
Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing
JACOB HAYDEL, University of Utah, USA
CEM YUKSEL, University of Utah & Roblox, USA
LARRY SEILER

(a) Ours (b) Reference

≈

(c) Ours Mesh (d) Reference Mesh

≠

Fig. 1. Our locally-adaptive level-of-detail for ray tracing renders an image using many fewer triangles than the full-resolution model and

produces a visually identical result. The detail level is selected locally for each ray, including both primary and secondary rays, using a screen-space

metric. (a) The resulting image is visually indistinguishable from (b) the model rendered at full resolution, even though significantly less data is

accessed for rendering a (c) low-resolution mesh, adaptively selected from (d) the full-resolution mesh. Our method provides substantial reductions

in data movement that can result in more than an order of magnitude reduction in energy use and render times with sufficient compute resources.

We introduce an adaptive level-of-detail technique for ray tracing triangle

meshes that aims to reduce the memory bandwidth used during ray traversal,

which can be the bottleneck for rendering time with large scenes and the

primary consumer of energy. We propose a specific data structure for hier-

archically representing triangle meshes, allowing localized decisions for the

desired mesh resolution per ray. Starting with the lowest-resolution triangle

mesh level, higher-resolution levels are generated by tessellating each trian-

gle into four via splitting its edges with arbitrarily-placed vertices. We fit the

resulting mesh hierarchy into a specialized acceleration structure to perform

on-the-fly tessellation level selection during ray traversal. Our structure

reduces both storage cost and data movement during rendering, which are

the main consumers of energy. It also allows continuous transitions between

detail levels, while locally adjusting the mesh resolution per ray and preserv-

ing watertightness. We present how this structure can be used with both

primary and secondary rays for reflections and shadows, which can intersect

with different tessellation levels, providing consistent results. We also pro-

pose specific hardware units to cover the cost of additional compute needed

for level-of-detail operations. We evaluate our method using a cycle-accurate

simulation of a custom ray tracing hardware architecture. Our results show

that, as compared to traditional bounding volume hierarchies, our method

can provide more than an order of magnitude reduction in energy use and

render time, given sufficient computational resources.

CCS Concepts: • Computing methodologies → Ray tracing.

Authors’ addresses: Jacob Haydel, University of Utah, USA; Cem Yuksel, University of

Utah & Roblox, USA; Larry Seiler.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on

Graphics, https://doi.org/10.1145/3618359.

ACM Reference Format:
Jacob Haydel, Cem Yuksel, and Larry Seiler. 2023. Locally-Adaptive Level-

of-Detail for Hardware-Accelerated Ray Tracing. ACM Trans. Graph. 42, 6,

Article 196 (December 2023), 15 pages. https://doi.org/10.1145/3618359

1 INTRODUCTION
Level-of-detail (LOD) is a common technique for reducing render

cost by using different resolution versions of an object. Lower-

resolution versions are used when the object is further away from

the camera and progressively higher-resolutions versions are ren-

dered as the object gets closer. Exactly when and how to switch

between LOD levels varies depending on the LOD method.

LOD techniques are commonplace with rasterization, since the

cost of geometry processing with rasterization is correlated with the

number of triangles rendered. In particular, GPU tessellation shaders

and, more recently, mesh shaders offer effective mechanisms for

locally determining the mesh resolution on-the-fly at render time,

providing substantial savings in computation and data movement

costs for rendering.

With ray tracing, acceleration structures provide computation-

related benefits of LOD, such that not all triangles are tested

for ray intersections when a model is far. Nonetheless, using

lower-resolution models is also helpful in ray tracing [Selgrad et al.

2016][Novák and Dachsbacher 2012], particularly for reducing

the data movement and the related costs and inefficiencies.

Indeed, when ray tracing relatively large scenes with sufficient

computational resources, data movement can easily become the

bottleneck of performance and it is the main source of energy

use on today’s computing devices [Vasiou et al. 2018][Ghose et al.

2018].

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0005-5488-2381
HTTPS://ORCID.ORG/0000-0002-0122-4159
HTTPS://ORCID.ORG/0000-0002-1642-1016
https://orcid.org/0009-0005-5488-2381
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-1642-1016
https://doi.org/10.1145/3618359
https://doi.org/10.1145/3618359

196:2 • Jacob Haydel, Cem Yuksel, and Larry Seiler

Unfortunately, there is no effective equivalence of tessellation or

mesh shaders with GPU ray-tracing that would reduce data move-

ment. The only LOD options for ray casting are picking an LOD

level prior to rendering or stochastically switching between LOD

levels per ray [Brandon Lloyd 2020]. The former option results in

abrupt changes in the model shape (due to shape differences be-

tween LOD levels) without any graceful transition and the latter one

leads to noise and increased data movement when multiple levels

are sampled during rendering.

In this paper, we propose a locally-adaptive LOD approach that is

reminiscent of tessellation shaders. Our goals are the same: reducing

the memory bandwidth utilization and achieving locally-adaptive

detail levels. Similar to the tessellation pipeline for rasterization,

the rendered meshes are defined by a low-resolution mesh (i.e. the

coarsest level LOD) and tessellations of its primitives. Unlike the

rasterization pipeline, however, we generate the highest-resolution

tessellation ahead of rendering, so that we can build a customized

acceleration structure, optimized for storage and cache coherency.

Our tessellation structure is designed for reducing data storage

and minimizing data movement during rendering. Moreover, it per-

mits continuous transitions between LOD levels and picking the

desired LOD level independently for each ray, including secondary

rays, without introducing cracks or self-occlusion artifacts. We rely

on a pre-defined tessellation structure: each triangle of a lower-

resolution level is tessellated into 4 triangles by splitting its edges.

