
Sag-Free Initialization for Strand-Based Hybrid Hair Simulation
JERRY HSU∗, University of Utah & LightSpeed Studios, USA
TONGTONG WANG, LightSpeed Studios, China
ZHERONG PAN, LightSpeed Studios, USA
XIFENG GAO, LightSpeed Studios, USA
CEM YUKSEL, University of Utah & Roblox, USA
KUI WU, LightSpeed Studios, USA

Guide hairs Full hairs︷                                                                              ︸︸                                                                              ︷ ︷                                                                              ︸︸                                                                              ︷

Naive [Hsu et al. 2022] Ours Naive [Hsu et al. 2022] Ours

Fig. 1. On an example wavy hairstyle “Long”, we compare three techniques applicable to the Lagrangian/Eulerian hybrid strand-based hair
simulation techniques: the naive initialization that treats the given initial shape as the rest shape, the previous sag-free initialization approach [Hsu
et al. 2022], and ours. While both naive and previous sag-free initializations lead to hairs sliding down with gravity, our initialization can preserve
the given initial hairstyle shape by treating it as the intended shape in static equilibrium under gravity. The left is the guide hairs used for the
actual initialization and simulation, while the right shows the full hairs interpolated from the guide hairs.

Lagrangian/Eulerian hybrid strand-based hair simulation techniques have

quickly become a popular approach in VFX and real-time graphics applica-

tions. With Lagrangian hair dynamics, the inter-hair contacts are resolved

in the Eulerian grid using the continuum method, i.e., the MPM scheme

with the granular Drucker–Prager rheology, to avoid expensive collision

detection and handling. This fuzzy collision handling makes the authoring

process significantly easier. However, although current hair grooming tools

provide a wide range of strand-based modeling tools for this simulation

approach, the crucial sag-free initialization functionality remains often ig-

nored. Thus, when the simulation starts, gravity would cause any artistic

hairstyle to sag and deform into unintended and undesirable shapes.

This paper proposes a novel four-stage sag-free initialization framework

to solve stable quasistatic configurations for hybrid strand-based hair dy-
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namic systems. These four stages are split into two global-local pairs. The

first one ensures static equilibrium at every Eulerian grid node with ad-

ditional inequality constraints to prevent stress from exiting the yielding

surface. We then derive several associated closed-form solutions in the local

stage to compute segment rest lengths, orientations, and particle deforma-

tion gradients in parallel. The second global-local step solves along each hair

strand to ensure all the bend and twist constraints produce zero net torque

on every hair segment, followed by a local step to adjust the rest Darboux

vectors to a unit quaternion. We also introduce an essential modification

for the Darboux vector to eliminate the ambiguity of the Cosserat rod rest

pose in both initialization and simulation. We evaluate our method on a

wide range of hairstyles, and our approach can only take a few seconds

to minutes to get the rest quasistatic configurations for hundreds of hair

strands. Our results show that our method successfully prevents sagging

and has minimal impact on the hair motion during simulation.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Hybrid MPM-Hair, Inverse Modeling,

Sag-Free Simulation
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1 INTRODUCTION
Hair simulations have long been an active research topic in com-

puter graphics that plays a critical role in the appearance and ani-

mation of humans and animals. Among various physically-based
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models, Lagrangian/Eulerian hybrid strand-based hair simulation

techniques [Fei et al. 2021a; Han et al. 2019; Jiang et al. 2017] have

quickly become very popular in both VFX and real-time applications,

achieving a superb balance between realism and performance over

the sheet- and volumetric-based methods [Koh and Huang 2001;

Wu and Yuksel 2016]. These hybrid techniques use Cosserat rod

theory [Kugelstadt and Schömer 2016] to model individual strand

deformations while relying on the continuummethod, e.g., the MPM

scheme with the granular Drucker–Prager rheology, to handle con-

tacts between strands. With the prevalence of these simulations,

several hair grooming tools, such as Maya XGen, Yeti, and nHair,

have been introduced to aid artists in the creation of strand-based

visual hair models. However, since these tools do not model any

internal or external forces, the designed visual hair models are

rarely simulation-ready. Indeed, as soon as the simulation starts,

hair strands suffer from sagging (Fig. 1 left), i.e., unintended sliding

and deformation due to gravity ruins carefully handcrafted hairstyle.

Although there has been a successful attempt toward sag-free

hair modeling [Derouet-Jourdan et al. 2013], their method targets

a purely Lagrangian hair simulation system and solves for static

equilibrium configuration under Lagrangian contact forces. How-

ever, expensive hair-hair contact handling renders it impossible

to achieve real-time Lagrangian simulations. On the other hand,

extending their method to Lagrangian/Eulerian hybrid hair systems

can be non-trivial, since the hybrid method handles the frictional

contacts using the drastically different particles using the granular

Drucker–Prager rheology MPM scheme.

Recently, Hsu et al. [2022] introduced a general framework for sag-

free initialization of deformable simulations. This method utilizes an

efficient global-local optimizer to fine-tune rest configurations that

cancel out external forces (such as gravity and contacts). While this

is a highly-promising and flexible approach that works with various

simulation systems, hybrid hair simulations are not among them

(Fig. 1 middle). This is owing to the fact that the Cosserat rod model

tightly couples point-wise translational, segment-wise rotational,

and grid-wise contact degrees of freedom. Simply decomposing this

highly non-linear constrained problem into multiple small problems,

as in the previous work, is non-trivial. Canceling out the forces and

torques for such an intricate system requires substantially restruc-

turing the global-local optimization approach. This further applies

to stability-related concerns exacerbated by twisting and particle

slippage, for which the prior work presents no solutions. We see

this as a great missed opportunity as the fuzzy contact handling

of hybrid hair simulations naturally lends it to practical and useful

sag-free initialization.

In this paper, we propose a novel four-stage sag-free initialization

framework that is the first to solve stable quasistatic configurations

for hybrid strand-based hair systems (Fig. 1 right). We first intro-

duce an essential modification for the Darboux vector to eliminate

the ambiguity of the Cosserat rod rest pose in both initialization

and simulation. We further propose a four-stage sag-free initializa-

tion algorithm, which is split into two global-local pairs. The first

global-local pair ensures zero net force at every grid node, followed

by a second global-local pair that ensures zero net torque at every

hair segment. We enforce additional inequality constraints in the

first global stage to prevent stress from exiting the yielding sur-

face and then derive several associated closed-form solutions and

constraints in the latter local stages to ensure computational effi-

ciency and simulation stability. To cancel out the torque produced

by the first global-local step, the second global-local step solves

along each hair strand separately to ensure zero net torque on every

hair segment, followed by a novel local quaternion adjustment to

ensure rest Darboux vectors to be unit quaternions. We show that

decomposing the highly non-linear quasi-static problem into multi-

ple small constrained linear problems is possible. And we prove that

our four-stage algorithm is guaranteed to yield feasible rest poses

with zero net force and torque.

We validate our method on an efficient hybrid GPU hair simu-

lator, which is built off of several existing techniques, including

the hybrid MPM method [Han et al. 2019], position-based Cosserat

rods [Kugelstadt and Schömer 2016], and the ASFLIP scheme [Fei

et al. 2021a]. We highlight our method in a row of benchmarks

with various hairstyles. As illustrated in Fig. 1, our method can find

sag-free rest configurations for the given wavy hairstyle, for which

our simulator yields stable animations.

2 BACKGROUND
This section first briefly reviews related work, and then introduces

the hybrid hair simulation method that our approach is based on.

2.1 Related Work
Hair Dynamic Models. Hair simulation is computationally inten-

sive due to the large number of hair strands (with about 100K strands

on an average human). In practical applications, engineers typically

use a number of representative primitives to simulate hair dynamics

rather than simulating every hair. Over the years, a row of simplified

hair representations has been proposed to approximate large bun-

dles of hairs at a low cost. These include 2D strips [Koh and Huang

2001], cubic lattice representations [Volino andMagnenat-Thalmann

2006], short hair strips [Guang and Zhiyong 2002], and volumet-

ric representations [Lee et al. 2019; Wu and Yuksel 2016]. These

representations can be converted to dense hair models at render

time. In comparison to these approaches, a more prevalent modeling

technique is to simulate a small number of guiding hair strands and

then recover the dense hair model via interpolation. Early works

model hair strands using mass-spring chains [Rosenblum et al. 1991]

or rigid multi-body chains [Anjyo et al. 1992; Chang et al. 2002],

but ghost particles [Umetani et al. 2015] or altitude springs [Selle

et al. 2008] are needed to take twisting effects into account for

modeling curly hairs. Recently, researchers have devised more phys-

ically accurate models of hair strands with bending and twisting,

such as the super-helix model [Bertails et al. 2006], Cosserat rod

elements (CoRdE) [Spillmann and Teschner 2007], discrete elastic

rods (DER) [Bergou et al. 2008], damped exponential time integrator

(DETI) model [Michels et al. 2015], and position-based Cosserat

rods [Kugelstadt and Schömer 2016].

