ray data in on-chip buffers.
While it is not reasonable to expect that a single processor chip
would have enough storage for all ray data, multiple chips can col-
lectively store all rays.

One might think that connecting multiple chips to a single
DRAM might be disastrous for performance. We find the contrary
because our proposed architecture generates minimal scene traffic
and absolutely no ray traffic to DRAM. On a fabrication level, it is
easy to imagine that building a board that contains multiple Mach-
RT chips is no different from a traditional circuit board. Yet, one
could also imagine that multiple chips can be assembled on a sili-
con interposer with the off-chip and main memory also integrated
in a tightly coupled system [TZ14; USS*17]. Bare die assembled
on an interposer substrate would result in a denser, higher speed
system with a smaller footprint and higher bandwidth links between
the various components.

Although we focus on solving the memory bottlenecks associ-
ated with ray tracing with our architecture, the system we have de-
signed, unlike the above approaches, resembles more a contempo-
rary GPU that is fully programmable with only a handful of spe-
cialized units such as the ray-box/triangle intersection pipelines
and stream scheduler. All chips utilize the Single Program Mul-
tiple Data (SPMD) programming paradigm and since each chip is
independent they can be programmed to carry out differing tasks.
Additionally, Mach-RT does not assume a fixed function rendering
pipeline. The rendering programs are written in C++, making it ac-
cessible even to those without knowledge of intricate specialized
languages and assembly.

3.1. Chip Architecture

Our architecture is designed with multiple chips on a board, all con-
nected to main memory through an off-chip L3 cache. Each chip is
assigned a portion of the final image to be computed in parallel.
We assume a homogeneous model for all chips across the board, as
shown in Figure 1. Each Streaming Processor Chip (SPC) consists
of a large number of Thread Multiprocessors (TMs), each of which
contains a number of Thread Processors (TPs). TPs are grouped in
such a way to allow for shared utilization of energy and area ex-
pensive units. Chips contain an L2 data cache, used primarily for
shading data. The scene buffer and the stream scheduler are im-
plemented similarly to the Dual Streaming architecture. SPCs also
contain an on-chip wide vector storage buffer that stores unique ray
data for the entire wavefront.

The on-chip frame buffer stores the hit records and other data
necessary to generate new rays in each wavefront. Unlike Dual
Streaming that must utilize a Global Hit Record Updater to atom-
ically update hit records stored in DRAM, our frame buffer
processes hit records locally. Since chips are assigned a non-
overlapping set of pixels from the entire image hit records shared
by ray duplicates remain on chip and thus always available for up-
dates and queries.This enables checking the current closest hit for
each ray before traversing it through a treelet. The frame buffer also
stores the colors for pixels assigned to the SPC.

Table 1: The default configuration of our Mach-RT architecture.

Board TM Configuration
Clock Rate 2.0 GHz TMs / chip 32
DRAM Memory 4 GB GDDR5 TPs / TM 16
L3 Cache 64 MB L1 Cache 32 KB, 8 banks
Total Threads 512 / chip Ray Staging Buffer 2×2KB
Chips 1 - 8
On-Chip Memory (per Chip) Area per Chip
L2 Cache 512 KB, 32 banks Scheduler negligible
Scene Buffer 4 MB Caches / Buffers 542 mm2

Frame Buffer 6.5 MB Compute 52 mm2

Wide Vector Buffer 6.75 MB Total 594 mm2

Even though scene traffic is minimized per chip, because multi-
ple chips need to access the scene data, read requests can stress the
memory interface. To ease the pressure on DRAM, we implement
an off-chip L3 cache that facilitates communication between all the
chips on the board and the main memory.The scene data transfer
uses a small portion of the total available bandwidth, so a simple
SRAM cache is sufficient to manage traffic to all chips. A single
off-chip L3 cache also allows to interface with DRAM via a single
memory controller, simplifying the memory hierarchy.

3.2. Mach-RT Configuration

We use Cacti 7.0 [BKM*17] for the area and energy estimates of
all our SRAM buffers and on-chip caches. Computation units are
estimated using Synopsys DesignWare/Design Compiler at the 65
nm process technology. Table 1 shows the configuration and the
area estimates for our multi-chip system and each chip within. The
memory sizes and area estimates assume that there are 8 chips on a
board. For comparisons, single large chip instances of each archi-
tecture are configured such that their compute and memory capaci-
ties match the values of our proposed architecture.