The common vertices of consecutive LOD levels maintain their po-

sitions for all LOD levels and the other vertices are placed freely.

Once built, our tessellation structure can be quickly refit to support

animating meshes.

Obviously, handling LOD at render time involves additional com-

putation. In this paper, we target hardware-accelerated ray-tracing

with custom hardware logic to perform ray traversal with our LOD

operations, which are significantly simpler and more efficient to

handle in hardware than a software implementation, allowing us

to explore techniques that would not be feasible on existing GPU

hardware without our custom units and a fixed traversal pipeline.

We evaluate our method using a cycle-accurate simulation of a

custom ray tracing hardware architecture with sufficient compute

resources and hardware ray traversal units. Our results show that,

depending on the camera distance, our method can achieve more

than an order of magnitude reduction in both energy cost and render

time, as compared to traditional bounding volume hierarchies. These

improvements come at no visible degradation in quality, as shown

in Figure 1.

2 RELATED WORK
Currently, tessellation on ray-tracing hardware is handled by pre-

tessellating the model and then storing the full-resolution version

in memory [Sjoholm 2018]. This model is then rendered at full reso-

lution using a conventional bounding volume hierarchy (BVH) and

standard traversal techniques. This has the benefit of fully lever-

aging the hardware during rendering by determining the desired

tessellation level prior to rendering. On the other hand, it does

not provide local adaptivity and switching between LOD levels on

consecutive frames results in abrupt changes in the model shape.

This issue is similar to typical LOD approaches with rasterization

without using on-the-fly tessellation.

Stochastic LOD [Brandon Lloyd 2020] works by pre-tessellating

the model to form a number of LOD levels. During render time,

rays stochastically pick an LOD level to achieve graceful transitions

between levels. Unfortunately, such transitions not only introduce

noise but also increase the memory bandwidth use, since LOD levels

do not share BVH or mesh data and multiple LOD levels are accessed

during rendering, instead of just one.

Several other approaches to LOD in ray tracing have been ex-

plored by prior works. Lee et al. [2019] proposes an extension to

modern ray tracing APIs that would allow for the selection of which

acceleration structure and corresponding level of detail should be in-

tersected on the fly at traversal time. The proposed extension would

support stochastic LOD. Kulkarni et al. [2019] explores a technique

where BVH nodes are shared between multiple LOD levels of a

single mesh. This amortizes the cost of switching between levels

of detail as some of the nodes will already be cached. Ikeda et al.

[2022] proposes a method that uses the bounding boxes of interior

BVH nodes as a proxy for the triangle mesh, intersecting them di-

rectly, instead of traversing the BVH nodes down to the leaf and

intersecting the full-resolution triangles. Similar to our method, this

has the effect of reducing memory bandwidth but is only suitable for

incoherent rays like those used to approximate Global Illumination,

as the BVH nodes do not provide a good approximation of the model

when it is directly viewed.

LOD for ray tracing was also explored in the context of soft-

ware rendering, particularly for high-resolution scenes. Christensen

et al. [2003] picks a discrete LOD level for a subpatch to achieve

hybridized ray tracing with REYES. Cracks are avoided by moving

vertices along subpatch boundaries or inserting gap-filling poly-

gons [Christensen et al. 2006]. Yoon et al. [2006] renders massive

models by picking a discrete LOD level per ray, but does not guar-

antee surface continuity. Hanika et al. [2010] tessellates patches

into micropolygons of different LOD levels, relying on conservative

bounding boxes and using the boundaries of the nodes to fill cracks

on the surface due to varying LOD decisions. The Razor rendering

system [Djeu et al. 2011] generates the ray tracing acceleration

structure on-the-fly during rendering from a given scene graph. It

supports dynamic LOD and geometrically morphing between levels

to avoid surface cracks, using a similar approach to ours. However,

it is high overhead makes it unsuitable for primary rays and simple

secondary rays, such as shadows.

On-the-fly tessellation is an alternative approach for reducing

memory use with ray tracing. One option is using displacement

maps [Smits et al. 2000]. This avoids the added memory overhead

of storing the full-resolution model but requires the computation

cost of generating the sub-triangle mesh from a displacement map

each time the mesh is rendered. Also, tearing artifacts appear when

neighboring pixels disagree on the LOD level due to discontinuities

in the triangle edges produced from the displacement map.

Another option for on-the-fly tessellationwith ray tracing is using

a tessellation cache shared between all threads [Benthin et al. 2015].

This has the effect of reducing the memory storage requirement of

a given scene in that the large amount of data required for patches

is confined to a certain section of cache. Although patches may be

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:3

evicted from cache, they can be reconstructed relatively quickly.

This means that only a small subset of the full-resolution scene

needs to be stored at any given time. This can provide a reduction

in render time over full-resolution ray-tracing in software on the

CPU. However, this technique requires thread synchronization as

well as rebuilding each model’s acceleration structure for every

frame. Those operations are costly to implement in hardware, so

this technique is more suitable for software ray tracing than for

selecting detail levels using dedicated ray tracing hardware.

Recently, Thonat et al. [2021] introduced a method for adding

fine-scale displacements on a coarse model. The intersections with

the displaced surface are computed using the displacement texture

without tessellating the coarse model. This offers a highly effective

solution for tiled displacement maps on a larger surface, but it is

not suitable for handling arbitrary geometric detail.