Inter-Strand Contact Models. With a large number of hairs also

comes a massive number of complex inter-strand collisions and con-

tacts. Although the frictional contact between hairs can be resolved

using explicit hair geometries [Daviet 2020; Daviet et al. 2011; Kauf-

man et al. 2014], their exhaustive contact resolution is too costly
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for real-time applications. In view of this, Hadap and Magnenat-

Thalmann [Hadap and Magnenat-Thalmann 2001] proposed a fluid-

inspired, hybrid formulation to resolve collisions on a background

Eulerian grid. Their result exhibits a significant speedup using a

grid resolution much coarser than the characteristic length of hair

strands. This idea has been extended to model volume-preserved

gross behavior [McAdams et al. 2009], frictional contacts [Jiang et al.

2017], and two-way coupling with fluids [Fei et al. 2017]. A com-

mon issue with hybrid formulation lies in the numerical viscosity

caused during particle-grid transfers. Han et al. [2019] proposed a

hybrid particle-grid solver to alleviate this issue. Recently, Fei et al.

[2021a] introduced the Affine-augmented Separable FLIP (ASFLIP)

scheme that utilizes both velocity and positional adjustments to

break the positional trap. Leveraging the power of GPU, the lat-

est GPU implementation can simulate hundreds of thousands of

MPM particles in real-time [Fei et al. 2021b]. In this work, we build

our efficient GPU-based hair simulator by combining ideas from

position-based Cosserat rods [Kugelstadt and Schömer 2016], hybrid

particle-grid solver using the granular Drucker–Prager rheology for

contacts [Han et al. 2019], and the ASFLIP scheme [Fei et al. 2021a].

Our forward hybrid hair simulation framework is capable of simu-

lating thousands of visually convincing hair strands in real-time.

Sag-free Initialization. Artists oftentimes design physical scenar-

ios by assuming they are in static force equilibrium. However, an

exact force equilibrium cannot be achieved without carefully tun-

ing the object’s material properties and relative rest configurations.

Without such fine-tuning, objects will gradually deviate from their

designed configurations under gravity, an artifact known as sagging.

A myriad of research has been devoted to automatically fine-tuning

physical scenarios to achieve force equilibrium. A large class of

techniques considers purely elastic objects and optimizes their rest

shapes. This method has been applied to design balloons [Skouras

et al. 2012], soft characters with actuators [Skouras et al. 2013],

deformable 3D printable objects [Chen et al. 2014; Mukherjee et al.

2018; Wang et al. 2015], rod structures [Miguel et al. 2016; Pérez

et al. 2015], and garments [Bartle et al. 2016]. To incorporate con-

tact models, Twigg and Kačić-Alesić [2011] formulated the static

equilibrium problem as a complex nonlinear global optimization to

solve for rest configurations, such as the rest length of springs, for

multiple deformable objects modeled as mass-spring systems. Ly

et al. [2018] presented a sag-free initialization method for elastic

shells with frictional contact handling. The vertices in contact are

first constrained as static, and the results are then projected onto a

convex frictional cone. Hsu et al. [2022] solve the nonlinear global

optimization problem using a two-stage global-local optimization

with a generalized formula for handling various dynamic systems,

including FEM, MPM, and Position-Based Dynamics (PBD) with

frictional contacts. Our proposed approach uses the same decompo-

sition strategy but supports Cosserat rods while constraining the

solution to avoid plastic flow for the MPM scheme, among other

stability enhancements.

Unlike prior works, our initialization method can handle hybrid

Cosserat-MPM hair dynamics. A key challenge for sag-free hair

modeling is incorporating thousands of hair-body and hair-hair

collisions in the optimization formulation. Existing hair initialization

technique relies on exhaustive hair simulation [Lee and Ko 2001]

or additional spring forces and constraints [Iben et al. 2019]. It

has been shown that, for a single hair strand modeled as a multi-

body chain, the static equilibrium state can be found using inverse

dynamics [Hadap 2006]. Derouet-Jourdan et al. [2010] proposed

an initialization approach for 2D super-helix model. Unfortunately,

all of these approaches initialize each strand separately without

considering contacts. Derouet-Jourdan et al. [2013] solves for the

inverse static equilibrium configuration with Lagrangian contact

forces as a well-posed constrained optimization problem. Their

method can initialize thousands of hair strands with contacts in

the order of a few seconds. Unfortunately, their method is designed

for the pure Lagrangian case with explicit frictional contacts. In

comparison, our approach also targets sag-free hair initialization

but for a completely different forward simulation system that is

more suitable for real-time applications. To our best knowledge, we

propose the first contact-aware sag-free initialization approach for

hybrid Lagrangian/Eulerian hair dynamics.

2.2 Hybrid Cosserat-MPM Hair Simulation
In this section, we describe the hybrid hair simulation method used.

Our algorithm is very similar to the prior hybrid work [Han et al.

2019] and takes the Lagrangian point of view and models each

hair strand as a Cosserat rod with time integration via extended

position-based dynamics (XPBD). The vertices of each hair strand

are further used as material particles in conjunction with the MPM

method to handle collisions on an auxiliary Eulerian grid. Although

such a hybrid framework has been proposed, we introduce essential

modifications to allow stable sag-free initialization, which will be

presented in the next section.

(a) (b) (c) (d)

Fig. 2. Forward simulation pipeline: (a) integrate Cosserat rod us-
ing XPBD scheme to predict per-particle Lagrangian force, (b) compute
and transfer particle stress with predicted Lagrangian force to grid
nodes and update velocity at each grid node, (c) transfer velocity back
to the particle, and (d) advance particles based on the new velocity
from G2P.

We use subscript 𝑖 as grid node indices, subscript 𝑝 , 𝑝+, and 𝑝++
as consecutive particle indices along the hair strand, and subscript 𝑠

as indices of hair segment between consecutive particles pair 𝑝 and

𝑝+. We use superscript 𝑛 as timestep index. 𝛼 = {1, 2, 3} indicates
the orthonormal vectors. To model twisting and bending, Cosserat

theory attaches a frame with each strand segment, denoted as a

quaternion q. q indicates the conjugate of a quaternion q and ℑ(q)
indicates the imaginary component of q. 𝛀 and 𝛀0 indicate the

Darboux vector at the current and rest pose. As shown in Fig. 2, our

forward hair simulator uses a time-splitting scheme consisting of

the following steps:
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2.2.1 Cosserat Rod Integration. We adopt the PBD frame-

work [Kugelstadt and Schömer 2016] to model each hair strand as

Cosserat rods and extend it to XPBD [Macklin et al. 2016]. This

step is performed independently for each hair strand. Cosserat rods

introduce a frame q𝑠 for each hair segment. As such, the 𝛼 ’th axis of

the frame is expressed as d𝑠,𝛼 = q𝑠e𝛼q𝑠 , where e𝛼 are orthonormal

basis. The Cosserat dynamic is modeled with two constraints. The

stretch and shear constraint Css

𝑠 ensures that the rod segment 𝑠 is

nearly length-preserved and normal with the rod’s cross-section:

Css

𝑠 (x𝑝 , x𝑝+ , q𝑠 ) =
1

𝑙0
(x𝑝 − x𝑝+ ) − d𝑠,3, (1)

with rest length 𝑙0. To model the bending and twisting behaviors,

an additional bend and twist constraint Cbt

𝑠 is introduced between

two pairs of consecutive particles, quaternion of which denoted as

q𝑠 and q𝑠+ , to penalize the difference between the Darboux vector

𝛀 at current and rest pose, which is given by:

Cbt

𝑠 (q𝑠 , q𝑠+ ) = 𝛀(q𝑠 , q𝑠+ ) − 𝜙𝛀0

𝜙 =

{
+1 for ∥𝛀 − 𝛀0∥2 ≤ ∥𝛀 + 𝛀0∥2

−1 for ∥𝛀 − 𝛀0∥2 > ∥𝛀 + 𝛀0∥2
,

(2)

where 𝜙 is used to always move 𝛀 towards the nearest pole, since

both 𝛀0 and −𝛀0 correspond to the same angle.

The energy potential 𝐸 is further specified in terms of constraint

functions 𝐸★𝑠 = 1

2
𝑘★C★

𝑠
𝑇C★𝑠 , where ★ indicates constraint type and

𝑘★ indicates the corresponding stiffness. We can use the XPBD time

integrator to approximately solve each particle’s orientation q𝑛+1

𝑠 ,

angular velocity 𝝎𝑛+1

𝑠 , temporary position x̃𝑛+1

𝑝 , and temporary

velocity ṽ𝑛+1

𝑝 via the optimization:

x̃𝑛+1

𝑝 , ṽ𝑛+1

𝑝 , q𝑛+1

𝑠 ,𝝎𝑛+1

𝑠 ≈ argmin

x𝑝 ,v𝑝 ,q𝑠 ,𝝎𝑠

∑︁
𝑝

𝑚𝑝

2Δ𝑡2
∥v𝑝 − v𝑛𝑝 ∥2+∑︁

𝑠

1

2Δ𝑡2
∥𝝎𝑠 − 𝝎𝑛

𝑠 ∥2

I𝑠 +
∑︁
𝑠

𝐸ss𝑠 +
∑︁
𝑠

𝐸bt𝑠 ,

(3)

where𝑚𝑝 is the particle mass and I𝑠 is the segment inertial tensor.