Each SPC in our simulations runs at 2.0 GHz and includes 512
Thread Processors (TPs), split evenly between 32 Thread Multipro-
cessors (TMs) (see Figure 1). TPs contain their own floating point
add and integer units, and rely on their own program counter for
control flow. Each TP has 32 registers for a total of 128B scratch-
pad memory. We provision for 4 MB of on-chip memory for the
Scene Buffer handling treelets 64 KB in size. TPs in each TM share
1 ray-box and 2 ray-triangle intersection pipelines. Other shared
large-area units consist of L1 data cache, instruction cache, Ray
Staging Buffer and large execution units such as floating point di-
vision.

Besides the scene buffer, on-chip memory is split between the
L2 cache, the frame buffer and the wide vector buffer. The direct-
mapped L2 cache holds 512 KB and is used strictly for shading
data. While all other units remain constant in size when more chips
are placed on a board, the wide vector buffer (ray storage) and the
frame buffer can be smaller in size because the workload per chip is
naturally reduced. We allocate 6.5 MB to the frame buffer to store
the ray hit records and pixel colors. We assume each ray holds the
most basic information 28B in size. Because rays can be duplicated
during traversal (Section 2), we store each duplicate as 4B indexes
that reference unique ray data. We provision for two rays per pixel
(shadow and non-shadow) per wavefront with a generous duplica-
tion rate of 20. For the given image resolution, this configuration

Author preprint

E. Vasiou, K. Shkurko, E. Brunvand, & C. Yuksel / Mach-RT: A Many Chip Architecture for Ray Tracing

requires approximately 54 MB of ray storage distributed across all
chips on the Mach-RT multi-chip board.

The off-chip direct-mapped L3 cache is also modeled as a basic
SRAM using Cacti’s off-chip memory options. The access latency
is estimated by adjusting Cacti output to account for the wire delay
between the L3 cache and the on-board chips assuming all chips are
equidistant from the L3. We test several L3 sizes, choosing the 64
MB configuration shown in Table 1 as the primary one. The multi-
chip board has 4 GB of GDDR5 DRAM configured with 16 32-bit
channels for a total of 512 GB/s maximum bandwidth.

4. Experimentation and Results

Our primary goal in this work is to show that a novel multi-chip
architecture, such as Mach-RT, can enable ray tracing to exhibit
completely streamed memory access behavior, similar to rasteriza-
tion. The result is a high-performance ray tracing engine that can
efficiently share memory resources across multiple chips.

To demonstrate this, we evaluate our proposed hardware ar-
chitecture on a set of test scenes using a cycle-accurate simula-
tor [SGE*18]. The simulator integrates a detailed memory simu-
lator [CBS*12] that accurately models DRAM, a vital component
of our experiments that ensures proper system evaluation. We use
a number of test scenes with varying triangle counts that represent
different types of rendering effort, shown in Figure 2.

Each scene is rendered using path tracing with the maximum ray
depth of five at the image resolution of 1024×1024. This workload
produces a set of rays which access scene data incoherently, stress-
ing the memory systems of the dedicated ray tracing architectures.
To keep focus on traversal and intersection performance, we rely
on simple Lambertian shading.

4.1. Single Large Chip

To probe the limits of our architecture we evaluate a single large
chip version of our proposed architecture and compare it with the
Dual Streaming architecture [SGK*17] configured to use a large
number of threads on a single large chip to understand the effects
of keeping ray data on chip. Although both configurations are un-
realistic, because they require much more on-chip memory than is
plausible to allocate on a single chip, this comparison is useful to
understand the best-case behavior. Then we can evaluate the im-
pact of having multiple, more reasonable, chips accessing memory
simultaneously.

For all tested scenes, our proposed Mach-RT as a large chip out-
performs the large Dual Streaming chip for all thread counts. Note
that while the Dual Streaming performance tapers off for larger
thread counts, our Mach-RT architecture keeps improving. For ex-
ample, at 4096 threads, the Mach-RT single large chip renders the
frame in half the time: 8 instead of 16 ms/frame for Dragon Sponza
and 16 instead of 35 ms/frame for San Miguel. Similarly, the energy
costs are lower for our Mach-RT system. While Dual Streaming is
bound by DRAM energy, our proposed architecture shows a trade
off between DRAM and on-chip energies for larger thread counts
Because the chip has more of the required data available, it can
utilize its resources more effectively. However, such configurations

require chips with unrealistically-large on-chip buffers: over 100
MB, most of which would be allocated for ray storage.