Other works have looked into generating meshes with the topol-

ogy of Loop subdivision [Loop 1987] from arbitrary topologymeshes.

Lee et al. [2000] uses edge collapses and global optimization to pro-

duce a control mesh and then approximate the original surface as a

displacement of the limit surface in the normal direction.

Finally, Micro-Meshes [NVIDIA 2023] are similar to our work in

that they store up to 5 levels deep of subdivided triangles in a regular

data structure that allows selecting different subdivision levels for

different parts of the mesh. Unlike our method, micro-meshes do not

perform locally adaptive tessellation but instead require an external

computation to determine which detail levels to use.

3 LOCALLY-ADAPTIVE LEVEL OF DETAIL
Our locally-adaptive level-of-detail approach is designed to reduce

data movement during ray traversal, reminiscent of the GPU tes-

sellation pipeline for rasterization. Unlike rasterization, however,

our method requires pre-generating the full-resolution model and

building an acceleration structure for it ahead of rendering.

In this section, we describe the details of our method beginning

with our multi-resolution model representation (Section 3.1). Then,

we present our acceleration structure that combines all mesh reso-

lutions (Section 3.2). An important component of this acceleration

structure is the displacement bound that represents the geometric

differences between our tessellation levels (Section 3.3). We explain

how our ray traversal works (Section 3.4) and how we guarantee

watertight ray intersections (Section 3.5). Next, we describe the hit

information we generate when a ray intersection is found with any

tessellation level (Section 3.6) and the LOD metric we use in our

implementation (Section 3.7). Finally, we present how our method

can be extended to secondary rays (Section 3.8).

3.1 Multi-Resolution Mesh Representation
Triangles are the most common primitives with ray tracing (and

with rendering in general). Therefore, we build our multi-resolution

model representation on triangle meshes.

Our triangle mesh hierarchy contains a number of levels, each

with a triangle mesh of a different resolution. To ensure that we

can seamlessly transition between these levels, the topologies of

these meshes are tightly coupled. Our tessellation rule is such that

each triangle of a coarser level corresponds to 4 triangles of the next

p₁

p₀

p₂

q₀

q₁

q₂
f₀

f₁

f₂

f₃

1

0

Fig. 2. Example of the vertex and face ordering of a sub group. The

tessellation tree node at L0 corresponds to the yellow triangle with

vertices p0, p1, and p2. Its vertex data stores q0, q1, and q2.

resolution, formed by splitting the three edges of the triangle, as

shown in Figure 2.

Topologically, this matches the tessellation process of Loop sub-

division [Loop 1987], but we do not follow the vertex placement

rules of it or any other subdivision scheme. The vertices can be

positioned arbitrarily.

The three common vertices of a triangle and its corresponding 4

triangles at the next level (p0, p1, and p2 in Figure 2) maintain the

same positions for both levels, instead of having different positions

at each level. This restriction on vertex placement between levels

not only provides savings in the overall storage cost, but it is also

at the core of our adaptive ray traversal process for deciding when

to use higher-resolution levels during rendering.

The coarsest level of detail, L0, is a triangle mesh with an arbi-

trary topology. The consecutive levels are formed by tessellating all

triangles of the previous level (as shown in Figure 2). Since the com-

mon vertices maintain positions, we only need to store the inserted

vertices of the next level (q0, q1, and q2 in Figure 2).

Using this well-defined ordering, we can easily construct the

triangles (i.e. determine each triangle’s vertices) of the next level

from the previous one. Therefore, we only need to store the tri-

angles of the lowest-resolution mesh and the vertex positions of

all resolutions. The triangles of all higher-resolution levels can be

constructed during ray traversal without explicitly storing their

topology information.

This structure also allows us to continuously transition between

levels. Since each inserted vertex corresponds to an edge center of

the coarser level, we can easily morph the mesh to take the exact

shape of the coarser mesh by simply moving each inserted vertex

towards the corresponding edge center of the coarser level. This

way, we completely avoid abrupt transitions between levels.

3.2 Acceleration Structure
We can use any acceleration structure for L0. The only change is that
the bounding box of each triangle in L0 must include its tessellated

triangles in all subsequent levels.

We use a specialized tessellation tree for representing the hierarchy

under each triangle in L0. Thus, we build as many tessellation trees

as the number of triangles in L0.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:4 • Jacob Haydel, Cem Yuksel, and Larry Seiler

2

1

0

Fig. 3. An example triangle at L0 and its tessellated triangles at

L1 and L2. Notice that the magnitude of the displacement for L2 is
significantly larger than the one for L1.

Each node of the tessellation tree corresponds to one triangle at a

tessellation level. The 4 triangles formed by tessellating this triangle

(for the next tessellation level) are associated with its 4 child nodes.

However, we do not directly store the triangle information per node.

Instead, we store two separate types of information per node:

(1) Bound data that contains a bounding box and displacement

bounds that represent the maximum displacement of the sur-

face near each edge of the node’s triangle, as we explain below

in Section 3.3. Our LOD decisions during ray traversal rely

on this displacement bound. The bounding box contains all

triangles in subsequent tessellation levels, which is equivalent

to the bounding box of the part of the full-resolution mesh

that corresponds to the node.

(2) Vertex data that contains the positions of the inserted ver-

tices (q0, q1, and q2 in Figure 2) for the next level.

Note that a tessellation tree node does not store the vertices of

its triangle, but the vertices that are needed to form the triangles of

its child nodes. Thus, the vertex data is needed only if we decide to

traverse deeper into the tessellation tree. Therefore, for minimizing

data movement during traversal, we store the bound data and the

vertex data separately, so that we can skip reading the vertex data

when it is not needed. This is a critical property of our structure

that allows minimizing data movement during ray traversal.