To solve the optimization problem, an XPBD scheme is used to

calculate the stretch and shear iterants as:

Δ𝝀ss =
𝑙0

(
x𝑝 − x𝑝+ + q𝑠e3q𝑠𝑙0 − 𝛼ss𝝀ss𝑙0

)
𝑤𝑝 +𝑤𝑝+ + 𝑙2 (4𝑤𝑠 + 𝛼ss)

,

Δx𝑝 = +Δ𝝀𝑠
𝑙0

, Δx𝑝+ = −Δ𝝀𝑠
𝑙0

, Δq𝑠 = −2Δ𝝀𝑠q𝑠e3 .

and the bend and twist iterants as:

Δ𝝀bt =
−

(
q𝑠q𝑠+ − 𝑠𝛀0

)
− 𝛼bt𝝀bt

𝑤𝑠 +𝑤𝑠+ + 𝛼bt
,

Δq𝑠 = q𝑠+Δ𝝀
bt, Δq𝑠+ = q𝑠Δ𝝀bt,

where 𝝀★ is the Lagrange multiplier and 𝛼★ is a block diagonal

compliance matrix corresponding to inverse stiffness. At the end

of each iteration, the rotation quaternion is normalized. We refer

readers to the previous work [Kugelstadt and Schömer 2016] for

more details on the XPBD integration of Cosserat rods.

2.2.2 Particle Stress Computation. Instead of explicitly detecting

and resolving inter-hair contacts using Lagrangian geometries, we

follow the previous hybrid hair method [Fei et al. 2021a; Han et al.

2019] to resolve the contacts on the Eulerian grid with the elastoplas-

tic MPM scheme. Like traditional MPM methods, besides position

x𝑝 and velocity v𝑝 , each particle carries affine coefficients C𝑝 and

deformation gradient F𝑝 . We treat each particle as elastoplastic

material and follow standard MPM derivation [Klár et al. 2016] to

compute the per-particle stress tensor:

𝝈𝑛
𝑝 =

1

det(F𝑛𝑝 )
( 𝜕𝜓
𝜕F

(F𝑛𝑝 )
)
(F𝑛𝑝 )𝑇 , (4)

with the material model:

𝜓 (F) = ` tr((ln 𝚺)2) + 1

2

_ tr(ln 𝚺)2 , (5)

where F = U𝚺V𝑇 is the singular value decomposition, and `, _ are

the Lamé parameters. It is worth noting that, for real-time perfor-

mance, we only resolve the contacts on the Eulerian grid, with-

out using explicit Lagrangian geometric correction for collision as

in [Han et al. 2019].

2.2.3 Particle-to-Grid (P2G) and Grid Update. After adjusting parti-

cle velocities and stress, the momentum P𝑖 is then transferred from

particles to the grid nodes, where explicit force computation is used

to update grid velocity:

v𝑛𝑖 = P𝑛𝑖 /
∑︁
𝑝

𝑤𝑖𝑝𝑚𝑝 . (6)

2.2.4 Grid-to-Particle (G2P). The final step updates particles’ ve-

locity v𝑛+1

𝑝 , position x𝑛+1

𝑝 , affine coefficient C𝑛+1

𝑝 , and deformation

gradient F𝑛𝑝 using the following ASFLIP scheme [Fei et al. 2021a]:

v𝑛+1

𝑝 =
∑︁
𝑖

v𝑛+1

𝑖 𝑤𝑖𝑝 + 𝛼 (v𝑛𝑝 −
∑︁
𝑖

v𝑛𝑖 𝑤𝑖𝑝 )

x𝑛+1

𝑝 = x𝑛𝑝 + Δ𝑡 (
∑︁
𝑖

v𝑛+1

𝑖 𝑤𝑖𝑝 + 𝛽𝑝𝛼 (v𝑛𝑝 −
∑︁
𝑖

v𝑛𝑖 𝑤𝑖𝑝 ))

C𝑛+1

𝑝 =
4

Δ𝑥2

∑︁
𝑖

v𝑛+1

𝑖 (x𝑖 − x𝑝 )𝑇𝑤𝑖𝑝

F̃𝑛+1

𝑝 = F𝑛𝑝 + Δ𝑡∇(v𝑛)𝑝F𝑛𝑝 ,

(7)

where 𝛼 is a velocity adjustment and 𝛽𝑝 is the parameter to avoid

the position trap caused by the numerical viscosity during particle-

grid transfers. Here, 𝑤𝑖𝑝 is a standard B-spline quadratic kernel.

Finally, we project F̃𝑛+1

𝑝 to derive F𝑛+1

𝑝 satisfying the following

Drucker–Prager yielding condition:

𝑐𝐹 tr(𝝈𝑛+1

𝑝 ) +
𝝈𝑛+1

𝑝 −
tr(𝝈𝑛+1

𝑝 )
𝑑


F

≤ 0 , (8)

where 𝑑 = 2, 3 as in 2D and 3D, and 𝑐𝐹 ≥ 0 increases with amount of

friction between grains. We refer readers to the previous work [Klár

et al. 2016] for more details on this step.

3 METHOD
This section introduces our essential modifications to the hybrid

hair simulator that enables sag-free initialization and then describes

our four-stage sag-free solver with regularization techniques.
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3.1 Modifications to the Forward Simulator
We have briefly described the hybrid strand-based hair simulator

in Sec. 2.2; however, the existing framework contains ambiguities

during computation, which impedes the stability of sag-free Initial-

izations.

3.1.1 Augmented Darboux Vector. The following discrete Darboux

vector suggested by Kugelstadt and Schömer [2016]:

𝛀 = 2/𝑙0ℑ(q𝑠q𝑠+ ), (9)

only takes the imaginary components and leads to an ambiguity

in the sign of the real part of q𝑠q𝑠+ . As such, both the positive and

negative values of the real part become valid rest poses. Problemati-

cally, this does not represent the same angle but an axis-inverted

configuration instead and can be exceptionally prone to creating

instantaneous inversions of two axes as the angle between segments

approaches zero for highly bent hair. In order to resolve this ambi-

guity, we modify the definition of the discrete Darboux vector as

follows:

𝛀 = 2/𝑙0 (q𝑠q𝑠+ ), (10)

dictating the real and imaginary parts to completely remove ambi-

guity and allow the hair to return to a unique rest shape reliably.

x𝑝 x𝑝+ x𝑝+ x𝑝q𝑠 q𝑠

q𝑠+ q𝑠+

x𝑝++ x𝑝++

d3

d2

d1

q𝑠q𝑠+ = (0, 0,
√

2

2
,−

√
2

2
) q𝑠q𝑠+ = (0, 0,

√
2

2
,
√

2

2
)

Fig. 3. Those two configurations have the same discrete Darboux vec-
tor under the definition of [Kugelstadt and Schömer 2016] (ignoring
the real component), which introduces ambiguity. In practice, when
the angle between segments gets smaller, this manifests as an instan-
taneous inversion of two axes when the segments crossover.

Fig. 3 demonstrates ambiguous discrete Darboux vector suggested

by Kugelstadt and Schömer [2016], which only takes the imaginary

components. This leads to an ambiguity in the sign of the real part of

q𝑠q𝑠+ , while our augmented Darboux vector resolves this ambiguity

and significantly improves the simulation quality of twisting. In

summary, there are two ambiguities at play for the discrete Darboux

vector. The first is the ambiguity between the equivalent angles of

𝑞 and −𝑞 within the bending and twisting constraint. The second

ambiguity lies in the sign of the missing real component in the case

of the discrete Darboux vector. Our constraint formulation flips the

sign of 𝑞 to resolve the first ambiguity and we augment the Darboux

vector to resolve the second ambiguity.

3.1.2 Lagrangian/Eulerian Coupling. Unlike previous works that
directly update position x𝑛+1

𝑝 and velocity v𝑛+1

𝑝 after Cosserat rod

integration for the next frame, we use it as the temporary velocity

ṽ𝑛+1

𝑝 to predict per-particle Lagrangian force f𝑛𝑝 as:

f𝑛𝑝 =𝑚𝑝 (ṽ𝑛+1

𝑝 − v𝑛𝑝 )/Δ𝑡 ,

which is then transferred to the grid for the actual position and veloc-

ity update. This modification has two advantages. First, it prevents

hairs from exhibiting penetration during the Lagrangian update step.