4.2. Multiple-Chip Ray Tracing

The crux of the Mach-RT architecture is that it distributes the
unrealistically-large on-chip memory between multiple chips with-
out incurring a drop in performance. This is primarily due to the
ability to predictably stream scene data from main memory while
keeping all ray traffic on-chip.

We compare our multi-chip design to a single unrealistically-
large Dual Streaming chip [SGK*17] and STRaTA [KSS*13;
KSS*15] chip with hardware resources scaled to a combination of
all of our chips. While the energy requirements for our proposed
system can be slightly higher for some scenes, such as Vegetation
and San Miguel, for all tested scenes and chip/thread counts, the
issue rate of our cores is higher, averaging at high 60% for Mach-
RT and 40% for Dual Streaming and STRaTA. Except for Vegeta-
tion, for which STRaTA is considerably faster because it can uti-
lize early ray termination, our method renders frames faster for all
tested scenes at all chip/thread counts. Most interestingly, while our
method keeps improving past four chips (2048 threads), STRaTA
begins to slow down at those thread counts. Notably at 2048 threads
for Dragon Sponza is at 29 ms/frame it slows down to 67 ms/frame
for twice the size of the operating chip (scaled for both threads and
memory) at 4096 threads.

The comparison with STRaTA is especially interesting since it is
an architecture optimized to reduce DRAM energy while keeping
some rays in specialized on-chip memory. Despite STRaTA being
provisioned to hold an increasing number of rays as the chip scales,
it requests a lot of data from main memory, transferring a larger
number of cache lines Our Mach-RT multi-chip architecture trans-
fers at most 180 million cache-lines at 4096 threads (8 chips) for
San Miguel, while STRaTA is close to 542 million. Similarly, be-
cause STRaTA requests more data from DRAM, it consumes more
energy than the Mach-RT architecture. The total energy decreases
until 2048 threads (4 chips) and begins to increase after that. While
our proposed architecture behaves similarly but at a smaller scale,
the render times are considerably lower making the increase in en-
ergy an acceptable side effect.

While Mach-RT has no ray traffic to DRAM, each chip still
streams the scene once per ray wavefront. Table 2 shows de-
spite that artificially inflated scene traffic, Mach-RT bandwidth and
bytes/ray is always the lowest compared to the other architectures
and traces more rays per second. Given the presence of the on-chip
buffers, on-chip memory energy is higher overall but not enough to
outweigh the savings from not interfacing with main memory.

4.3. Comparisons to Existing Systems

For completeness, we also include comparisons to existing soft-
ware/hardware systems optimized for high-performance ray trac-
ing, including a Microsoft DXR implementation of path trac-
ing [WHSB18] and Intel’s Embree [WWB*14] CPU ray tracer both
running on commercially-available hardware. The DXR results use
an NVIDIA RTX 2080 GPU with 2688 cores running at 1.8 GHz,

Author preprint

E. Vasiou, K. Shkurko, E. Brunvand, & C. Yuksel / Mach-RT: A Many Chip Architecture for Ray Tracing

Fairy Forest
174K triangles

Crytek Sponza
262K triangles

Dragon Box
870K triangles

Vegetation
1.1M triangles

Dragon Sponza
6.6M triangles

San Miguel
10.5M triangles

Figure 2: Benchmark scenes used in our performance tests, ordered according to increasing triangle count.

Table 2: Overall performance evaluation of the dedicated ray tracing architectures.

Fairy Forest Crytek Sponza Dragon Box Vegetation Dragon Sponza San Miguel
Frame Render Time 3.42 ms 10.27 ms 5.17 ms 11.75 ms 7.98 ms 16.57 ms
Rays Traced per sec 1719 M 886 M 2274 M 471 M 1203 M 550 M
On-Chip Memory Energy 1.81 J 6.88 J 3.03 J 5.39 J 4.19 J 11.17 J
DRAM Energy 0.14 J 0.33 J 0.28 J 0.38 J 0.79 J 1.68 J
Total Energy 2.16 J 7.52 J 3.96 J 6.22 J 6.46 J 16.33 J