The triangle mesh in L0 can be stored using a typical data struc-

ture, where each triangle is represented using 3 vertex indices into

a vertex buffer that stores the vertex positions. For the subsequent

levels, however, we avoid using an index buffer. Vertex data only

contains the positions of the inserted vertices. The mesh connectiv-

ity is implicitly defined, so there is no need to store it. We describe

the details of how our data structure allows us to quickly find the

inserted vertices of a triangle without storing any vertex indices for

levels beyond L0 in Section 4.

We store our tessellation trees as 4-ary BVHs (with each inter-

nal node having 4 child nodes) in the form of perfect (i.e. full and

complete) trees. This allows a compact representation that does not

require storing child node indices, thereby avoiding indirection and

reducing data movement.

2

1

0

Fig. 4. A highlighted inserted vertex and its 6 edges. The dashed lines

show the edges that belong to neighboring tessellation trees. Notice

that inserted vertices along the perimeter of the tessellation tree also

have 6 edges, two of which belong to a neighboring tessellation tree

and another two are shared by the two tessellation trees.

3.3 Displacement Bound
During ray traversal, the decision of which tessellation level to use

for intersecting triangles is made independently for each ray. This

is an important property of our approach, allowing localized LOD

decisions, which can be different for neighboring rays. Yet, it is

crucial that these independent decisions are consistent across all

edges for all tessellation levels, since picking different levels on

either side of an edge would result in visible cracks on the surface.

To ensure consistency, the LOD metric we use is computed per edge.

Our LOD metric (described in Section 3.7) is based on the maxi-

mum displacement of the surface along and around an edge between

all subsequent tessellation levels. We represent it using a single

scalar value per edge: the displacement bound. Thus, the bound data

of our tessellation tree includes 3 scalar displacement bounds per

node, one for each edge of the node’s triangle.

It is important to note that we cannot simply use the immediate

displacement at the current tessellation level (i.e. the distance of an

inserted vertex to the corresponding edge center) as the displace-

ment bound. This is because the displacement of an edge at a level

(exactly at its center) does not necessarily bound its displacements

at the subsequent levels (at different locations along the edge). An

example of this is shown in Figure 3, where the displacements of a

subsequent level are more significant than its parent level.

To capture the displacement bound of all subsequent levels, we

compute the displacement bound bottom-up, starting with the full-

resolution mesh at the last level of our hierarchy L𝑁 with 𝑁 + 1

levels. The displacement of an edge at its parent level L𝑁−1 can
be properly bounded by the distance of the inserted vertex from

the edge center. The leaf nodes of our tessellation trees store these

values as their displacement bounds. As we go up the hierarchy, each

edge at level 𝑛 with 0 ≤ 𝑛 < 𝑁 similarly considers the distance of its

center from its inserted vertex at L𝑛+1. In addition, it also considers

the displacement bounds of all 6 edges of the inserted vertex at L𝑛+1.
The maximum value among them is set as the displacement bound

of the edge at L𝑛 .
Note that with our tessellation rule, all inserted vertices are va-

lence 6, i.e. connected to 6 edges (see Figure 4), unless they are

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:5

on the mesh boundary. For inserted vertices along the tessellation

tree boundaries, two of their edges belong to one tessellation tree,

another two belong to the neighboring tessellation tree, and the

final two are shared between the two tessellation trees. That is why

we build all tessellation trees of the mesh hierarchy together.

3.4 Ray Traversal
Our ray traversal begins with the acceleration structure of L0 down
to the bounding boxes of the tessellation trees stored in its leaf nodes.

When a ray intersects with the bounding box of a tessellation tree’s

root node, we begin our LOD process.

For each internal node of a tessellation tree, our LOD metric

(described in Section 3.7) determines whether the triangle of the

node would be sufficient or if we should traverse into the next level.

This decision uses the vertex positions at the current level and the

displacement bounds in the bound data. If the current level provides

sufficient detail, we perform ray-triangle intersection using the

triangle of the node and simply ignore the rest of the tessellation tree

below it. Otherwise, we traverse further down into the tessellation

tree by intersecting the ray with the bounding boxes of the 4 child

nodes at the next level.

Since our LOD decisions are handled separately for each edge,

the three edges of a node’s triangle may disagree on the tessellation

level to be used for the ray. If any one of the three edges requires

a higher tessellation level, we must traverse further down into the

tessellation tree.

Yet, in the case of any disagreement between the tessellation

decisions of the three edges, we cannot simply ignore the edges that

did not require further tessellation. As we go down into the next

level, those edges that did not require tessellation must maintain

their geometries. This is because the neighboring triangles on the

other sides of these edges may agree to keep the current tessellation

level, so blindly tessellating these edges without preserving their

geometries can lead to cracks on the surface. Our solution is to

tessellate these edges without applying any displacement. Thus,

instead of using the corresponding inserted vertex position stored

in the vertex data, we simply use the edge center position for such

inserted vertices.

Another possibility is that our LOD metric (described in Sec-

tion 3.7) for an edge may return an intermediate tessellation value.

In that case, we apply a portion of the displacement by placing the

inserted vertex somewhere between the inserted vertex position in

the vertex data and the corresponding edge center at the current

level. When we tessellate an edge without applying any displace-

ment or a portion of the full displacement, we effectively morph

the next tessellation level towards the current one. Like geomorph-

ingHoppe [1998] this eliminates temporal artifacts such as popping.