Second, this later allows the contacts which, in this case, correspond

to our MPM forces to fully respond to the forces introduced by the

Lagrangian step. Note that, due to the relatively small hair radius,

we assume the hair segment’s angular velocities and rotations do

not impact MPM-hybridization. Thus, we updates q𝑛+1

𝑝 and 𝝎𝑛+1

𝑝

directly to their configurations.

In P2G, we also account for additional per-particle Lagrangian

forces f𝑝 computed by the previous step using XPBD. Summing up

the contributions, the linear momentum P𝑛
𝑖
of each grid node takes

the following form:

P𝑛𝑖 = Δ𝑡
∑︁
𝑝

f𝑛𝑝𝑤𝑖𝑝 − Δ𝑡
∑︁
𝑝

𝑉 0

𝑝 det(F𝑛𝑝 )𝝈𝑛
𝑝∇𝑤𝑖𝑝+∑︁

𝑝

𝑤𝑖𝑝𝑚𝑝 (v𝑛𝑝 + C𝑛
𝑝 (x𝑛𝑖 − x𝑛𝑝 )) + Δ𝑡g

∑︁
𝑝

𝑤𝑖𝑝𝑚𝑝 ,
(11)

where the first term accounts for Lagrangian forces, the second

term is the traction force, the third term uses the affine-corrected

velocity [Jiang et al. 2015], and the last term is the gravitational

force.

3.2 Sag-free Initialization
Assuming that the initial state of the hair system is quasistatic,

i.e., v0

𝑝 , 𝝎
0

𝑝 , and C0

𝑝 are zero, the goal of the sag-free initialization

is to solve for stable rest configurations including q𝑝 , F𝑝 , 𝑙0, and
𝛀0, such that all future v𝑛𝑝 ,𝝎

𝑛
𝑝 , v

𝑛
𝑖
are zero under gravity and the

system remains quasistatic. This is a challenging problem because

our hybrid system chains these variables together into a complex

nonlinear pipeline spanning multiple systems. Our method follows

a similar idea as the two-stage approach introduced in [Hsu et al.

2022] and applies induction on the condition that v𝑛𝑝 = 𝝎𝑛
𝑝 = v𝑛

𝑖
= 0

to avoid deformation. Under this condition, all the variables become

intransient, and we can omit the superscript 𝑛 without confusion.

We propose a four-stage approach:

(1) Global Force Step computes the Lagrangian force f𝑝 and

the volume-scaled stress �̃�𝑝 = det(F𝑝 )𝝈𝑝 that cancel out

gravitational forces on each grid node.

(2) Local Force Step computes the rest length 𝑙0 for each stretch

and shear constraint, quaternion q for each hair segment, and

deformation gradient F𝑝 for each particle based on the result

from the previous global step.

(3) Global Torque Step computes the rest Darboux vector 𝛀0

for each bend and twist constraint to cancel out the torque

produced by the quaternion q from the local-force step.

(4) Local Torque Step enforces that 𝛀0 correspond to a stable

unit quaternion under stability constraints.

We describe each of these four steps below and present our regular-

ization techniques:
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3.2.1 Global Force Step. Thanks to our Lagrangian force transfer

scheme in Eq. 11, we can utilize the grid momentum to solve for the

hair static equilibrium state. In particular, our inductive condition

implies the third term in Eq. 11 evaluates to zero, and P𝑖 = 0;

otherwise, the G2P step would produce non-zero velocities. Put

together, and we have the following expression for each node 𝑖:

0 =
∑︁
𝑝

f𝑝𝑤𝑖𝑝 −
∑︁
𝑝

𝑉 0

𝑝 det(F𝑝 )𝝈𝑝∇𝑤𝑖𝑝 + g
∑︁
𝑝

𝑤𝑖𝑝𝑚𝑝 . (12)

The Lagrangian force f𝑝 on each particle is the summation of

stretch and shear forces contributed by each neighboring segment

as f𝑝 =
∑
𝑝∈𝑠 fss𝑠 , where 𝑝 can be either particle of segment 𝑠 and

stretch and shear force fss𝑠 = −𝜕𝐸ss𝑠 (x𝑝 , x𝑝+ )/𝜕x𝑝 .
Among infinitely many solutions that can lead to quasistatic

configurations, we encourage small Lagrangian force f𝑝 and the

volume-scaled stress �̃�𝑝 under the quasistatic constraint since those

forces/stresses are related to the user-input material model and

should be unaltered as much as possible. More importantly, we can-

not accept just any �̃�𝑝 due to the Drucker-Prager yielding condition,

and violating that would lead to plastic flow. Unfortunately, directly

solving Eq. 12 with the above constraints for rest configurations in

𝐸ss and deformation gradient F𝑝 in 𝝈𝑝 is a non-convex optimization

problem, due to the Cosserat rod model (Eq. 1, 2) and the hypere-

lastic material model (Eq. 5). Even worse, the optimization would

be large-scale and involves all the hair segments, making a direct

numerical optimization prohibitively costly.

We propose a novel convexification technique to boost perfor-

mance significantly. Our idea is to leave the material model out of

the optimization and use the per-segment force fss𝑠 and per parti-

cle volume-scaled stress �̃�𝑝 as the decision variables to solve the

following Second-Order Conic Programming (SOCP):

argmin

�̃�𝑝 ,f ss𝑠

∑︁
𝑠

fss𝑠 2 + 𝛼
∑︁
𝑝

∥�̃�𝑝 ∥2

s.t.

∑︁
𝑝

f𝑝𝑤𝑖𝑝 −
∑︁
𝑝

𝑉 0

𝑝 �̃�𝑝∇𝑤𝑖𝑝 + g
∑︁
𝑝

𝑤𝑖𝑝𝑚𝑝 = 0 ∀𝑖

𝑐𝐹 tr(�̃�𝑝 ) +
�̃�𝑝 −

tr(�̃�𝑝 )
𝑑


F
≤ 0 ∀𝑝,

(13)

where𝛼 = 1𝑒−2 is a scaling factor used to bias for contacts. Note that

the second constraint is equivalent to the Drucker–Prager yielding

condition (Eq. 8), where det(F𝑝 ) is positive due to our hyperelastic

material model. Although Eq. 13 is still large-scale, there exists

an efficient splitting algorithm [O’Donoghue et al. 2016] to solve

such a SOCP. Similar to the global-local algorithm [Hsu et al. 2022],

O’Donoghue et al. [2016] factorizes the global matrix only once

and then uses local steps to satisfy each conic constraint. In the

Appendix A, we show that Eq. 13 is always feasible.

3.2.2 Local Force Step. Given the per-segment force fss𝑠 from global

step and per-particle volume-scaled stress �̃�𝑝 , we can solve the

inverse problem to recover rest configurations for each hair segment

and particle in parallel.

Local step for f ss𝑠 . Given the fss𝑠 , the local step aims to find the rest

length 𝑙0 for the stretch and shear constraint so that it can produce

a matching force. However, only tuning 𝑙0 would expose one degree

of freedom, so the force can be only along the segment direction,

while fss𝑠 can be arbitrarily given by the optimization in Eq. 13. To

match the degree of freedom, we must put the rest orientation q𝑠
as the additional tunable parameter. To find 𝑙0 and q𝑠 such that:

fss𝑠 =
𝑘ss

𝑙0

(
x𝑝 − x𝑝+

𝑙0
− d𝑠,3

)
,

we notice that d𝑠,3 must be a unit vector, i.e.:

∥d𝑠,3∥2 =

 𝑙0fss𝑠𝑘ss
−
x𝑝 − x𝑝+

𝑙0

2

= 1. (14)

The above equation is bi-quadratic in 𝑙0 , which could lead tomultiple

solutions for 𝑙0. We choose the solution that is closest to the current

segment length. After 𝑙0 is computed, we solve for q𝑠 that rotates
e𝑠,3 to d𝑠,3. Unfortunately, given fss𝑠 , there is no guarantee that Eq. 14

has a solution since the magnitude of compressive forces generated

by Eq. 14 is upper-bounded by definition. To ensure the solvability,

we could introduce the following hard constraint to Eq. 13 that

ensures the discriminant of Eq. 14 is positive:(
(x𝑝 − x𝑝+ )𝑇 fss𝑠

(𝑘ss)2
+ 1

)
2

− 4

| |x𝑝 − x𝑝+ | |2 | |fss𝑠 | |2

(𝑘ss)2
≥ 0 ∀𝑠 . (15)

Although the above hard constraint is a rotated quadratic cone

and can be readily handled by the splitting solver, enforcing it in

the global step often leads to no solution depending on the given

initial shape. Hence, we do not enforce that constraint in the global

step. Instead, we adjust the stiffness in the local step to ensure the

discriminant of Eq. 14 is positive and then solve for 𝑙0.