Mach-RT, Ours
8 chips

Avg. Bandwidth 53 GB/s 22 GB/s 133 GB/s 23 GB/s 280 GB/s 330 GB/s
Frame Render Time 5.47 ms 17.20 ms 9.54 ms 14.72 ms 13.10 ms 35.23 ms
Rays Traced per sec 1074 M 529 M 1231 M 376 M 732 M 259 M
On-Chip Memory Energy 3.11 J 11.38 J 4.83 J 7.65 J 6.80 J 21.96 J
DRAM Energy 0.57 J 1.76 J 1.12 J 1.05 J 1.49 J 3.71 J
Total Board Energy 3.74 J 13.40 J 6.10 J 8.91 J 8.46 J 26.13 J

Dual Streaming
single chip

(unrealistically-large)

Avg. Bandwidth 267 GB/s 265 GB/s 283 GB/s 155 GB/s 300 GB/s 266 GB/s
Frame Render Time 11.93 ms 29.43 ms 234.68 ms 28.76 ms 140.80 ms 226.70 ms
Rays Traced per sec 1154 M 680 M 101 M 400 M 143 M 81 M
On-Chip Memory Energy 1.60 J 4.36 J 9.24 J 3.02 J 6.43 J 10.78 J
DRAM Energy 11.61 J 1.69 J 11.61 J 0.47 J 4.53 J 12.62 J
Total Board Energy 21.17 J 6.28 J 21.17 J 2.16 J 11.19 J 23.75 J

STRaTA
single chip

(unrealistically-large)

Avg. Bandwidth 257 GB/s 325 GB/s 175 GB/s 341 GB/s 91 GB/s 154 GB/s

Each system has 4096 threads running at 2 GHz frequency. The rendering performance is evaluated with frame render time and the millions
(M) of rays traced per second. The component-wise distribution of total energy per frame is also shown. Higher is better for rays traced;
otherwise, lower is better.

and 8192 MB GDDR6 memory with 448 GB/s peak bandwidth.
The Embree (v2.10) results use the example path tracer (v2.3.2)
running on an Intel Core i7-5960X processor with 20 MB L3 cache
and 8 cores (16 threads) running at 3.8 GHz. To compare with Mi-
crosoft’s DXR, we configured our Mach-RT architecture with 6
chips (3072 threads) running at 1.8 GHz. Table 3 shows the results
of our tests. Although Embree performs slower than the custom ray
tracing hardware, it can run on commodity general-purpose com-
putation hardware. In our tests, the Mach-RT system with 6 chips
provides faster render times than DXR running on NVIDIA RTX
2080 for all tested scenes. Notice that the scene data format we
use in our system is not extensively compressed. This is particu-
larly important because data movement is the bottleneck of most
rendering operations.

5. Conclusion

We introduced a new many-chip architecture Mach-RT that lever-
ages several independent chips co-located on a single board or in-
terposer. This approach implements the Dual Streaming ray traver-
sal but completely removes the ray stream traffic to DRAM and

further reduces both DRAM and total system energy while increas-
ing scalable performance up to 4096 threads.

We evaluated our proposed architecture using a cycle-accurate
simulator Our proposed architecture is shown to exceed the perfor-
mance capabilities of the Dual Streaming architecture. For the more
direct applicability of the method, we also compared to the im-
plementations of the traditional path tracing algorithm using DXR
and Embree libraries running on current hardware, finding that the
Mach-RT can significantly outperform them.

Acknowledgements

This material is based upon work supported by the National Science
Foundation under grant no. 1409129. Scene data: Fairy Forest: U.
Utah, Crytek Sponza: F. Meinl at Crytek and M. Dabrovic, Dragon:
Stanford CG Lab., Vegetation: S. Laine, and San Miguel: G. Leal
Laguno.

References
[AK10] AILA, T. and KARRAS, T. “Architecture Considerations for Trac-

ing Incoherent Rays”. HPG ’10. 2010 2.

Author preprint

E. Vasiou, K. Shkurko, E. Brunvand, & C. Yuksel / Mach-RT: A Many Chip Architecture for Ray Tracing

Table 3: Performance comparison between our Mach-RT architecture and Existing Software/Hardware Systems

Fairy Forest Crytek Sponza Dragon Box Vegetation Dragon Sponza San Miguel
Mach-RT, Ours

(6 chips @ 1.8 GHz)
Frame Render Time 4.82 ms 14.81 ms 7.86 ms 20.64 ms 10.89 ms 23.50 ms
Rays Traced per sec 1,218 M 615 M 1,495 M 284 M 882 M 388 M

DXR
(Nvidia RTX 2080)

Frame Render Time 11.13 ms 16.92 ms 16.89 ms 22.51 ms 24.90 ms 37.98 ms
Rays Traced per sec 546 M 698 M 745 M 289 M 478 M 288 M

Embree
(Intel Core i7-5960X)

Frame Render Time 83.6 ms 150.63 ms 103.81 ms 178.99 ms 118.05 ms 143.64 ms
Rays Traced per sec 96 M 62 M 89 M 42 M 71 M 50 M

Mach-RT simulated with 6 chips (3072 threads). Embree and DXR run on commercially-available hardware. The clock frequency of the
Mach-RT architecture is set to 1.8 GHz, matching the NVIDIA RTX 2080 running DXR. M means millions.