After morphing, we continue down the tessellation tree using these

inserted vertices with morphed positions.

In addition to morphing the inserted vertex positions, we must

also adjust the bounding boxes of the child nodes. This is because

these morphed positions may be outside of the original bounding

boxes. One might incorrectly assume that modifying these bounding

boxes during ray traversal could be avoided by initially building

conservative bounding boxes that include the edge centers at the

bit-exact representation

2

1

Fig. 5. Watertight rendering requires bit-exact representation of edge

midpoints when one side of the highlighted edge is tessellated and the

other side is not.

previous level. However, this would only account for morphing at

one tessellation level. Similar morphing operations may need to be

performed at subsequent levels, where the edges might be formed by

previously-morphed vertices. Therefore, the alternative of initially

building conservative bounding boxes would require considering

compound morphing at multiple tessellation levels. Furthermore,

such pre-computed conservative bounding boxes would be less tight

and, therefore, be less efficient.

As we traverse down the tessellation tree, similar to typical ray

tracing, child nodes with bounding boxes that intersect with the

ray are placed on a stack. Our stack, however, contains more in-

formation, as it also stores the inserted vertex positions (original

or morphed). This increase in stack data avoids reading the same

vertex position information multiple times, as we pop nodes from

the stack. Therefore, it is important for reducing data movement, at

the cost of some increase in local storage during ray traversal.

When we reach a leaf node of the tessellation tree, if our LOD

metric determines that further detail is needed, we simply read the

vertex data for the leaf node, construct all 4 triangles that correspond

to the finest tessellation level, and intersect the ray with them.

Otherwise, we can skip reading the vertex data and intersect with

the one triangle of the leaf node.

3.5 Watertight Tessellation
When applying adaptive tessellation like ours, an immediate chal-

lenge is ensuring that the tessellated surface remains watertight.

The programmable tessellation shaders of the GPU rasterization

pipeline circumvent this challenge by independently specifying the

tessellation levels of patch edges and its interior. This can create

awkward tessellation patterns, but the resulting surface remains wa-

tertight, as long as the shader generates the same edge tessellation

level for its two patches and places the tessellated vertices along the

edge using the same exact computation.

In our method, however, we cannot completely rely on the same

strategy, as our tessellation levels are defined hierarchically and an

edge may be tessellated (i.e. the ray may be traversed down to a

level with more tessellation) even when the LOD metric (described

in Section 3.7) indicates no further tessellation for the edge. This

happens when the other edges of a triangle disagree on the tessella-

tion level, as explained above in Section 3.4. As a result, a triangle

on one side of an edge may get tessellated while the triangle on the

other side of the edge is not, as shown in Figure 5.

Fortunately, our morphing operation geometrically solves this

problem by ensuring that, if an edge is tessellated against its decision,

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:6 • Jacob Haydel, Cem Yuksel, and Larry Seiler

Fig. 6. Watertight tessellation requires exact representation of edge

centers. Dark circles represent possible vertex positions at the lower-

resolution level, such that the edge centers are guaranteed to have

exact representations on the higher resolution grid.

the inserted vertex is placed at the edge center. If it were not for the

perils of limited numerical precision, this would have been sufficient

to ensure watertight tessellation. Unfortunately, using floating-point

numbers the computed edge center may not be possible to represent

exactly with the available precision, which could result in visible

cracks on the rendered surface. Increasing the precision only makes

the problem less frequent, but it does not eliminate it.

We solve this problem by ensuring that the edge centers can be

represented exactly with the numerical precision we use. First, we

use a fixed-point representation (i.e. an integer with a global scaling

factor and offset per model) for all vertex position values. The scale

factor and offset are selected so that the model fits in the range

(−1, +1), as described in Section 4.1. To ensure that the midpoint

of two vertices can be represented exactly, we just need to make

sure that the vertex position values are even integers (with their

lowest-precision bits set to zero), since the average of two even

numbers is also an integer. This is sufficient for just one tessellation

level and the resulting midpoint does not have to be formed by even

numbers. To solve this problem for a second level, we need to set

the second lowest-precision bit to zero as well.

More generally, for a tessellation tree with 𝑁 + 1 levels, such

that L𝑁 is the full-resolution level, vertex positions at level 𝑛 are

represented with 𝑁 − 𝑛 lowest-precision bits set to zero.

It is important to note that the 𝑁 − 𝑛 lowest precision bits must

also be zero for vertex positions that are computed via morphing.

This is because these computed vertex positions are also used when

computing the midpoints of edges at the next level.

Guaranteeing that every edge center at intermediate tessellation

levels has a bit-exact representation ensures that the edge directions

we compute with or without splitting the edge are identical in our

fixed-point representation. Figure 6 illustrates the result of splitting

edges at the center. Note that all edge centers are on the finer grid

used for the next detail level.

In addition, we perform ray-triangle intersections using fixed-

point arithmetic. Thus, we can guarantee no truncation (i.e. preci-

sion loss) during ray-triangle intersection tests, ensuring that we

get consistent results on either side of an edge, regardless of its

tessellation on one side. We provide the details of our ray-triangle

intersection test and how it guarantees watertightness in Appen-

dix A. The computations we use require only integer arithmetic,

using up to 96-bit fixed-point operations, which are much cheaper

than 64-bit floating-point addition, since that requires a barrel rota-

tor to align the mantisssas.

3.6 Hit Information
After we find the intersection of a ray with a triangle, wemust return

the hit information, that is, the information needed for shading the

intersection point. This is a trivial process when intersecting with

the triangles of the finest tessellation level. For triangles of the

intermediate LOD levels, however, we must ensure that the hit

information we return is consistent with the full-resolution model.