Local step for �̃�𝑝 . Given �̃�𝑝 , we can recover F𝑝 based on the

hyperelastic material model defined in Eq. 5. Given the SVD decom-

position of �̃�𝑝 = U ˜
𝚺𝑝V, the U,V component must be the same as

those of F𝑝 . We analytically solve for the diagonal component of

ln(𝚺) via the following linear system:

diag(ln 𝚺) =
[
2𝑉 0

𝑝 `I +𝑉 0

𝑝 _11
𝑇
]−1

diag( ˜
𝚺𝑝 ),

where 1 is the all-one vector. We can then recover F𝑝 as F𝑝 =

U exp(ln 𝚺)V𝑇 .

3.2.3 Global Torque Step. While the node force is canceled out in

the local-force step, additional torque can be induced by stretch

and shear energy 𝐸ss𝑠 , denoted as 𝝉 ss𝑠 . Here we use 4D generalized

torque associated with an energy 𝐸★𝑠 defined as: 𝝉★𝑠 = −𝜕𝐸★/q𝑠 . To
prevent the hair segment from rotating, we solve the second global

step on each hair strand to achieve torque equilibrium. In particular,

we solve the temporary rest orientation
˜
𝛀0,𝑠 for segment 𝑠 , such

that stretch and shear torque is canceled out by the twist and bend

torque for each hair segment 𝑠

𝝉 ss𝑠 +
∑︁
𝑠

𝝉bt𝑠 ( ˜
𝛀0) = 0 ∀𝑠, (16)

where 𝝉bt𝑠 denotes the torque from the bend and twist constraint,

which is linearly related to
˜
𝛀0 (we ignore 𝑠 for brevity). The gener-

alized torque we solve in this step is temporary because it does not

satisfy the unity constraint: ∥𝑙0𝛀0/2∥ = 1. In the next step, we will

show how to adjust
˜
𝛀0 to yield unit 𝛀0 without violating Eq. 16.
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𝑝

𝑠

𝑝+

𝑠+

𝑝++

Fig. 4. We illustrate the cone
(blue), in which 𝑠0,+ must stays
to avoid flipping of elements.

3.2.4 Local Torque Step. In
the local stage, we then need

to adjust
˜
𝛀0 to 𝛀0 by ensur-

ing ∥𝑙0𝛀0/2∥ = 1. Further-

more, this needs to be done

while maintaining the zero net

torque condition. Interestingly,

for the consecutive segments

𝑠 and 𝑠+, any 4D generalized

torque along q𝑠q𝑠+ would gen-

erate zero 3D torque. Hence,

there is always an orthogonal

decomposition of 𝛀0 = 𝛀
0, ∥ +

𝛀0,⊥ such that 𝛀
0, ∥ = 𝑡q𝑠q𝑠+

does not generate any torque for any real scaler 𝑡 . For the derivation,

please refer to Appendix B.

Therefore, we could choose a scalar 𝑡 such that 𝛀0 is a unit quater-

nion. However, an arbitrary 𝛀0 can lead to an unstable dynamic

system in two cases. First, Cbt
relies on a non-smooth jump function

𝜙 , which changes abruptly when the difference between ∥𝛀 − 𝛀0∥
and ∥𝛀 + 𝛀0∥ is close to zero. To avoid such abrupt change, we

need to choose 𝛀0 that leaves enough margin between the two

values. Thus, we solve for the most stable 𝛀0 via the following local

optimization:

argmax

∥𝛀0 ∥=1,𝑡

|∥𝛀 − 𝛀0∥2 − ∥𝛀 + 𝛀0∥2 | (17)

s.t. 𝜙𝛀0 = ˜
𝛀0,⊥ + 𝑡q𝑠q𝑠+ ,

where 𝑡 is an auxiliary variable. A second unstable case happens

when the segment 𝑠+ at its current- and rest-pose lies on two sides

of segment 𝑠 . To keep these two poses on the same side of segment

𝑠 , we need the following additional constraint as shown in Fig. 4:

∥𝛀⊥∥ ≤ min

(
ℜ(𝛀), 2(1 − 𝜖𝑏 )

𝑙0

)
, (18)

for some small constant margin 𝜖𝑏 . Unfortunately, given the
˜
𝛀0

solved from the global-torque step, no remaining degree of freedom

can be used to satisfy Eq. 18. Hence, we enforce the above constraint

by raising the bending stiffness locally until Eq. 18 is met. Then, we

can use the new ∥𝛀⊥∥ to solve Eq. 17 for the final unit quaternion

𝛀0. In Appendix B, we derive the constraint in detail, provide a

closed-form solution for Eq. 17, and show that it is always feasible

given sufficiently large stiffness 𝑘bt.

3.2.5 Regularization. In practice, the simple regularization from

Eq. 13 can yield unsatisfactory solutions. This is because, for the

Lagrangian force, we would like to penalize bending forces more

than stretching forces since relying on bending force often leads to

undesirable rest configuration as shown in Fig. 5. Regarding stretch-

ing force, we prefer tension forces over compression forces because

compression forces can result in follow-up bending along indefinite

directions. But the stretching stiffness of hair is often several magni-

tudes larger than the bending stiffness, which results in a relatively

small pocket of stability in the case of compression. To alleviate

this issue, we design an asymmetric regularization technique for

the global force step.

Initial shape Ours w/o regularization Ours w/ regularization

Fig. 5. Given the initial rod (right), without Lagrangian force regu-
larization, we will get a rest configuration that relies on bending forces
to support itself, which is demonstrated by simulating the rod without
gravity (middle). Unfortunately, this bent shape is on the saddle point
and easy to deform. By penalizing bending forces more than stretching
forces, we get a more stable rest shape (right).

We first decompose fss𝑠 into tangent and normal components:

fss𝑠 = t𝑠𝑧𝑡𝑠 + n𝑠𝑧𝑛𝑠 , (19)

where n𝑠 = (x𝑝 − x𝑝+ )/∥x𝑝 − x𝑝+ ∥ is the tangent direction and t𝑠
are the two normal directions. We then decompose 𝑧𝑛𝑠 into positive

and negative components via the following constraints:

𝑧𝑛𝑠 = 𝑧𝑛+𝑠 + 𝑧𝑛−𝑠 ∧ 𝑧𝑛+𝑠 ≥ 0 ∧ 𝑧𝑛−𝑠 ≤ 0. (20)

For similar reasons, it would be better to use hydrostatic stress z𝑑𝑝
(diagonal part) over deviatoric stress z𝑜

𝑑
(off-diagonal part) of �̃�𝑝 ,

so we use the following decomposition:

�̃�𝑝 = z𝑑𝑝 + z𝑜𝑝 . (21)

To enforce asymmetric regularization, we add Eq. 19, 20, 21 to Eq. 13

and replace the objective function with:

𝑤𝑡
∑︁
𝑠

(𝑧𝑛+𝑠 )2 +𝑤𝑐
∑︁
𝑠

(𝑧𝑛−𝑠 − 𝑧𝑛−★𝑠 )2 +𝑤𝑏
∑︁
𝑠

∥𝑧𝑡𝑠 ∥2

+𝑤𝑑
∑︁

∥z𝑑𝑝 ∥2 +𝑤𝑜
∑︁

∥z𝑜𝑝 ∥2,

(22)

where 𝑧𝑡𝑠 , 𝑧
𝑛±
𝑠 , z𝑑𝑝 , and z𝑜𝑝 are our new decision variables, and we

use 𝑤𝑡 = 1, 𝑤𝑐 = 10
4
, 𝑤𝑏 = 10

4
, 𝑤𝑑 = 10

3
, 𝑤𝑜 = 10

5
in all our

experiments. We also regulate using a bias value 𝑧𝑛−★𝑠 . Empirically,

we find setting 𝑧𝑛−★𝑠 to be half the weight of a hair strand to yield

good results.

4 RESULTS
We implement our sag-free initialization via C++ using the Splitting

Conic Solver (SCS) [O’Donoghue 2021] and our forward hair simu-

lation based on a CUDA MPM implementation [Gao et al. 2018]. All

timings are measured on a desktop machine with a 3.4 GHz AMD

Ryzen 9 5950X CPU and an NVIDIA GeForce RTX 3090 GPU with

24 GB of memory, except forward simulation time and sag-free ini-

tialization time for the “Curly wig” hairstyle measured on a desktop

machine with a 3.7 GHz AMD Ryzen Threadripper 3970X CPU and

an NVIDIA GeForce RTX 3090 GPU with 256 GB of memory.

To verify the practicality of our method, we export four hairstyles

from MetaHuman in Unreal Engine. Given the hairstyle (full hairs),

we first randomly pick either 256 or 512 hair strands and uniformly

sample 16 particles per hair strand as guide hairs for sag-free ini-

tialization and forward simulation. Meanwhile, we build an interpo-

lation weight map between guide hairs and full hairs based on their

initial relative position. With the weight map, we reconstruct the
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Frame 100 Frame 300 Frame 500 Frame 700

Discrete Darboux vector [Kugelstadt and Schömer 2016]

Ours augmented Darboux vector

Fig. 6. Twisting rod: Comparison between discrete Darboux vector
(top) and our augmented Darboux vector (bottom). Our Darboux vector
definition uses both the real and imaginary parts to remove ambiguity
and improve curvature smoothness.

