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Fig. 1. Example hair models represented using (a,c) piecewise cubic curves and (b,d) their piecewise
quadratic approximations, rendered using path tracing with 256 samples per pixel, producing virtually
indistinguishable results. Depending on the renderer and settings, the quadratic versions can be rendered
more than 3× faster or with only a minor speed improvement.

We present a simple degree reduction technique for piecewise cubic polynomial splines, converting them

into piecewise quadratic splines that maintain the parameterization and 𝐶1
continuity. Our method forms

identical tangent directions at the interpolated data points of the piecewise cubic spline by replacing each

cubic piece with a pair of quadratic pieces. The resulting representation can lead to substantial performance

improvements for rendering geometrically complex spline models like hair and fiber-level cloth. Such models

are typically represented using cubic splines that are 𝐶1
-continuous, a property that is preserved with our

degree reduction. Therefore, our method can also be considered a new quadratic curve construction approach

for high-performance rendering. We prove that it is possible to construct a pair of quadratic curves with 𝐶1

continuity that passes through any desired point on the input cubic curve. Moreover, we prove that when the

pair of quadratic pieces corresponding to a cubic piece have equal parametric lengths, they join exactly at the

parametric center of the cubic piece, and the deviation in positions due to degree reduction is minimized.
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1 INTRODUCTION
Parametric cubic polynomial splines are by far the most popular curve representation in computer

graphics. This can be attributed to the fact that they are the lowest degree polynomials that can

form 3D curve segments, since quadratic curves are planar (i.e. can be defined by three points

in space). Cubic curves are not only used for various modeling and animation tasks, but also for

representing geometrically-complex models like hair, fur, grass, and cloth fibers.

For rendering, splines can be subdivided into many small segments that are approximated with

linear pieces either for rasterization or ray tracing. More recently, it has been shown that it is

possible to efficiently compute ray intersections with cubic splines with some thickness [Reshetov

2017]. Both of these approaches involve repeated evaluation of the underlying polynomial function,

the cost of which can be substantial, particularly for ray tracing geometrically-complex models.

In this paper, we show that it is possible to use piecewise quadratic curves to closely approximate

cubic ones, providing a degree reduction in the polynomial formulation. This can result in

performance improvement when the curves are repeatedly evaluated. Our experiments with

different ray tracing applications show improvements in render times up to 38% using our method,

though the savings can vary significantly and are not always measurable (Figure 1).

Our degree reduction method is designed to maintain𝐶1
continuity. This is an important property,

because most existing applications use 𝐶1
-continuous cubic curves, particularly for representing

geometrically-complex models. As such, our degree reduction method preserves the important

theoretical properties of the original cubic representation. In that respect, our method can also

be considered an alternative curve formulation, rather than an approximation technique. Indeed,

existing popular cubic curve formulations, such as Catmull-Rom curves [Catmull and Rom 1974a;

Yuksel et al. 2009b, 2011] and B-splines [Bartels et al. 1987], can be augmented with our degree

reduction step to form new curve construction techniques that produce quadratic curves with

similar properties as their cubic counterparts. Considering the performance advantages of quadratic

polynomials over cubics, we would argue that there is no good reason for defining geometrically-

complex objects like hair and fiber-level cloth models using existing piecewise cubic formulations.

Instead, such models can be defined with piecewise quadratic curves using our approach.

The core of our degree reduction technique is representing each cubic curve segment with a

pair of quadratic curves that maintain 𝐶1
continuity. Even though both quadratic curves form

perfectly planar segments, we show that the resulting curve that joins the two quadratic pieces

closely approximate the 3D shape of the cubic segment.

One of our technical contributions is the discovery that enforcing𝐶1
continuity for approximating

a cubic segment with a pair of quadratic curves guarantees that the resulting piecewise quadratic

curve passes through a point on the cubic curve segment, in addition to the two end points. This

interesting property is an important factor in achieving a close geometric approximation.

In addition, we show that the piecewise quadratic curve can be generated such that it passes

through any desired point along the cubic segment. The approximation error is minimized when

the piecewise quadratic curve passes through the parametric center of the cubic segment, in which

case the two quadratic pieces join exactly at this parametric center point.

We also show that in 3D (and higher dimensions) the parametric 𝐶1
continuity coincides with

the geometric 𝐺1
continuity, i.e. the alternative of enforcing only 𝐺1

continuity results in identical

quadratic curves. In the special case of 2D cubic curves, however, approximating with𝐺1
continuity

offers infinitely many solutions, while 𝐶1
continuity has one.
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(a) (b) (c) (d)

Fig. 2. The placement of the middle control point for quadratic Bézier curves (shown in red) that
approximate cubic Bézier curves (shown in blue) in 2D: (a) using the intersection of the tangent lines
at the end points is the only option for the middle control point that matches both tangents at the end
points, but (b-c) it can also invert the derivative directions at the end points; (d) picking a different
point fails to match the tangents at both end points.

2 RELATEDWORK
Polynomial splines are commonplace in computer aided design and computer graphics. In particular,

cubic Bézier curves [Bézier 1977] are included in most 2D and 3D applications that have curve

editing properties. Most applications allow the user to directly specify the Bézier control points for

automatically producing a𝐺1
-continuous curve. 𝐶1

-continuity, however, is typically achieved by

generating a piecewise cubic curve that interpolates a given set of data points, such as Catmull-Rom

curves [Catmull and Rom 1974b]. The extension of Barry and Goldman [1988] allows arbitrary

parameterizations [Foley et al. 1989; Lee 1989; Manocha and Canny 1992; Nielson and Foley 1989]

and among them centripetal parameterization was shown to inherit unique properties, such as

guaranteed cusp-free and self-intersection-free interpolation [Yuksel et al. 2009b, 2011].