One of the most important components of hit information is the

shading normal, the surface normal to be used for shading. Often

times, shading normal is different from the geometric normal of the

intersected triangle, though it is typically precomputed using the

geometric normals.

When a ray intersects with a triangle of an intermediate level, we

have two options for handling the shading normal: we can return a

shading normal at the intersected level or the corresponding shading

normal of the full-resolution model.

We favor the latter option, because computing the shading nor-

mals of an intermediate level has some important problems. First

of all, the shading normal per vertex must be computed and stored

independently for each level. Even though we use the same po-

sition for a vertex at all tessellation levels, we cannot simply use

the surface normal of the vertex computed at the finest level on a

lower-resolution tessellation of the model. This is because when

these finest surface normals are interpolated on a coarse triangle,

the resulting shading normal can be substantially different from

the shading normal of the corresponding surface position of the

full-resolution model. In fact, even if we compute and store separate

shading normals for the intermediate levels, the interpolated shad-

ing normal on a coarse triangle can still be substantially different

from the full-resolution model.

In addition, besides the storage cost of these additional surface

normals for the intermediate levels, they also introduce computa-

tional complexity at render time: since we morph between tessella-

tion levels, we would also need to morph the shading normals. Note

that morphing the normals is more complicated than morphing the

vertex positions, because they involve combining different LOD

metrics computed separately for all three vertices of the intersected

triangle. Morphing the surface normal can also be problematic with

secondary reflection rays, the direction of which can change signifi-

cantly as the shading normal changes.

Because of these problems, regardless of the tessellation level we

use for the final ray-triangle intersection, in our hit information

we always return the corresponding shading normal of the full-

resolution mesh. This requires quickly finding the corresponding

triangle of the full-resolution model without having to traverse

down to the leaf nodes of our tessellation trees.

Fortunately, this is a simple process with our tessellation rule.

Using the barycentric coordinates of the hit point at the current

level, we can quickly determine which one of the four triangles at

the next level correspond this hit point and calculate the barycentric

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:7

p₁

p₀p₂
0

1

2

Fig. 7. Computation of the barycentric coordinates at the next level

for each of the 4 sub-triangles, given a hit point x with barycentric

coordinates

[
𝑏0 𝑏1 𝑏2

]
, such that x = 𝑏0p0+𝑏1p1+𝑏2p2. In corner

triangles, inserted vertices replace two triangle vertices. In the central

triangle, each inserted vertex replaces the opposite triangle vertex.

coordinates for that triangle, as shown in Figure 7. We repeat this

process until we reach the full-resolution level. Since we are not

computing new hit points for the preceding levels, we do not need

to read vertex positions of those levels or any other data. The cor-

responding triangle of the full-resolution mesh and its barycentric

coordinates can be computed directly using these simple operations.

An additional benefit of finding the triangle of the corresponding

full-resolution model and its barycentric coordinates for the hit

point is that we can gather any other shading-related information

we need directly from the full-resolution mesh. For example, texture

mapping seams do not need to respect the edges of the coarsest

level L0 and such seams can safely pass through the triangles of L0
without introducing any problems during rendering. Even shading

operations that rely on the triangle index of the full-resolutionmodel

are compatible with our solution.

In short, the hit information we return corresponds to a position

on the full-resolution model, even if the exact hit position might

be (and often is) different and the ray may not intersect with the

corresponding hit position on the full-resolutionmodel. Nonetheless,

we achieve consistent rendering/shading across all pixels of an

image and between multiple frames of an animation with varying

LOD decisions.

3.7 Level of Detail Metric
Our tessellation approach can be used with any LOD metric, as long

as it can be computed based on the maximum displacement we store

per edge. Here, we present the LOD metric we use in our tests.

For our LOD decision, we use a screen-space metric based on

the displacement bound stored for each edge. We use ray cones to

convert world-space distances at this reference plane to screen-space

quantities.

To evaluate a displacement bound we first compute the vectors

between the ray origin x and the two vertices p0 and p1 that form
the corresponding edge. We then project these vectors onto the ray

direction d and select the minimum distance ℓ

ℓ = min

(
(p0 − x) · d , (p1 − x) · d

)
. (1)

This distance ℓ along the ray is used to conservatively approximate

the ray cone radius 𝑟 near the edge, such that 𝑟 = ℓ tan𝜃 , where 𝜃 is

the ray-cone half angle. It is important that this is conservative, as

we cannot terminate traversal unless we are sure that nothing in the

sub-tree needs tessellation. The screen-space displacement ℎ is then

approximated using the corresponding displacement bound ℎmax,

(a) Independent secondary LOD (b) Dependent secondary LOD

Fig. 8. Computing shadows with secondary rays: (a) when secondary

rays independently compute their LOD levels, incorrect self-occlusion

artifacts appear. (b) Using the LOD decisions of the primary within its

influence region fixes such artifacts.

such that ℎ = ℎmax/2𝑟 . Finally, we compute an edge state 𝑠 with a

user-defined parameter 𝛿 that controls the LOD quality, using

𝑠 = clamp (ℎ 𝛿 − 1, 0, 1) . (2)

We use 𝛿 = 1 in all examples in this paper, which corresponds to an

offset of 1 pixel size in screen space.

When 𝑠 = 0 for all three edges of a tessellation tree node, we can

use the coarser level. For 𝑠 > 0, we traverse into the next level by

moving the vertex positions q𝑖 at the next level toward the edge

center by a factor of 1 − 𝑠 .