Discrete Darboux vector Ours augmented Darboux vector

Frame 1 Frame 30 Frame 300 Frame 1 Frame 30 Frame 300

Fig. 7. Zig-zag rod: Our method can initialize the sag-free rod based
on either the discrete Darboux vector (left) or our augmented Darboux
vector (right) in bend and twist constraints. The Zig-Zag rod that uses
the discrete Darboux vector cannot recover after being blown by the
wind due to the ambiguity in the Darboux vector computation. The
arrow indicates the force direction.

full hair at render time based on the new guide hair positions. Fig. 1

shows an example hairstyle with both guide and full hairs.

In the forward simulation, we use 64 iterations for each XPBD

step with a time step size of Δ𝑡 = 10
−3
. Thanks to our GPU imple-

mentation and efficient inter-hair contact handling over the grid, it

only takes 0.9 ms per timestep, including 64 XPBD iterations and

one MPM collision step, which makes the strand-based hair sim-

ulation accessible for real-time applications. Note that since our

vertices and grid size are relatively small, the reported simulation

time is dominated by the CUDA kernel launch overheads and can

be subject to further optimizations.

Fig. 6 shows that our augmented Darboux vector can significantly

improve the simulation quality of the twisting rod. Furthermore,

Fig. 7 demonstrates the ambiguity caused by the discrete Darboux

vector for sag-free initialization. The Zig-zag rods are modeled by

the bend and twist constraints based on either the discrete Darboux

vector (left) or our augmented Darboux vector (right). Although our

method can initialize both rods with a sag-free initial pose under

gravity, the rod with the discrete Darboux vector cannot recover its

initial shape after being blown by the wind due to the ambiguity in

the Darboux vector definition.

Fig. 8 demonstrates the importance of enforcing yielding condi-

tions during initializing a cluster of hairs lying on another bunch

initially. With either naive initialization or if we solve static equilib-

Naive

Without enforcing

yielding constraint
Ours final

Fig. 8. Drape: A cluster of hair strands laying on another cluster
initially. With either naive initialization (left) or if we solve the static
equilibrium state without considering Drucker–Prager yielding con-
dition (middle), hair strands slide down when the simulation starts,
while our initialization (right) can correctly solve inter-hair frictional
contacts and preserve the initial shape under the gravity.

N
a
i
v
e

O
ur

s

Gravity only Under wind

Wind direction

Wind direction

Fig. 9. Curly wig: We evaluate our method on the “Curly wig”
hairstyle extracted from the same data used in the prior work [Derouet-
Jourdan et al. 2013] with a similar number of hair strands. Using the
naive initialization (top row), the hairstyle breaks as soon as the simula-
tion starts due to the large sagging artifacts. Our sag-free initialization
(bottom row) can preserve the designed hairstyle while having similar
hair dynamics under blowing wind (right).

rium state without considering Drucker–Prager yielding condition,

hair strands slide down after the simulation starts.
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Guide hairs Full hairs︷                                                                              ︸︸                                                                              ︷ ︷                                                                              ︸︸                                                                              ︷

Naive [Hsu et al. 2022] Ours Naive [Hsu et al. 2022] Ours

Fig. 10. Long: The “Long” hairstyles initialized with the naive method, the previous sag-free initialization approach [Hsu et al. 2022], and ours
behave very similarly under the wind from the left. The left is the guide hairs used for the actual initialization and simulation, and the right shows
the full hairs interpolated from the guide hairs.
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Guide hairs Front Back Under wind

Fig. 11. Afro:We show the guide hairs (leftmost), the front (second
leftmost), and back (second rightmost) views of full hairs under gravity,
where naive initialization causes significant volume loss while ours
can preserve the given hair shape. Meanwhile, our result (rightmost)
behaves very similarly to that of the naive method under the wind
force blowing from the left.

To compare with the prior work [Derouet-Jourdan et al. 2013], we

perform sag-free initialization on the same hairstyle (Fig. 9) with a

similar number of hair strands (1024). Since their work uses explicit

contact handling while ours uses an inter-hair Eulerian grid, there is

no clear way to match the exact number of contacts. In our setup, we

use 32 particles per strand with a grid size of 128
3
, leading to 32555

occupied voxels. Since our system has six unknown variables for

each deformation gradient per particle and seven unknown variables

for constraints associated with per hair segment, we have a total

of 323584 unknown variables to solve for in our initialization step,

a much larger problem size than the prior work [Derouet-Jourdan

et al. 2013]. Even with a larger system to solve, our method can

still successfully initialize this challenging curly hairstyle without

sagging in 606.4 seconds. More importantly, it only takes 1.3 ms

per step to simulate the hybrid system with 1024 hair strands and

32768 particles, which shows the superiority of our frameworks

over previous methods.

To compare with another previous work [Hsu et al. 2022], we

use one step of the global-local solver to only solve for net force
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Gravity only Under blowing wind

Fig. 12. Short: We evaluate our method on one “Short” hairstyle.
With the naive initialization (top row), the hairstyles break as soon
as the simulation starts. Our sag-free initialization (bottom row) can
preserve the designed hairstyles while having similar hair dynamics
under blowing wind (right).

in the “Long” example. Unfortunately, since the prior method does

not consider the net torque and cannot support bend and twist

constraints with quaternions and the Darboux vector, the hairstyle

initialized via the prior method breaks as soon as the simulation

starts (Fig. 1) as it does in the naive initialization. Fig. 10 further

demonstrates that all results present similar hair dynamics under

the blowing wind.

We further evaluate our method on three additional hairstyles,

including Afro (Fig. 11), Short (Fig. 12), and Middle (Fig. 14). Without

the correct sag-free initialization, the hairstyles deform once the sim-

ulation starts and significantly change the avatars’ appearances. Our

sag-free initialization preserves the designed hairstyles. “Long” and

“Middle” demonstrate our method with long hairstyles that contain

large overhangs in both the front and the back. “Afro” demonstrates

our approach can also work well for highly intertwined volumetric

hair.

Additionally, we use two common human head motions, head-

turning (Fig. 13) and dance (Fig. 14), to evaluate the simulation

quality of “Long” and “Middle”. As shown in Fig. 13, the hairstyle

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Fig. 13. Head-turning:We evaluate our method on the curly hairstyle with a moderate head-turning motion. Our sag-free initialization (top
row) can produce similar visual results as the one with naive initialization (bottom row) does while preserving the bangs.
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Fig. 14. Dance: We further evaluate our result on the “Middle” hairstyle with an aggressive dance motion of the head. The Leftmost demonstrates
the guide hairs used for initialization and simulation, while the rest are the corresponding full hairs in the dance sequence. The hairs with naive
initialization (top row) cannot preserve the initialization and lead to intertwined (second rightmost), while ours (bottom row) has a much better
visual quality.

initialized with our method allows us to preserve both the initial

shape under static equilibrium and the dynamic motion under ani-

mation. The dynamics under motion remain visually similar, both

with andwithout our initialization. Note that Fig. 14 shows that with-

out our initialization, hairs become universally too soft to preserve

the hairstyle and later excessively intertwine with each other due to

the aggressive head motions. We list all physical parameters, input

parameters, and their resulting initialization metrics in Table 1. We

show the percentage of elements where material modifications take

place. Generally, hairstyles with curly hair exhibit more significant

local stiffening. In particular, any hairstyle or segment positioned

horizontally to gravity requires additional stiffening. This is often

required when sweeping strands on the forehead or extremely curly

hair. We also list the equilibrium condition residual as force (in

Newtons) mean squared error (MSE) in Table 1.

To evaluate the scalability of our method, we initialize the “Curly

wig” with 128, 256, 512, and 1024 hair strands and 64
3
, 64

3
, 128

3
,

and 128
3
grid sizes, respectively. As shown in Fig. 15, the initial-

ization takes 27, 91, 129, and 606 seconds for different numbers

of hair strands, where we observe a roughly quadratic scaling in

initialization time as the number of hair strands increases under the

same grid size. In terms of the forward simulation, thanks to our

GPU-friendly implementation, it only takes 0.75, 0.78, 1.16, and 1.30

ms per step, respectively. The forward simulation performance is

highly related to the grid size as the MPM update dominates the

computation performance, and the Lagrangian rod integration is

reasonably fast. It is worth noting that our system can initialize up
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Table 1. Statistics and Performance of Initialization, and physical parameters and their resulting initialization metrics. * is measured on a
desktop machine with a 3.7 GHz AMD Ryzen Threadripper 3970X CPU with 256 GB of memory.