2.1 Degree Reduction
In 2D, arguably the simplest way of approximating a piecewise cubic 𝐶1

curve using a piecewise

quadratic curve is converting each cubic piece to a quadratic piece: for each cubic piece with end

points p𝑖 and p𝑖+1, we generate a quadratic piece with the same end points (Figure 2). Placing the

middle control point of the quadratic piece at the intersection of the two lines that are tangent to the

cubic curve at p𝑖 and p𝑖+1 [Alfke 1994; Bily 2014; Groleau 2002], leads to a piecewise quadratic curve

with𝐺1
continuity (Figure 2a). Yet, this simple solution can also invert some segments (Figure 2b-c),

which breaks 𝐺1
continuity. Other positions for the middle control points may provide a closer

approximation to the cubic piece [Colomitchi 2006; Sutcliffe 2007], but lead to quadratic curves with

only𝐶0
(or𝐺0

) continuity (Figure 2d). The approximation error with any of these approaches can be

reduced (and inversions can be eliminated) by first subdividing the cubic curve into smaller pieces.

Alternatively, a similar approach can be used for approximating the whole cubic curve (instead

of considering each cubic piece separately) by iteratively adding quadratic pieces as needed to

satisfy a given error tolerance, forming a quadratic curve with𝐺1
continuity [Cox and Harris 1991].

Note that none of these approaches work in 3D or higher dimensions and they cannot preserve 𝐶1

continuity.

Piecewise cubic curves can also be 𝐶2
-continuous [Farin 2006; Higashi et al. 1988; Mineur et al.

1998]. However, achieving𝐶2
continuity with a piecewise quadratic curve can only happen in special

cases. The most we can expect from a piecewise quadratic curve is 𝐺2
continuity. Indeed, ^-curves

[Yan et al. 2017] can produce a mostly𝐺2
-continuous piecewise quadratic curves that interpolate

a given set of data points in 2D. Therefore, it is possible to use ^-curves for approximating any

piecewise cubic curve by arbitrarily choosing data points on the piecewise cubic curve for the
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^-curve to interpolate. However, this approach only works in 2D and would not necessarily match

the derivatives of the piecewise cubic curve at the chosen data points.

Piecewise cubic and quadratic curves can also be approximated using other formulations, such

as circular pieces [Riškus 2006; Riškus and Liutkus 2013].

2.2 Curve Rendering
Hair and fur rendering is one of the major applications of curve rendering. In ray tracing, the ray-

curve intersection test is a crucial component. Most applications approximate curves using small

pieces of line segments or cylinders [Barringer et al. 2012; Han et al. 2019; Nakamaru and Ohno

2002; Qin et al. 2014; Woop et al. 2014]. Ray-curve intersection test is therefore simplified down to

testing ray-line or ray-cylinder intersections. Recently, the support of cubic Bézier curve primitive

has been introduced in ray tracing by Embree [Wald et al. 2014] and PBRT [Pharr et al. 2016]. For

ray-curve intersection test, the ray is instead tested for intersection with a bounding object of the

curve primitive. The bounding object (axis-aligned bounding box [Pharr et al. 2016] or bounding

cylinder [Wald et al. 2014]) is computed to enclose the curve segment and iteratively refined until a

desired accuracy is met. Such iterative refinement can include curve subdivision [Pharr et al. 2016],

which is expensive. Phantom ray-curve intersector [Reshetov 2017; Reshetov and Luebke 2018] is

an alternative method that finds the ray intersection with the surface of a thick curve (i.e. a tapered

tube that is bent to take the shape of the curve). The intersection test is performed by a ray-swept

volume intersection approach while curve subdivision is totally avoided.

In rasterization, there is a large body of work in hair, fur, and fiber-level cloth rendering [Andersen

et al. 2016; Barringer et al. 2012; Wu and Yuksel 2017a,b]. Typically, rasterizing curve primitives

produces better performance than ray tracing as it performs inexpensive curve evaluations during

tessellation and does not require costly iterative intersection test.

3 DEGREE REDUCTIONWITH 𝐶1 CONTINUITY
Given a 𝐶1

-continuous piecewise cubic curve C(𝑡) that interpolates a set of data points p𝑖 , such
that C(𝑡𝑖 ) = p𝑖 for a set of parameter values 𝑡𝑖 , our goal is to approximate it using a 𝐶1

-continuous

piecewise quadratic curveQ(𝑡), such that the new curve interpolates the same data points at exactly

the same parametric positions (i.e. Q(𝑡𝑖 ) = p𝑖 ) and matches the derivatives of the cubic curve at

these data points, such that C′(𝑡𝑖 ) = Q′(𝑡𝑖 ), where C′(𝑡) = 𝑑C(𝑡)/𝑑𝑡 and Q′(𝑡) = 𝑑Q(𝑡)/𝑑𝑡 denote
the derivatives.

Let C𝑖 (𝑡) represent each piece 𝑖 of the input cubic curve, such that C𝑖 (𝑡) interpolates data
points p𝑖 and p𝑖+1 for 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1]. Thus, C𝑖 (𝑡𝑖 ) = p𝑖 and C𝑖 (𝑡𝑖+1) = p𝑖+1 = C𝑖+1 (𝑡𝑖+1). We use

C′
𝑖 (𝑡) = 𝑑C𝑖 (𝑡)/𝑑𝑡 to represent the derivative of the curve. Since the piecewise cubic curve has

𝐶1
continuity, C′

𝑖 (𝑡𝑖+1) = C′
𝑖+1

(𝑡𝑖+1). We form Q(𝑡) by splitting each cubic piece C𝑖 (𝑡) into two

quadratic pieces Q2𝑖 (𝑡) and Q2𝑖+1 (𝑡), as shown in Figure 3. The first quadratic piece matches the

beginning of the cubic piece and the second one matches the end of it, meaning

Q2𝑖 (𝑡𝑖 ) = C𝑖 (𝑡𝑖 ) (1)

Q′
2𝑖 (𝑡𝑖 ) = C′

𝑖 (𝑡𝑖 ) (2)

Q2𝑖+1 (𝑡𝑖+1) = C𝑖 (𝑡𝑖+1) (3)

Q′
2𝑖+1

(𝑡𝑖+1) = C′
𝑖 (𝑡𝑖+1) . (4)

The two quadratic pieces Q2𝑖 (𝑡) and Q2𝑖+1 (𝑡) join at 𝑡∗𝑖 ∈ (𝑡𝑖 , 𝑡𝑖+1) with𝐶1
continuity, so we enforce

Q2𝑖 (𝑡∗𝑖 ) = Q2𝑖+1 (𝑡∗𝑖 ) (5)

Q′
2𝑖 (𝑡∗𝑖 ) = Q′

2𝑖+1
(𝑡∗𝑖 ) . (6)
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Q2i

Ci

Q2i+1

pi+1
pi

q2i,2

Fig. 3. 𝐶1-continuous approximation of a cubic piece C𝑖 with two quadratic pieces Q2𝑖 and Q2𝑖+1.