3.8 Secondary Rays
The LOD metric we presented above works for secondary rays

as well. However, when a secondary ray originates on a surface

with our adaptive tessellation, we cannot purely rely on the ray

cone of the secondary ray. This is because the LOD metric for the

secondary ray can easily be different than the one for the primary ray.

Therefore, purely relying on the secondary ray for the tessellation

decisions may result in inconsistent LOD decisions with the primary

ray, causing the secondary ray to originate at a point that may

not be on the surface (for the primary ray), intersecting with a

different surface and producing incorrect self-intersections. Figure 8

demonstrates an example of this problem.

We solve this by including the primary ray in the LOD decisions

for the secondary ray. More specifically, during traversal of the sec-

ondary ray, we check if we are traversing the same tessellation tree

as the primary ray or a neighboring tessellation tree, i.e. one that

shares an edge with it at L0. If it is the same tessellation tree, we

use the primary ray’s LOD decisions. If it is a neighboring tessel-

lation tree, we use the primary ray’s LOD decisions only for the

shared edge. This way, we avoid intersecting with an inconsistent

surface, the primary and secondary rays agree on the point where

the secondary ray originates, and we transition from the primary

ray’s LOD decisions to the secondary ray’s LOD decisions without

introducing cracks on the surface. The primary ray’s influence region

only covers the tessellation tree that contains the primary hit and

the edges of the neighboring three tessellation trees.

This solution can be applied to the next ray further along the

camera path as well. However, simply considering the immediately

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:8 • Jacob Haydel, Cem Yuksel, and Larry Seiler

preceding ray for the LOD decisions is not sufficient to guarantee

consistent LOD decisions. This is because the LOD decisions when

traversing the immediately preceding ray may have been impacted

by a previous ray. Therefore, we must consider the prior rays that

contributed to the LOD decisions made for finding the last hit point,

where this final ray originates.

Within the same tessellation tree of the last hit point, we use the

same set of prior rays for the LOD decisions as the immediately

previous ray, overriding the current ray’s LOD decisions. When we

traverse into a neighboring tessellation tree, we can begin using the

current ray’s LOD decisions, except for the shared edge between

the tessellation trees of the previous hit point and the current neigh-

boring tree. For this, we only need to consider the one prior ray

that determined the LOD decisions for the shared edge between the

tessellation trees. Thus, the LOD decisions of a ray can be overrid-

den by up to 2 prior rays: the one that determined the LOD level for

the tessellation tree of the previous hit and the one that determined

the LOD level of the edge (if any) between the currently traversed

tessellation tree and the tessellation tree of the previous hit. Note

that these two ray may or may not be the same ray, but they may

not be the immediately 2 previous rays.

4 IMPLEMENTATION DETAILS
The LOD method we describe above can be implemented in vari-

ous ways. An efficient implementation, however, should not only

consider the computation and storage cost, but also minimize data

movement. In this section, we present the details of our implemen-

tation and suggestions for further improvements.

4.1 Number Format
We use a 32-bit signed fixed-point representation in the processor

registers and temporary local storage in the traversal stack. All

operations with vector components are performed in fixed point,

using additional bits internally to fully preserve precision (up to 96

bits for ray-edge tests) and returning truncated results in 32 bits.

For data storage in our tessellation trees, however, using a 28-bit

fixed-point format provides sufficient precision to represent mesh

vertices. This is because, within the range (−1, 1) 28-bit fixed-point
provides even better precision than the standard 32-bit floating-

point format (IEEE 754), which only has 24 bits of fractional preci-

sion (23 mantissa bits plus the hidden bit) within ±[1/2, 1). Though
the floating-point format offers better precision for values closer to

zero, e.g. 3 extra bits of precision within ±[1/16, 1/8), there is little
value in getting more precision for a fixed, small part of the model

space. The values stored as 28-bit fixed-point are converted to 32-bit

fixed-point by simply padding zeros for the additional 4 bits.

The advantage of the 28-bit fixed-point representation is that it

allows packing 9 values into a single typical cache line size of 32

bytes (with 4 extra bits to spare). This allows fitting both bound

data and vertex data of our tessellation trees in single cache lines,

as we explain below. This is used for minimizing data movement,

since data is moved (from DRAM and between caches) in chunks of

cache line size.
1
.

1
Even with today’s CPUs and GPUs that use larger cache lines (64B or 128B) it is

common to move data in chunks of 32B, using partially-filled cache lines.

Note that, using 𝑁 levels, our watertight tessellation requires set-

ting up to 𝑁 lower-precision bits as zeros (see Section 3.5). 4 of these

bits are automatically set to zero due to the 28-bit representation.

For 𝑁 ≤ 8, which corresponds to each triangle in L0 to tessellate

up to 4
8 = 65, 536 triangles at L𝑁 , we suffer no effective precision

loss as compared to 32-bit floating-point representation with 24 bits

of precision within ±[1/2, 1). With deeper tessellation trees, only

the vertices at the lower-resolution levels have any precision loss.

All our experiments (Section 6) use 𝑁 ≤ 8.

Ray-triangle intersections with fixed-point numbers involve rep-

resenting the ray origin and direction in fixed-point as well. This is

handled by performing the computations in model space. Rays are

generated using floating-point numbers and converted to fixed-point

numbers for computing ray-triangle intersections. This involves

moving the ray origin to the first intersection point of the ray with

the model’s bounding box, since the fixed-point representation only

spans the bounding box of the model. Because the intersections are

computed in model space, we can easily handle instanced models

with different transformations by simply transforming the rays dif-

ferently for each instance. Note that the conversion to fixed point

after transformation is exact (i.e. introduces no truncation error),

except for the range close to zero, (−1/256, 1/256) for 32-bit fixed
point. In the range (−1/256, 1/256) the model space error intro-

duced by fixed point conversion is bounded by ±2−32, i.e. a single
bit in fixed point.