Model Strand # Vertex # Grid size Valid node # Initialization 𝑘ss 𝑘bt Friction coeff. % stiffened Force MSE

Drape 32 512 64
3

722 2.4 s 20.0 3.0 0.7 1.2% 2.3𝑒 − 4

Middle 256 4096 64
3

2769 43.4 s 20.0 5.0 0.2 18.9% 1.4𝑒 − 3

Short 256 4096 64
3

1199 63.9 s 20.0 5.0 0.2 20.3% 1.4𝑒 − 3

Afro 256 4096 32
3

2580 83.8 s 20.0 5.0 0.2 7.3% 1.6𝑒 − 3

Long 512 8192 128
3

2705 247.5 s 20.0 5.0 0.2 15.3% 1.2𝑒 − 2

Curly wig
∗

1024 32768 128
3

32555 606.4 s 100.0 30.0 0.2 56.1% 7.2𝑒 − 2

Knit 1 1024 64
3

2378 2.3 s 60.0 5.0 0.2 63.2% 1.4𝑒 − 2

(s)
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(ms)
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0.8

0.4

0.0

128 256 512 1024

Initialization Simulation

Fig. 15. Scalability: We initialize the “Curly wig” hairstyle with
128, 256, 512, and 1024 hair strands, respectively. The blue bars show
the initialization time in seconds, while the orange line indicates the
per-step simulation performance in ms.

to 32 thousand vertices (or 2048 - 4096 strands), which is limited by

the direct matrix solver used in our implementation.

Depending on the number of hair strands used, our method can

produce valid and stable solutions within several minutes for even

our largest examples, as shown in Table 1, where valid nodes indicate

the number of free grid nodes impacted by particles. The drape

example shown in Fig. 8 only takes around 2 seconds to initialize

for 32 guide hairs, and our largest example in Fig. 10 takes around

4 minutes to initialize for 512 guide hairs. In general, we observe

a roughly quadratic scaling in initialization time as the number of

guide hairs increases. However, as shown in Fig. 10, 512 strands

are more than dense enough such that the individual guide hairs

themselves could be rendered as hair strands without any bold spots.

Finally, we demonstrate an additional application of our method

in Fig. 16, where a single intertwined yarn forms a 9 × 9 knitted

swatch, and the yarn-yarn contacts keep the knit from unraveling.

Like other hairstyles, the knit sags with a naive initialization, while

our sag-free initialization maintains its original shape when the

simulation starts. Note that even without explicit geometric contact

detection, our forward simulator can still robustly capture yarn-yarn

contacts and avoid yarn pass-through.

5 CONCLUSION
We propose a novel sag-free initialization technique for hybrid hair

dynamics. Each hair strand is modeled as a Cosserat rod and inter-

hair collisions are handled on an Eulerian grid. To this end, we first
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Gravity only Under upward wind

Fig. 16. Knit: we initialize a 9 × 9 knit swatch with one intertwined
yarn. Like hairs, the knit sags with naive initialization (top), while
our sag-free initialization maintains its shape (bottom).

proposed a stabilized hair simulator with the augmented Darboux

vector. Next, we propose a four-stage algorithm to compute qua-

sistatic configurations and material parameters for both Lagrangian

rods and Eulerian particles. Our first two stages compute collision

forces and tune stretch and shear forces to cancel out external forces,

while our last two stages use twist and bend torques to cancel out

stretch and shear torques. We show that our algorithm is well-

defined and always yields a solution. Our experiments show that

our method can successfully compute the sag-free configuration for

various hairstyles.

6 LIMITATIONS AND FUTURE WORK
As future work, we plan to design a joint optimization formulation

to achieve sag-free initialization with fewer material parameter mod-

ifications. While some material modifications may be unavoidable

in specific inputs, the ramifications of minimizing local stiffening

during the optimization process remain unexplored.

Furthermore, as we focus heavily on real-time hair simulations,

our work begs a natural extension to applications in high-fidelity

offline applications. As we implement our algorithm using a direct

matrix solver, we are unfortunately limited in the input size, and

future work on a matrix-free solver is essential for extending our

method to large-scale offline simulations. As part of our scope, we

also leave as future work the extensions to wet hair simulations

using wet sand material models.
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A WELL-DEFINEDNESS OF MPM STEPS
We show that Eq. 13 can always be solved for a valid F𝑝 and fss𝑠 .

Lemma A.1. Suppose each hair strand is one-end fixed. Given suffi-
ciently large 𝑘ss, Eq. 13 with additional constraint Eq. 15 is feasible,
which can be solved for �̃�𝑝 , f ss𝑠 . A valid non-invertible F𝑝 can then be
recovered from �̃�𝑝 .

Proof. First note that Eq. 13 endows a trivial feasible solution

of �̃�𝑝 = 0 and f𝑝 =𝑚𝑖g. Given f𝑝 =𝑚𝑖g, we can solve for fss𝑠 via a

linear system. The linear system is independent for each hair strand.

Let us denote a hair strand as connected by a sequence of𝑁 particles

with indices:

< 𝛼 (1), 𝛼 (2), · · · , 𝛼 (𝑁 ) >,

then the linear system takes the following form:

©«
−I I

. . .

−I I
−I

ª®®®®¬
©«

fss
𝛼 (1)𝛼 (2)
fss
𝛼 (2)𝛼 (3)

.

.

.

fss
𝛼 (𝑁−2)𝛼 (𝑁−1)
fss
𝛼 (𝑁−1)𝛼 (𝑁 )

ª®®®®®®®®¬
=

©«
f𝛼 (2)
.
.
.

f𝛼 (𝑁−1)
f𝛼 (𝑁 )

ª®®®®¬
,

where fss
𝛼 (1)𝛼 (2) indicates the stretch and shear force due to a seg-

ment connecting particles 𝛼 (1) and 𝛼 (2), the lefthand side is full-

rank, and block tridiagonal, so we can always find a solution for fss𝑠 .

Here we do not need any equation for f𝛼 (1) since the hair strand
is one-end fixed. Therefore, Eq. 13’s feasible domain is non-empty

and must yield a solution F𝑝 , fss𝑠 .

However, to ensure our Local-force step has a solution for 𝑙0,

we need to add an additional constraint Eq. 15, with which Eq. 13

might not have a feasible solution. To ensure feasibility, we notice

that Eq. 15 must hold when 𝑘ss → ∞, i.e., we can always increase

the stiffness parameter to ensure feasibility.

Finally, we show that, given �̃�𝑝 , we can utilize the material model

to recover F𝑝 . We assume the SVD decomposition of �̃�𝑝 = U ˜
𝚺𝑝V,

where theU,V component must be the same as those of F𝑝 (see [Klár

et al. 2016] for detailed derivation of this result). By direct verifica-

tion, we have:

�̄�𝑝 = −𝑉 0

𝑝

(
𝜕𝜓

𝜕F𝑝
(F𝑝 (x))

)
F𝑇𝑝

¯
𝚺𝑝 =𝑉 0

𝑝 (2` ln 𝚺 + _tr(ln 𝚺)I) .

We can solve for the diagonal component of ln(𝚺) via the following
linear system:

diag(ln 𝚺) =
[
2𝑉 0

𝑝 `I +𝑉 0

𝑝 _11
𝑇
]−1

diag( ˜
𝚺𝑝 ),

where 1 is the all-one vector. We can then recover F𝑝 as:

F𝑝 = U exp(ln 𝚺)V𝑇 ,

thus all is proven. □

In practice, we solve Eq. 13 without Eq. 15 and increase the 𝑘ss

that violates the constraints. This strategy sacrifices optimality for

computational speed.

B WELL-DEFINEDNESS OF TORQUE STEPS
For the global-local step of torque, we use 4D generalized torque

𝝉𝑠 . We first reveal connection between generalized torque 𝝉𝑠 and
conventional torque �̃�𝑠 . After an infinitesimal 𝛿𝑡 , the orientation is

updated by:

𝛿𝑡

2

𝝎𝑠q𝑠 ,

so the energy 𝐸★𝑠 is updated by:

− ⟨𝝎𝑠𝛿𝑡, �̃�𝑠 ⟩ = 𝛿𝐸★𝑠 =

〈
𝛿𝑡

2

𝝎𝑠q𝑠 ,
𝜕𝐸★𝑠

𝜕q𝑠

〉
.

Comparing the two sides of the above equation and we immediately

have the following:

�̃�𝑠 (𝝉𝑠 ) = ℑ(𝝉𝑠q𝑠 )/2 −ℜ(q𝑠 )ℑ(𝝉𝑠 ) . (23)

Global-Torque Feasibility. Next, we show that Eq. 16 must have a

solution.

Lemma B.1. Suppose each hair strand is one-end fixed, the sys-
tem Eq. 16 is always well-defined and feasible.