Thus, the piecewise quadratic curve is given by Q2𝑖 (𝑡) for 𝑡 ∈ [𝑡𝑖 , 𝑡∗𝑖 ] and Q2𝑖+1 (𝑡) for

𝑡 ∈ [𝑡∗𝑖 , 𝑡𝑖+1]. We use 𝛾 ∈ (0, 1) to define the parametric position of the splitting point, such that

𝑡∗𝑖 = (1 − 𝛾)𝑡𝑖 + 𝛾 𝑡𝑖+1. Note that 𝛾 = 0 and 𝛾 = 1 are not permitted, since they would eliminate one

of the curves and thereby break 𝐶1
continuity in our formulation.

To formulate the corresponding quadratic representation of a cubic curve, let us represent the

input cubic curve using Bézier control points b𝑖,0, b𝑖,1, b𝑖,2, and b𝑖,3, as

C𝑖 (𝑡) = (1 − 𝑠)3 b𝑖,0 + 3(1 − 𝑠)2𝑠 b𝑖,1 + 3(1 − 𝑠)𝑠2 b𝑖,2 + 𝑠3 b𝑖,3 , (7)

where 𝑠 ∈ [0, 1] is the local parameter, such that 𝑠 = (𝑡 − 𝑡𝑖 )/(𝑡𝑖+1 − 𝑡𝑖 ), b𝑖,0 = p𝑖 , and b𝑖,3 = p𝑖+1.

We can write the two quadratic curves that interpolate the same end points as

Q2𝑖 (𝑡) = (1 − 𝑠0)2 q2𝑖,0 + 2(1 − 𝑠0)𝑠0 q2𝑖,1 + 𝑠2

0
q2𝑖,2 (8)

Q2𝑖+1 (𝑡) = (1 − 𝑠1)2 q2𝑖+1,0 + 2(1 − 𝑠1)𝑠1 q2𝑖+1,1 + 𝑠2

1
q2𝑖+1,2 , (9)

where 𝑠0, 𝑠1 ∈ [0, 1] are the local parameters, such that 𝑠0 = 𝑠/𝛾 and 𝑠1 = (𝑠 − 𝛾)/(1 − 𝛾). Due to
𝐶0

continuity, the first and the last control points are q2𝑖,0 = b𝑖,0 and q2𝑖+1,2 = b𝑖,3, and the two

quadratic curves have a shared control point q2𝑖,2 = q2𝑖+1,0. The positions of the interior control

points are defined by 𝐶1
continuity. The derivatives of the curves can be written as

C′
𝑖 (𝑡) =

𝑑𝑠

𝑑𝑡

(
3(1 − 𝑠)2 (b𝑖,1 − b𝑖,0) + 6(1 − 𝑠)𝑠 (b𝑖,2 − b𝑖,1) + 3𝑠2 (b𝑖,3 − b𝑖,2)

)
(10)

Q′
2𝑖 (𝑡) =

𝑑𝑠

𝑑𝑡

(
1

𝛾

) (
2(1 − 𝑠0) (q2𝑖,1 − q2𝑖,0) + 2𝑠0 (q2𝑖,2 − q2𝑖,1)

)
(11)

Q′
2𝑖+1

(𝑡) = 𝑑𝑠

𝑑𝑡

(
1

1 − 𝛾

) (
2(1 − 𝑠1) (q2𝑖+1,1 − q2𝑖+1,0) + 2𝑠1 (q2𝑖+1,2 − q2𝑖+1,1)

)
, (12)

where 𝑑𝑠/𝑑𝑡 = 1/(𝑡𝑖+1 − 𝑡𝑖 ) is a constant term, accounting for the relative speeds of the two

parameters 𝑠 and 𝑡 . Matching the derivatives C′
𝑖 (𝑡𝑖 ) = Q′

2𝑖 (𝑡𝑖 ) at 𝑠 = 0 and C′
𝑖 (𝑡𝑖+1) = Q′

2𝑖+1
(𝑡𝑖+1) at

𝑠 = 1 gives

q2𝑖,1 = b𝑖,0 +
3

2

𝛾 (b𝑖,1 − b𝑖,0) (13)

q2𝑖+1,1 = b𝑖,3 +
3

2

(1 − 𝛾) (b𝑖,2 − b𝑖,3) . (14)

The shared control point is determined by Q′
2𝑖 (𝑡∗𝑖 ) = Q′

2𝑖+1
(𝑡∗𝑖 ) at 𝑠0 = 1 and 𝑠1 = 0 due to 𝐶1

continuity of the quadratic curve, resulting

q2𝑖,2 = q2𝑖+1,0 = (1 − 𝛾) q2𝑖,1 + 𝛾 q2𝑖+1,1 . (15)
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Thus, we can define a pair of quadratic curves for each cubic curve piece, interpolating the data

points and matching the derivatives at the data points.

Since all control points of the quadratic curves are uniquely defined, for a given 𝛾 , there exists a

unique piecewise quadratic curve that approximates each cubic piece of the given piecewise cubic

curve using a pair of quadratic pieces with Q2𝑖 (𝑡𝑖 ) = C𝑖 (𝑡𝑖 ) and Q2𝑖+1 (𝑡𝑖+1) = C𝑖 (𝑡𝑖+1), satisfying
the 𝐶1

continuity conditions Q′
2𝑖 (𝑡𝑖 ) = C′

𝑖 (𝑡𝑖 ), Q′
2𝑖+1

(𝑡𝑖+1) = C′
𝑖 (𝑡𝑖+1), and Q′

2𝑖 (𝑡∗𝑖 ) = Q′
2𝑖+1

(𝑡∗𝑖 ).