[AL09] AILA, T. and LAINE, S. “Understanding the Efficiency of Ray
Traversal on GPUs”. HPG ’09. 2009 1.

[ALK12] AILA, T., LAINE, S., and KARRAS, T. Understanding the Ef-
ficiency of Ray Traversal on GPUs – Kepler and Fermi Addendum.
NVIDIA Technical Report NVR-2012-02. June 2012 2.

[BA14] BARRINGER, R. and AKENINE-MÖLLER, T. “Dynamic Ray
Stream Traversal”. ACM Trans. Graph. 33.4 (July 2014) 2.

[BABD00] BALASUBRAMONIAN, R., ALBONESI, D.H., BUYUKTO-
SUNOGLU, A., and DWARKADAS, S. “Memory Hierarchy Reconfigu-
ration for Energy and Performance in General-Purpose Processor Archi-
tectures”. MICRO ’00. 2000 2.

[Bik12] BIKKER, J. “Improving Data Locality for Efficient In-Core Path
Tracing”. Computer Graphics Forum. Vol. 31. 6. 2012 2.

[BKC14] BRUNVAND, E., KOPTA, D., and CHATTERJEE, N. “Why
Graphics Programmers Need to Know About DRAM”. SIGGRAPH
2014 Courses. 2014 2.

[BKM*17] BALASUBRAMONIAN, R., KAHNG, A. B., MURAL-
IMANOHAR, N., et al. “CACTI 7: New Tools for Interconnect
Exploration in Innovative Off-Chip Memories”. ACM Trans. Archit.
Code Optim. 14.2 (June 2017) 3.

[BWWÁ18] BENTHIN, C., WALD, I., WOOP, S., and ÁFRA, A. T.
“Compressed-leaf Bounding Volume Hierarchies”. HPG ’18. 2018 1.

[CBS*12] CHATTERJEE, N., BALASUBRAMONIAN, R., SHEVGOOR, M.,
et al. USIMM: the Utah SImulated Memory Module. Tech. rep. UUCS-
12-02. University of Utah, 2012 4.

[GDS*08] GOVINDARAJU, V., DJEU, P., SANKARALINGAM, K., et
al. “Toward A Multicore Architecture for Real-time Ray-tracing”.
IEEE/ACM Micro ’08. Oct. 2008 2.

[GR08] GRIBBLE, C. and RAMANI, K. “Coherent Ray Tracing via Stream
Filtering”. IRT ’08. 2008 2.

[Kee14] KEELY, S. “Reduced Precision for Hardware Ray Tracing in
GPUs”. HPG ’14. 2014 2.

[KJJ*09] KELM, J., JOHNSON, D., JOHNSON, M., et al. “Rigel: an archi-
tecture and scalable programming interface for a 1000-core accelerator”.
ISCA ’09. 2009 2.

[KKK12] KIM, H., KIM, Y., and KIM, L. “MRTP: Mobile Ray Tracing
Processor With Reconfigurable Stream Multi-Processors for High Data-
path Utilization”. IEEE JSSC 47.2 (2012), 518–535 2.

[KSBD10] KOPTA, D., SPJUT, J., BRUNVAND, E., and DAVIS, A. “Ef-
ficient MIMD architectures for high-performance ray tracing”. IEEE
ICCD ’10. 2010 1.

[KSS*13] KOPTA, D., SHKURKO, K., SPJUT, J., et al. “An energy and
bandwidth efficient ray tracing architecture”. HPG ’13. 2013 2, 4.

[KSS*15] KOPTA, D., SHKURKO, K., SPJUT, J., et al. “Memory Consid-
erations for Low Energy Ray Tracing”. CGF 34.1 (2015) 2, 4.