Proof. By direct verification, we have the following analytic

formula for 𝝉bt𝑠 and 𝝉bt𝑠+:

𝝉bt𝑠𝑠+ = − 𝑘bt
Cbt

q𝑠

𝑇

Cbt =
2𝑘bt

𝑙0
q𝑠+ ( ¯

𝛀 − 𝑠 ¯
𝛀0,𝑠𝑠+)

𝝉bt𝑠+𝑠 = − 𝑘bt
Cbt

q𝑠+

𝑇

Cbt =
2𝑘bt

𝑙0
q𝑠 (𝛀 − 𝑠𝛀0,𝑠𝑠+) .

Let us treat 𝝉bt𝑠𝑠+ and 𝝉bt𝑠+𝑠 as auxiliary variables, we must have:(
Cbt

q𝑠

)−𝑇
𝝉bt𝑠𝑠+ =

(
Cbt

q𝑠+

)−𝑇
𝝉bt𝑠+𝑠 ,

and it is easy to see that
𝜕𝛀
𝜕q𝑠 and

𝜕𝛀
𝜕q𝑠+ are full-ranked, so their

inversion is well-defined and we can plug the following substitution:

𝝉bt𝑠+𝑠 =
(
𝜕𝛀

𝜕q𝑠+

)𝑇 (
𝜕𝛀

𝜕q𝑠

)−𝑇
𝝉bt𝑠𝑠+ ≜ T𝑠𝑠+𝝉bt𝑠𝑠+,

into the first part of Eq. 16 to eliminate 𝝉bt𝑠+𝑠 . After the substitution,
we can write the linear system in matrix form as

©«
T𝛼 (1)𝛼 (2)𝛼 (3) I

. . .

T𝛼 (𝑁−3)𝛼 (𝑁−2)𝛼 (𝑁−1) I
T𝛼 (𝑁−2)𝛼 (𝑁−1)𝛼 (𝑁 )

ª®®®®¬©«

𝝉bt
𝛼 (1)𝛼 (2)𝛼 (3)

.

.

.

𝝉bt
𝛼 (𝑁−3)𝛼 (𝑁−2)𝛼 (𝑁−1)
𝝉bt
𝛼 (𝑁−2)𝛼 (𝑁−1)𝛼 (𝑁 )

ª®®®®®®¬
= −

©«
𝝉 ss
𝛼 (2)𝛼 (3)

.

.

.

𝝉 ss
𝛼 (𝑁−2)𝛼 (𝑁−1)
𝝉 ss
𝛼 (𝑁−1)𝛼 (𝑁 )

ª®®®®®¬
,

where the lefthand side is clearly full-ranked. Here the notation

T𝛼 (1)𝛼 (2)𝛼 (3) indicates the generalized torque on the segment con-

necting particles 𝛼 (1) and 𝛼 (2), due to bending and twisting energy
of two consecutive segments (one connecting 𝛼 (1) and 𝛼 (2) and the
other one connectin 𝛼 (2) and 𝛼 (3)). Note that we do not need an
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equation to cancel out 𝝉 ss
𝛼 (1)𝛼 (2) because the hair strand is one-end

fixed. Given the solution 𝝉bt𝑠𝑠+ and 𝝉bt𝑠+𝑠 , we can recover 𝛀0, which

is denoted as
˜
𝛀0 in our pipeline. This is clearly doable as the coef-

ficient matrices
𝜕𝛀
𝜕q𝑠 and

𝜕𝛀
𝜕q𝑠+ are full-ranked. Since the two linear

systems are equivalent (we use 𝝉bt𝑠 and 𝝉bt𝑠+ as decisions variables,

while Eq. 16 use 𝛀0), Eq. 16 is solvable. □

Torque Decomposition. Since the conventional torque �̃�bt𝑠 is only

3D, we must have the following decomposition of 𝛀0:

Lemma B.2. 𝛀0 can be uniquely decomposed into a parallel com-
ponent 𝛀

0, ∥ with �̃�𝑠 (𝛀0, ∥) = 0 and an orthogonal component 𝛀0,⊥
with �̃�𝑠 (𝛀0,⊥) = �̃�𝑠 (𝛀0), such that 𝛀0 = 𝛀

0, ∥ + 𝛀0,⊥.

Proof. By direct verification, we can find that:

�̃�𝑠 (q𝑠 ) = 0.

This implies that any scalar multiple of q𝑠 will generate zero torque.
Therefore, we have the following result if 𝛀0 is a scalar multiple of

q̄𝑠q𝑠+ :

�̃�𝑠 (𝛿𝝉bt𝑠 ) = − 2𝑘bt𝜙

𝑙0
�̃�𝑠 (q𝑠+𝛿𝛀0)

= − 2𝑘bt𝜙

𝑙0
�̃�𝑠 (q𝑠+ q̄𝑠q𝑠+𝛿)

= − 2𝑘bt𝜙

𝑙0
�̃�𝑠 (q𝑠+ q̄𝑠+q𝑠𝛿)

= − 2𝑘bt𝜙

𝑙0
�̃�𝑠 (q𝑠𝛿) = 0.

Now since q̄𝑠q𝑠+ is a unit 4D vector, we immediately have:

𝛀
0, ∥ = vec(q̄𝑠q𝑠+ )vec(q̄𝑠q𝑠+ )𝑇𝛀0 𝛀0,⊥ = 𝛀0 − 𝛀

0, ∥ ,

where vec(•) converts a quaternion into a 4D vector. □

Torque Constraint Derivation. We first show that our constraint

can leave enough margin from the decision boundary of 𝑠:

Lemma B.3. Suppose ∥𝑙0𝛀0,⊥/2∥ ≤ 1−𝜖𝑏 < 1, then |∥𝛀−𝛀0∥2 −
∥𝛀 + 𝛀0∥2 | ≥ 16

𝑙2

0

√︁
1 − (1 − 𝜖𝑏 )2 > 0.

Proof. We have:

|∥𝛀 − 𝛀0∥2 − ∥𝛀 + 𝛀0∥| = 4|vec(𝛀)𝑇 vec(𝛀0) |

=4|vec(𝛀
0, ∥)𝑇 vec(𝛀) | = 8

𝑙0
∥𝛀

0, ∥ ∥ =
8

𝑙0

√︃
∥𝛀0∥2 − ∥𝛀0,⊥∥2

=
16

𝑙2
0

√︃
1 − (1 − 𝜖𝑏 )2 > 0,

where we have used the orthogonal decomposition of 𝛀0. □

Next, we show that our constraint can ensure the current- and

rest-segment 𝑠+ are on the same side of 𝑠 .

Lemma B.4. Suppose ∥𝛀0,⊥∥ ≤ ∥ℑ(𝛀)∥, then the current- and
rest-segment 𝑠+ are on the same side of the plane passing through 𝑠
with normal 𝑠 × (𝑠+ × 𝑠) (see Fig. 4).

Proof. We refer readers to Fig. 4 for the derivation of this proof.

In the current configuration, 𝑠+ is rotated around 𝑠 by the following

angle:

sin

1

2

∠(𝑠+, 𝑠) = ∥ℑ(𝑙0𝛀/2)∥,

which is by the definition of our generalized Darboux vector. We

then denote the rest vector 𝑠+ of as 𝑠0,+ and 𝑠0,+ is rotated around

𝑠+ by the following angle:

cos

1

2

∠(𝑠0,+, 𝑠+) =ℜ(𝑙2
0

¯
𝛀𝛀0/4)

=𝑙2
0
/4ℜ( ¯

𝛀𝛀0)

=𝑙2
0
/4vec(𝛀)𝑇 vec(𝛀0)

=𝑙0/2∥𝛀
0, ∥ ∥.

In order for 𝑠0,+ to stay inside the blue cone in the inset, we can let:

𝑙0/2∥𝛀0,⊥∥ = sin

1

2

∠(𝑠0,+, 𝑠+) ≤ sin

1

2

∠(𝑠+, 𝑠) = ∥ℑ(𝑙0𝛀/2)∥,

and all is proven. □

Local-Torque Solution. In order to solve Eq. 17, we notice from The-

orem B.3 that we need to make ∥Ω
0, ∥ ∥ as large as possible, or ∥Ω0,⊥∥

as small as possible. Therefore, we first solve the following problem:

argmin

𝛀0,⊥

∥𝛀0,⊥∥ s.t. 𝑠𝛀0 = 𝑡𝛀 − 𝑙0

2𝑘bt
q̄𝑠𝝉bt𝑠+ ,

which has a closed-form solution

𝛀0,⊥ =

[
I − vec(q̄𝑠q𝑠+ )vec(q̄𝑠q𝑠+ )𝑇

] [
− 𝑙0

2𝑠𝑘bt
q̄𝑠𝝉𝑏𝑡𝑠+

]
.

If the second constraint of Eq. 17 is violated, then our problem is

infeasible. Otherwise, we use 𝛀
0, ∥ to normalize 𝛀0. When infeasi-

bility is detected we increase 𝑘bt until the second constraint is just

satisfied. This is always possible because 𝛀0,⊥ can get arbitrarily

small as 𝑘bt increases.
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