Theorem 1. For the special case of 𝛾 = 1

2
, the two quadratic curves approximating a

cubic curve with 𝐶1 continuity always join at the parametric center of the cubic curve. Thus,
C𝑖 (𝑡∗𝑖 ) = Q2𝑖 (𝑡∗𝑖 ) = Q2𝑖+1 (𝑡∗𝑖 ).

Proof. Using Equations 13, 14, and 15, we can write the point where the two quadratic curves

join as

Q2𝑖 (𝑡∗𝑖 ) = Q2𝑖+1 (𝑡∗𝑖 ) = (1 − 𝛾)
(
1 − 3

2

𝛾

)
b𝑖,0 +

3

2

(1 − 𝛾)𝛾 (b𝑖,1 + b𝑖,2) +
(
1 − 3

2

(1 − 𝛾)
)
𝛾 b𝑖,3 . (16)

The position of the cubic curve at the splitting parameter C𝑖 (𝑡∗𝑖 ) corresponds to 𝑠 = 𝛾 in Equation 7.

Therefore, to guarantee C𝑖 (𝑡∗𝑖 ) = Q2𝑖 (𝑡∗𝑖 ), each term of Equation 7 must match the corresponding

terms of Equation 16. Thus, 𝛾 must satisfy

(1 − 𝛾)3 = (1 − 𝛾)
(
1 − 3

2

𝛾

)
(17)

3(1 − 𝛾)2𝛾 =
3

2

(1 − 𝛾)𝛾 (18)

3(1 − 𝛾)𝛾2 =
3

2

(1 − 𝛾)𝛾 (19)

𝛾3 =

(
1 − 3

2

(1 − 𝛾)
)
𝛾 . (20)

All of these equations are satisfied by only 𝛾 = 1

2
for 𝛾 ∈ (0, 1). Therefore, in this special case, the

parametric center of the curve at 𝑡 = (𝑡𝑖 + 𝑡𝑖+1)/2 is C𝑖 (𝑡∗𝑖 ) and it always coincides with the point

where the two quadratic curves join. □

Theorem 2. When 𝛾 ∈ ( 1

3
, 2

3
), each piece C𝑖 (𝑡) of a piecewise cubic curve is guaranteed to coincide

with its 𝐶1-continuous quadratic approximation Q(𝑡) at three parameter values: its two end points
and one more point between them, such that ∃ 𝑡𝑖 ∈ (𝑡𝑖 , 𝑡𝑖+1) where C𝑖 (𝑡𝑖 ) = Q(𝑡𝑖 ).

Proof. The two intersections at the end points are guaranteed by construction. Let 𝑠 = (𝑡𝑖 −
𝑡𝑖 )/(𝑡𝑖+1 − 𝑡𝑖 ) be the normalized parameter value where the cubic piece C𝑖 coincides with one of

the quadratic pieces Q2𝑖 or Q2𝑖+1, such that 𝑠 ∈ (0, 1). If 𝑡𝑖 ∈ (0, 𝑡∗𝑖 ] and thereby 𝑠 ∈ (0, 𝛾], we can
write C𝑖 (𝑡𝑖 ) = Q2𝑖 (𝑡𝑖 ), which simplifies (using Equations 13, 14, and 15) to

𝑠 =
3𝛾 − 1

2𝛾
. (21)

Thus, 𝑠 remains within range (0, 𝛾] for 𝛾 ∈ ( 1

3
, 1

2
]. Similarly, if 𝑡𝑖 ∈ [𝑡∗𝑖 , 𝑡𝑖+1) and 𝑠 ∈ [𝛾, 1), we can

write C𝑖 (𝑡𝑖 ) = Q2𝑖+1 (𝑡𝑖 ), which simplifies to

𝑠 =
𝛾

2 − 2𝛾
. (22)

In this case, 𝑠 remains within the valid range [𝛾, 1) for𝛾 ∈ [ 1

2
, 2

3
). Therefore, the intersection between

the end points has a valid solution if 𝛾 ∈ ( 1

3
, 2

3
), regardless of the control point positions. □
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Note that for any value of 𝛾 ∉ ( 1

3
, 2

3
) there is no guarantee that the two quadratic curves would

intersect with the cubic curve at any point other than the two end points of the cubic piece. In the

special case where 𝛾 = 1

3
, we have q2𝑖+1,1 = b𝑖,2 and with 𝛾 = 2

3
we have q2𝑖,1 = b𝑖,1.

In our formulation Q(𝑡) always coincides with C(𝑡) at the interpolated data points p𝑖 by
construction. In addition, it might be desirable for Q(𝑡) to coincide with C(𝑡) at some other

points along the curves as well, such that C(𝑡) = Q(𝑡) for some 𝑡 parameter value. Our formulation

allows this by simply adjusting the 𝛾 value accordingly.

Theorem 3. Given a cubic curve piece C𝑖 (𝑡) and a point x𝑖 such that x𝑖 = C𝑖 (𝑡𝑖 ) with 𝑡𝑖 ∈ (𝑡𝑖 , 𝑡𝑖+1),
there exists a 𝐶1-continuous approximation Q(𝑡) that matches the positions and derivatives at the
ends points and passes through x𝑖 at the same parameter value, i.e. x𝑖 = Q(𝑡𝑖 ).

Proof. Let 𝑠 = (𝑡𝑖−𝑡𝑖 )/(𝑡𝑖+1−𝑡𝑖 ) be the normalized parameter value at x𝑖 . Combining Equations 21

and 22 using their valid ranges, we can solve for the 𝛾 value that would produce x𝑖 = Q(𝑡𝑖 ), such
that

𝛾 =

{
1/(3 − 2𝑠) if 0 < 𝑠 ≤ 1

2

2𝑠/(1 + 2𝑠) if
1

2
< 𝑠 < 1

. (23)

For all valid parameter values 𝑠 ∈ (0, 1), 𝛾 remains within the valid range ( 1

3
, 2

3
). Thus, C(𝑡𝑖 ) = Q(𝑡𝑖 )

can be satisfied for any 𝑡𝑖 ∈ (𝑡𝑖 , 𝑡𝑖+1). □

4 ERROR ANALYSIS
We define the error function 𝜖 (𝑡) for our degree reduction as the distance between two points on

the two curves at the same parametric position 𝑡 , such that

𝜖 (𝑡) = ∥C(𝑡) − Q(𝑡)∥ . (24)

Note that this error function bounds the distance between a point on Q(𝑡) to the closest point on C.

min

𝑡 ′
∥C(𝑡 ′) − Q(𝑡)∥ ≤ 𝜖 (𝑡) . (25)

Theorem 4. When each piece of a piecewise cubic curve is converted to two quadratic pieces with
𝐶1 continuity, the maximum error due to degree reduction is minimized using pairs of quadratic pieces
with parametrically equal lengths.