[LMSS18] LIER, A., MARTINEK, M., STAMMINGER, M., and SELGRAD,
K. “A High-Resolution Compression Scheme for Ray Tracing Subdivi-
sion Surfaces with Displacement”. Proc. ACM Comput. Graph. Interact.
Tech. 1.2 (Aug. 2018) 2.

[LSL*13] LEE, W., SHIN, Y., LEE, J., et al. “SGRT: A mobile GPU archi-
tecture for real-time ray tracing”. HPG ’13. 2013 2.

[LV16] LIKTOR, G. and VAIDYANATHAN, K. “Bandwidth-efficient BVH
Layout for Incremental Hardware Traversal”. HPG ’16. 2016 1, 2.

[MB18] MEISTER, D. and BITTNER, J. “Parallel Reinsertion for Bound-
ing Volume Hierarchy Optimization”. CGF. Vol. 37. 2. 2018 2.

[NFLM07] NAVRÁTIL, P., FUSSELL, D., LIN, C., and MARK, W. “Dy-
namic ray scheduling to improve ray coherence and bandwidth utiliza-
tion”. IRT ’07. 2007 2.

[NKK*14] NAH, J., KWON, H., KIM, D., et al. “RayCore: A Ray-Tracing
Hardware Architecture for Mobile Devices”. ACM TOG 33.5 (2014) 2.

[NVI18] NVIDIA. Turing GPU Arch. WP-09183-001_v01. 2018 2.

[SGE*18] SHKURKO, K., GRANT, T., E. BRUNVAND, D. KOPTA, et
al. “SimTRaX: Simulation Infrastructure for Exploring Thousands of
Cores”. Great Lakes Symposium on VLSI (GLSVLSI). 2018 4.

[SGK*17] SHKURKO, K., GRANT, T., KOPTA, D., et al. “Dual Streaming
for Hardware-accelerated Ray Tracing”. HPG ’17. 2017 1, 2, 4.

[SKKB09] SPJUT, J., KENSLER, A., KOPTA, D., and BRUNVAND, E.
“TRaX: A Multicore Hardware Architecture for Real-Time Ray Trac-
ing”. IEEE Trans. on CAD 28.12 (2009) 1, 2.

[Tsa09] TSAKOK, JOHN A. “Faster incoherent rays: Multi-BVH ray
stream tracing”. HPG ’09. 2009 2.

[TZ14] THONNART, Y. and ZID, M. “Technology assessment of silicon
interposers for manycore SoCs: Active, passive, or optical?”: IEEE Net-
works on Chip confrence. NoCs ’14. Sept. 2014 3.

[USS*17] USMAN, A., SHAH, E., SATISHPRASAD, N. B., et al. “Inter-
poser Technologies for High-Performance Applications”. IEEE Trans.
on Components, Packaging and Mfc. Tech. 7.6 (June 2017) 3.

[VSM*18] VASIOU, E., SHKURKO, K., MALLETT, I., et al. “A detailed
study of ray tracing performance: render time and energy cost”. The Vi-
sual Computer 34.6 (June 2018) 2.

[WBS06] WOOP, S., BRUNVAND, E., and SLUSALLAK, P. “Estimating
Performance of a Ray Tracing ASIC Design”. IRT ’06. Sept. 2006 2.

[WGBK07] WALD, I., GRIBBLE, C. P., BOULOS, S., and KENSLER, A.
SIMD Ray Stream Tracing-SIMD Ray Traversal with Generalized Ray
Packets and On-the-fly Re-Ordering. Tech. rep. UUSCI-2007-012. SCI
Institute, U. of Utah, 2007 2.

[WHSB18] WYMAN, C., HARGREAVES, S., SHIRLEY, P., and BARRÉ-
BRISEBOIS, C. “Introduction to DirectX Raytracing”. ACM SIGGRAPH
2018 Courses. Aug. 2018 2, 4.

[WM95] WULF, WM. A. and MCKEE, S.A. “Hitting the Memory Wall:
Implications of the Obvious”. Comp. Arch. News 23.1 (Mar. 1995) 2.

[WWB*14] WALD, I., WOOP, S., BENTHIN, C., et al. “Embree - A Kernel
Framework for Efficient CPU Ray Tracing”. SIGGRAPH ’14. 2014 2, 4.

[YKL17] YLITIE, H., KARRAS, T., and LAINE, S. “Efficient Incoherent
Ray Traversal on GPUs Through Compressed Wide BVHs”. HPG ’17.
2017 1, 2.

Author preprint