Proof. Let 𝜖𝑖 (𝑡) represent the error function within the parametric range 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1], such that

𝜖𝑖 (𝑡) =
{
∥C𝑖 (𝑡) − Q2𝑖 (𝑡)∥ if 𝑡𝑖 ≤ 𝑡 < 𝑡∗𝑖
∥C𝑖 (𝑡) − Q2𝑖+1 (𝑡)∥ if 𝑡∗𝑖 ≤ 𝑡 < 𝑡𝑖+1

. (26)

Using a polynomial representation of C𝑖 (𝑡) with a normalized parameter 𝑠 = (𝑡 − 𝑡𝑖 )/(𝑡𝑖+1 − 𝑡𝑖 ),

C𝑖 (𝑡) = 𝑠3 a𝑖,3 + 𝑠2 a𝑖,2 + 𝑠 a𝑖,1 + a𝑖,0 , (27)

the error function simplifies down to

𝜖𝑖 (𝑡) =


a𝑖,3 𝑠2

(
𝑠 + 1

2𝛾
− 3

2

) if 0 ≤ 𝑠 < 𝛾a𝑖,3 (1 − 𝑠)2

(
𝑠 − 𝛾

2(1−𝛾 )

) if 𝛾 ≤ 𝑠 < 1

. (28)

Thus, the maximum error 𝜖𝑖 (𝑡) within range 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] is minimized when 𝛾 = 1

2
, which forms

two quadratic curves with equal parametric lengths. □
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The maximum error with 𝛾 = 1

2
appears at 𝑠 = 1

3
and 𝑠 = 2

3
, resulting

max

𝑡 ∈[𝑡𝑖 ,𝑡𝑖+1 ],𝛾= 1

2

𝜖𝑖 (𝑡) =
1

54

a𝑖,3 . (29)

Of course, it is always possible to reduce the magnitude of the error by simply pre-subdividing

piecewise cubic curve into more cubic pieces prior to degree reduction. Note that a𝑖,3 can be written

in terms of the Bézier control points as

a𝑖,3 = −b𝑖,0 + 3b𝑖,1 − 3b𝑖,2 + b𝑖,3 . (30)

5 DEGREE REDUCTIONWITH 𝐺1 CONTINUITY
In our formulations above we preserve the parametric continuity (i.e. 𝐶1

) of the given piecewise

cubic curve. For some applications, 𝐶1
continuity may not be necessary and geometric continuity

(i.e.𝐺1
) might be sufficient. In this section, we describe a similar degree reduction formulation that

only enforces𝐺1
continuity and show that it leads to identical quadratic curves as the ones with𝐶1

continuity and 𝛾 = 1

2
under some conditions (when the piecewise quadratic curve passes through

the parametric center of each cubic piece and the cubic curve is not planar).

Again, we approximate each cubic curve piece with two quadratics. For enforcing 𝐺1
continuity,

the directions of the derivatives at the end points must be maintained, but not their magnitudes.

Thus, we can write

Q′
2𝑖 (𝑡𝑖 ) = 𝛽2𝑖 C′

𝑖 (𝑡𝑖 ) (31)

Q′
2𝑖+1

(𝑡𝑖+1) = 𝛽2𝑖+1 C′
𝑖 (𝑡𝑖+1) , (32)

where 𝛽2𝑖 and 𝛽2𝑖+1 are some arbitrary positive scaling factors. This means that the internal control

points q2𝑖,1 and q2𝑖+1,1 can be placed anywhere along the rays

−−−−−→
b𝑖,0b𝑖,1 and

−−−−−→
b𝑖,3b𝑖,2, respectively. More

precisely, by arbitrarily assigning equal parametric lengths to both quadratic pieces, we can write

q2𝑖,1 = b𝑖,0 +
3

4

𝛽2𝑖 (b𝑖,1 − b𝑖,0) (33)

q2𝑖+1,1 = b𝑖,3 +
3

4

𝛽2𝑖+1 (b𝑖,2 − b𝑖,3) . (34)

We must also enforce 𝐺1
continuity at the shared control point of the two quadratic pieces where

they join. This means that the shared point q2𝑖,2 = q2𝑖+1,0 must be on the line segment connecting

q2𝑖,1 and q2𝑖+1,1. Thus, using an arbitrary value 𝜎𝑖 ∈ (0, 1), we can write

q2𝑖,2 = q2𝑖+1,0 = (1 − 𝜎𝑖 ) q2𝑖,1 + 𝜎𝑖 q2𝑖+1,1 . (35)

The conditions above are sufficient for maintaining 𝐺1
continuity, but they do not include any

constraint for approximating the shape of the cubic piece. To form a better approximation, we add

the constraint that the resulting piecewise quadratic curve passes through the parametric centers

of the cubic curve pieces.

Theorem 5. If quadratic approximation of a cubic curve piece C𝑖 (𝑡) with 𝐺1 continuity passes
through its parametric center C𝑖 ( (𝑡𝑖+𝑡𝑖+1)/2) and C𝑖 (𝑡) is not planar, the resulting quadratic curves are
identical to the ones with 𝐶1 continuity and 𝛾 = 1

2
.

Proof. Either the first or the second quadratic piece will go through the center of the cubic

curve. Let us assume that it is the first one. The other alternative follows due to symmetry.

Using Equations 8 and 33-35, we can write the points on the first quadratic piece as a combination

of the Bézier control points of the cubic curve, such that

Q2𝑖 (𝑠0) = 𝑎0 b𝑖,0 + 𝑎1 b𝑖,1 + 𝑎2 b𝑖,2 + 𝑎3 b𝑖,3 (36)
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where

𝑎𝑖,0 = 1 − 𝜎𝑖𝑠
2

0
− 𝑎𝑖,1 , 𝑎𝑖,1 =

3

4

𝛽2𝑖

(
2𝑠0 − 𝑠2

0
− 𝜎𝑖𝑠

2

0

)
, 𝑎𝑖,2 = 𝜎𝑖𝑠

2

0

3

4

𝛽2𝑖+1 , and 𝑎𝑖,3 = 𝜎𝑖𝑠
2

0
− 𝑎𝑖,2 .

If C𝑖 (𝑡) is not planar, none of the control points can be written as a linear combination of the other

control points. Therefore, based on Equation 7, at the parametric center of the cubic curve at 𝑠 = 1

2
,

we must have 𝑎𝑖,0 = 1

8
, 𝑎𝑖,1 = 3

8
, 𝑎𝑖,2 = 3

8
, and 𝑎𝑖,3 = 1

8
. This is only achieved when 𝛽2𝑖 = 𝛽2𝑖+1 = 1,

𝜎𝑖 =
1

2
, and 𝑠0 = 1. This means that the two quadratic pieces join at this point and it perfectly

matches the quadratic curves formed by the 𝐶1
-continuous solution with 𝛾 = 1

2
. □

When C𝑖 (𝑡) is planar, as in the case of 2D curves, there are infinitely many solutions satisfying

the 𝐺1
conditions with this constraint.

6 DIRECT CONSTRUCTION OF PIECEWISE QUADRATIC CURVES
𝐶1

Catmull-Rom curves [Catmull and Rom 1974b] that produce cubic splines are commonly used for

representing hair, fur, and yarn-level cloth models [Kaldor et al. 2010; Wu and Yuksel 2017a,b; Yuksel

et al. 2012, 2009a], as they form interpolating curves that go through a given set of data points. In

particular,𝐶1
Catmull-Rom curves with centripetal parameterization were shown to inherit unique

properties, such as guaranteed self-intersection-free curve segments [Yuksel et al. 2009b, 2011],

that make them an ideal choice for such models. Since the resulting curves are piecewise cubic, we

can convert them to piecewise quadratic curves, as explained above.

Alternatively, we can construct piecewise quadratic curves directly from the given data points,

using the same procedure as above, but bypassing the intermediate piecewise cubic curve. Given

four consecutive data points p0, p1, p2, and p3, the Bézier form of a cubic Catmull-Rom curve

segment that interpolates p1 and p2 can be written using the Bézier control points

b0 = p1 (37)

b1 = p1 +
𝑑2𝛼

1
(p2 − p1) + 𝑑2𝛼

2
(p1 − p0)

3𝑑𝛼
1

(
𝑑𝛼

1
+ 𝑑𝛼

2

) (38)

b2 = p2 +
𝑑2𝛼

3
(p1 − p2) + 𝑑2𝛼

2
(p2 − p3)

3𝑑𝛼
3

(
𝑑𝛼

3
+ 𝑑𝛼

2

) (39)

b3 = p2 (40)

where 𝑑𝑖 = ∥p𝑖 − p𝑖−1∥, and 𝛼 controls the Catmull-Rom parameterization, such that 𝛼 = 1

2

corresponds to centripetal parameterization. Using our degree reduction in Equations 13-15, we

can write the control points of the corresponding pair of quadratic segments as

q0,0 = p1 (41)

q0,1 = p1 + 𝛾
𝑑2𝛼

1
(p2 − p1) + 𝑑2𝛼

2
(p1 − p0)

2𝑑𝛼
1

(
𝑑𝛼

1
+ 𝑑𝛼

2

) (42)

q0,2 = q1,0 = (1 − 𝛾)q0,1 + 𝛾q1,1 (43)

q1,1 = p2 + (1 − 𝛾)
𝑑2𝛼

3
(p1 − p2) + 𝑑2𝛼

2
(p2 − p3)

2𝑑𝛼
3

(
𝑑𝛼

3
+ 𝑑𝛼

2

) (44)

q1,2 = p2 . (45)

Using this formulation, piecewise quadratic curves can be directly generated from a given set of

data points.
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7 RESULTS
Figure 4 shows 2D example Bézier curve pieces approximated using our method with different 𝛾

values. The piecewise quadratic curve in all three examples intersect with the cubic curve at exactly

three points: the two end points and one other point between them, determined by the chosen 𝛾

value. Note that the cubic and piecewise quadratic curves have the same parameter values at all

three of their intersections. The derivatives of the curves, however, only match at the end points.

Notice that the piecewise quadratic curve with 𝛾 = 1

2
provides the closest approximation.

(a) 𝛾 = 3

7
≈ 0.43 (b) 𝛾 = 1

2
= 0.5 (c) 𝛾 = 4

7
≈ 0.57

Fig. 4. An example cubic Bézier curve (blue) approximated with a pair of quadratic Bézier curves
(red) using different values for 𝛾 , coinciding with the cubic curve at different parametric positions.

As expected, we get a closer approximation when the curvature of the cubic curve is not as

exaggerated, such as the examples shown in Figure 5. Notice that the piecewise quadratic curves in

these examples almost completely overlap with the cubic curves. Also, note that our approximation

does not necessarily match the derivative of the cubic curve at the middle intersection point, since

enforcing such a constraint would break the 𝐶1
continuity of the quadratic curves.

Fig. 5. (blue) Cubic Bézier curves approximated with (red) quadratic Bézier curves using 𝛾 = 1

2
.

7.1 Curves in 3D
Figure 6 shows an example 3D piecewise cubic 𝐶1

Catmull-Rom curve [Catmull and Rom 1974b]

along with its piecewise quadratic approximation. Notice that degree reduction in this case slightly

changes the shape of the curve, even though each quadratic piece is planar. Note that the resulting

piecewise quadratic curve is 𝐶1
-continuous everywhere, just like the input piecewise cubic curve.

Our degree reduction approximates 3D curves with piecewise planar pieces. This poses a potential

problem, since planar curves have zero torsion. We test the importance of this using a helix-

shaped piecewise cubic curve, as a circular helix has constant non-zero torsion. Obviously, cubic

polynomials cannot perfectly represent helices, but a cubic curve can approximate the shapes of arc

lengths up to
𝜋
2
reasonably closely. The example in Figure 7 shows a helix-shaped piecewise cubic

curve with each piece corresponding to an arc length of
𝜋
2
. Notice that in Figure 7a, both cubic

and quadratic curves have common data points (blue) while the quadratic curve has additional

data points (red). Our degree reduction provides a close approximation, nonetheless, some minor

variations in the shape of the curve and the positions/shapes of the specular reflections can be

noticed as the helix rotates. Of course, using shorter arc lengths, we achieve a closer approximation,

diminishing the impact of these subtle variations.

7.2 Cubic Curves with 𝐶2 Continuity
Cubic splines are not limited to𝐶1

continuity and it is possible to form𝐶2
-continuous cubic splines.

A common example of this is the B-spline formulation. Unlike Catmull-Rom curves that interpolate
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Fig. 6. Two different views of an example piecewise cubic 𝐶1 Catmull-Rom curve (blue) in 3D and its
piecewise quadratic 𝐶1 approximation (red) using 𝛾 = 1

2
. The data points of the Catmull-Rom curve

are shown.

a given set of data points, B-splines approximate the given control points and do not go through

them. Yet, cubic B-splines have 𝐶2
continuity.

Two example B-splines and their quadratic approximations are shown in Figures 8 and 9.

Unfortunately, our degree reduction cannot maintain 𝐶2
continuity. Therefore, the variation of the

specular reflections visible on the thick curves is discontinuous for the piecewise quadratic curves.

In these examples, our degree reduction produces a relatively close approximation of the original

curve shapes, but some minor variations in the shapes of the specular reflections can be noticed,

particularly in Figure 9.

7.3 Font Design
Quadratic curves are commonplace for font design. Figure 10a shows an example glyph with cubic

curves converted to quadratic curves using our method with 𝛾 = 1

2
. This is a relatively simple
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(a) Piecewise cubic and quadratic curves (b) Piecewise cubic and quadratic thick curves

(c) Piecewise cubic thick curve (d) Piecewise quadratic thick curve

Fig. 7. A helix approximated by a piecewise cubic curve and its piecewise quadratic degree reduction
using 𝛾 = 1

2
.

(a) Piecewise cubic and quadratic curves (b) Piecewise cubic and quadratic thick curves

(c) Piecewise cubic thick curve (d) Piecewise quadratic thick curve

Fig. 8. A cubic 𝐶2 clamped B-spline is approximated by 𝐶1 piecewise quadratic curve using 𝛾 = 1

2
.

(a) Piecewise cubic and quadratic curves (b) Piecewise cubic and quadratic thick curves

(c) Piecewise cubic thick curve (d) Piecewise quadratic thick curve

Fig. 9. A cubic 𝐶2 clamped B-spline is approximated by 𝐶1 piecewise quadratic curve using 𝛾 = 1

2
.
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application for our method, since all curves are in 2D and most glyphs include relatively short cubic

pieces. In fact, the example glyph in Figure 10a uses uncharacteristically long cubic pieces. Still,

we can convert each cubic piece to a pair of quadratic pieces with minimal error, almost perfectly

reproducing the glyph. Most other fonts we tested use more control points, resulting in extremely

close approximations.

(a) Opus Chords Font (b) “Optimized” Opus Chords Font

Fig. 10. Conversion of fonts with cubic curves (blue) to quadratic curves (red) using 𝛾 = 1

2
. The cubic

and quadratic curves share common data points (blue). The quadratic curves also have additional
data points (red). The curves coincide at all data points of the quadratic curves. (a) an example glyph
from the OpenType Opus Chords font, showing that the quadratic curves closely approximate the cubic
ones, and (b) an “optimized” version of the same glyph we generated to minimize the number of cubic
pieces for exaggerating the differences between the cubic and quadratic curves. Of course, any visible
differences can be reduced by subdividing cubic pieces that have approximation errors beyond a given
threshold.

For generating a slightly more challenging case, we have manually modified the example glyph

by minimizing the number of cubic pieces used for representing it, as shown in Figure 10b. The

resulting cubic curves do not exactly match the glyph, but closely approximate it. In this case, we

can see some differences between the cubic curves and the quadratic version, particularly for long

segments with higher curvature. Obviously, subdividing such cubic pieces prior to generating the

quadratic curves would result in a much closer quadratic approximation with more quadratic pieces.

Such a subdivision can be applied adaptively by computing the maximum error using Equation 29

and comparing it to a given threshold.

7.4 Hair Rendering
Two hair models, providing examples of complex 3D geometry, are shown in Figure 1. Notice that

the hair models represented using cubic and quadratic curves produce virtually indistinguishable

results. Though there are minor geometric differences between the cubic and quadratic models, the

resulting images are qualitatively equivalent, and it is difficult to identify which one is which, if

possible at all.

The difference between cubic and quadratic curves, however, can be more distinguishable in

terms of rendering performance. Since evaluating quadratic curves is computationally cheaper,

they can provide performance advantages of varying degrees. We provide comparisons of ray

tracing performance implemented using three different ray tracing applications: path tracing using
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Table 1. Render time comparisons of hair rendering using cubic and quadratic curves within different
ray tracing applications.

216K curves 254K curves 800K curves 848K curves 50K curves 400K curves

PBRT, path tracing, 256spp

Cubic 1130 s 241% 1372 s 220% 1830 s 233% 3821 s 293% 1583 s 228% 1729 s 230%
Cubic ×2 595 s 127% 655 s 105% 845 s 108% 1382 s 107% 703 s 101% 818 s 109%
Quadratic 469 s 100% 623 s 100% 785 s 100% 1303 s 100% 694 s 100% 752 s 100%

Embree, path tracing, 512spp

Cubic 200 s 132% 183 s 115% 250 s 132% 323 s 141% 155 s 150% 163 s 129%
Cubic ×2 158 s 105% 166 s 104% 214 s 113% 274 s 120% 104 s 101% 134 s 106%
Quadratic 151 s 100% 159 s 100% 190 s 100% 229 s 100% 103 s 100% 126 s 100%

DXR, ray casting, 1spp

Cubic 9.6 ms 240% 15.3 ms 243% 14.0 ms 259% 32.0 ms 344% 15.0 ms 250% 13.1 ms 262%
Cubic ×2 5.5 ms 138% 8.3 ms 130% 7.1 ms 131% 12.4 ms 133% 7.7 ms 128% 6.6 ms 132%
Quadratic 4.0 ms 100% 6.3 ms 100% 5.4 ms 100% 9.3 ms 100% 6.0 ms 100% 5.0 ms 100%

DXR, ray casting, phantom ray-hair intersector, 1spp

Cubic 6.0 ms 214% 11.7 ms 266% 9.4 ms 254% 24.6 ms 351% 16.0 ms 327% 13.0 ms 361%
Cubic ×2 2.8 ms 100% 4.4 ms 100% 3.9 ms 105% 7.1 ms 101% 4.1 ms 104% 4.0 ms 111%
Quadratic 2.8 ms 100% 4.4 ms 100% 3.7 ms 100% 7.0 ms 100% 4.9 ms 100% 3.6 ms 100%

PBRT [Pharr et al. 2016] and Intel’s Embree [Wald et al. 2014] running on an Intel Core i9-9980XE

CPU, and ray casting with ray traced shadows using the DXR running on an NVIDIA Quadro RTX

8000. All three implementations are tested using ray intersections with cubic and quadratic curve

primitives computed with adaptive subdivision. We also include tests using DXR with phantom

ray-hair intersector [Reshetov and Luebke 2018]. The quadratic primitives are generated from the

cubic ones using our method with 𝛾 = 1

2
.

In all our tests we have observed substantially better performance when comparing piecewise

quadratic models to the original piecewise cubic models that have half the number of curve

primitives. Yet, most of this performance improvement with the quadratic representation is tied to

the fact that splitting each cubic primitive into two primitives leads to better BVH performance,

reducing the number of ray-curve intersection tests. This is because by replacing each cubic curve

piece with two quadratic pieces, we get shorter curves with smaller bounding boxes.

To achieve a more fair comparison, we have also tested our quadratic curves to subdivided cubic

curves, resulting in the same number of curve primitives. In this case, all ray tracing implementations

produce similar BVHs with similar performances. Though the quadratic curves slightly different

bounding boxes, as compared to their cubic counterparts, the differences are minor. In this case,

our quadratic curves result in a relatively minor performance improvement in most cases. This is

because the ray-curve intersection computation is a small percentage of the rendering operations,

the rest of which are practically identical for all methods.

The results are summarized in Table 1, comparing the performance using the original cubic

curves, cubic curves that are subdivided once (Cubic ×2) to form the same number of primitives

as our quadratic curves, and our quadratic curves. Notice that, using adaptive subdivision for

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 16. Publication date: August 2020.



Quadratic Approximation of Cubic Curves 16:15

intersections, the performance improvement of our quadratic approximation over the original cubic

curves can be up to 3× with PBRT, 50% with Embree, and more than 3× with DXR. Subdivided

cubic curves bring the performance closer to quadratics, but we can still observe improvements up

to 27% with PBRT, 20% with Embree, and 38% with DXR. Our tests with phantom ray intersector

using DXR resulted in closer rendering performances that are not always measurable, but can be

up to 11%.

8 DISCUSSION
Our degree reduction approach produces curves with similar shapes and preserves 𝐶1

continuity,

since the resulting quadratic pieces pass through the end points of the cubic pieces and match the

derivatives at the end points. 𝐶2
or 𝐺2

continuity, however, is not an attainable goal when using

quadratic curves in 3D (or higher dimensions). Quadratic curves can have 𝐶2
or𝐺2

continuity only

in 2D and in special cases, when the curvature does not change sign. Therefore, even though mostly-

𝐺2
curves can be formed using quadratic polynomials in 2D [Yan et al. 2017], the same properties

cannot be obtained in 3D and higher dimensions. Therefore, even when the input piecewise cubic

curve has 𝐶2
continuity, the resulting piecewise quadratic curve has to be limited to 𝐶1

in 3D.

Note that our degree reduction is lossless, in the sense that the original cubic curve can be

perfectly reconstructed from the quadratic curves we generate, though the cubic and quadratic

curves have slightly different shapes. Therefore, if the input piecewise cubic curve has𝐶2
continuity,

the reconstructed cubic curve would have 𝐶2
continuity as well.

In that respect, our method can also be used as a form of degree elevation: given a𝐶1
continuous

piecewise quadratic curve (with even number of pieces), we can construct a 𝐶1
piecewise cubic

curve that passes through all data points (i.e. control points that are interpolated) of the quadratic

curve. Obviously, unlike typical degree elevation that would convert each quadratic piece into a

cubic piece [Farin 1997] and perfectly preserve the shape of the quadratic curve, degree elevation

using our method would approximate the piecewise quadratic curve by replacing each pair or

consecutive quadratic pieces with a cubic piece.

Note that degree elevation using our method reduces the number of control points (as opposed

to adding more control points). Thus, the resulting cubic curve has lower degrees of freedom.

9 CONCLUSION
We have presented a simple approach for approximating a piecewise cubic polynomial curve with

a 𝐶1
-continuous piecewise quadratic curve that maintains the positions and the derivatives at the

data points that the piecewise cubic curve interpolates. We achieve this by approximating each

cubic piece with a pair of quadratic pieces. We have also shown that when the pair of quadratic

curve pieces corresponding to a cubic piece have equal parameter lengths, the error due to degree

reduction is minimized and the two quadratic pieces join at the parametric center of the cubic piece.

Unlike typical degree reduction methods for cubic curves, our approach produces 𝐶1
-continuous

curves and it works in 3D and higher dimensions.

Our experiments with different hair rendering applications using ray tracing show that quadratic

curves can lead to significant performance improvements in render time, though the savings vary

significantly. While the performance of some implementations and hair models are greatly improved

using quadratic curves, the improvements are not consistent and they can be relatively minor.
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