The hit position of a ray on a triangle may not be exactly rep-

resented in either fixed point or floating point. This leads to the

well-known problem of self-occlusion with secondary rays that

originate at the previous hit position. In fixed point, the error is

bounded by a single bit. This corresponds to an error of ±2−32 in
model space. However, the conversion of the hit point to world space

in floating point (a typical process for a ray tracing API) can incur a

much larger error, thereby eliminating the precision advantage of

the fixed-point representation.

4.2 Vertex Data Storage
The vertex data includes 3 inserted vertex positions (i.e. 9 values) per

node. Therefore, using the 28-bit fixed-point format, we can easily

store the vertex data for each node into a single 32-byte cache line.

This provides the optimal solution for minimizing data movement.

However, this results in duplicated storage of inserted vertex

positions. Since each inserted vertex along an edge is shared by two

triangles on either side of the edge, we end up storing each inserted

vertex twice, once for each of the two nodes that use it.

This duplication cost could be (mostly) eliminated with a more

elaborate storage scheme, which reduces the storage cost, but in-

creases data movement instead. This is because without duplicate

storage of inserted vertices we cannot fit the vertex data of all nodes

into single cache lines. Thus, the solutions we tested for avoiding

this duplicated storage ended up significantly increasing the data

movement. Since data movement is much more important than stor-

age cost and our representation already significantly reduces the

storage cost even with this duplication (as compared to a typical

storage of the full-resolution mesh alone using vertex indices), we

recommend duplicated storage of vertex data.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:9

4.3 Bound Data Storage
The bound data for each tessellation tree node includes the bounding

box (6 values) and the displacement bounds of the three edges of the

node’s triangle. Thus, using our 28-bit fixed-point representation,

we can pack these 9 values into a single 32-byte cache line.

It is important to note that during traversal the node data for all

4 child nodes of a node are accessed simultaneously. Thus, packing

the bound data for 4 sibling nodes into less than 4 (i.e. 2 or 3) cache

lines would certainly reduce the data movement. Furthermore, the

bound data for the 4 sibling nodes contain shared information: the

displacements bounds of the 3 internal edges (i.e. edges q0q1, q1q2,
and q2q0 in Figure 2). Therefore, packing the bound data of 4 sibling

nodes into a single data structure can save space by preventing

duplicate storage of these displacement bounds.

It is actually possible to achieve further reduction in storage and

data movement by using lower-precision representations for the

bound data. This does not lead to any rendering errors, since lower-

precision bound data can simply be conservative and less tight.

For packing the 4 sibling nodes into 3 cache lines, it is sufficient

to reduce the precision of the 9 displacement bounds we must store

down to 10 bits. Since displacement bounds are relatively small

values, we find the largest displacement bound and use it as a scaling

factor of all displacement bounds. We also take the square root of

the displacement before quantization to provide more resolution

for finer details. As a result 10 bits provide sufficient precision for

representing the displacement bounds.

We can pack the 4 sibling nodes into 2 cache lines by using a 17-

bit fixed-point format for the bounding boxes. Alternatively, we can

use 9-bit fixed-point for displacement bounds and 18-bit fixed-point

for bounding boxes, which would require one extra bit. Instead of

storing this extra bit elsewhere, we can simply reduce the precision

of one of the bounding box numbers.

In our tests (Section 6), we use a less optimized packing of bound

data, using 16-bit values for bounding boxes and 10-bit values for

displacement bounds. Thus, the bound data for each node can be

independently packed into half a cache line (16 bytes) with 2 bits to

spare. Thus, the node data for the 4 sibling nodes can be packed into

2 cache lines. This option significantly simplifies the implementation

and only had 1 or 2 fewer bits of precision for bounding boxes as

compared to the more optimized alternatives described above.

4.4 Packetized Ray Casting
As mentioned in Section 3.4, our traversal stack contains additional

information, storing the inserted vertex positions. This overhead

can be reduced using ray packets by tracing groups of rays together.

Ray packets, particularly for ray casting (i.e. primary rays), can

amortize the cost of extra compute and local data by combining the

LOD-related computation and using a shared traversal stack.

To get the most out of ray packets, we use a shared edge state

computation that forms a common LOD state for all rays in a packet.

The computed intermediate inserted vertex positions can be safely

shared by all rays in the packet.

Note that primary rays in a packet diverge from each other as

they move away from the camera. In screen-space, however, they

maintain their relative positions. That is why our LOD approach is a

good fit for packatized ray casting. Even though it may not perfectly

match the LOD decisions computed independently for each ray in

the packet, the differences are typically minor and can be safely

approximated using ray packets.

5 HARDWARE IMPLEMENTATION
It is important to consider a hardware implementation to handle

the additional compute of our LOD operations. In this section we

describe how our technique could be implemented in hardware. The

traversal loop of our technique should use special purpose hardware

for some operations and ideally the entire loop.

Figure 9 shows a top level block diagram for how our technique

processes a single ray against a triangle. Some of the steps are well

understood. In particular, ray-triangle and box intersection are the

same as in modern ray tracing hardware. Early termination is also

the same, except for passing on displacement bounds for rays that do

not terminate. The Sort Child Nodes block updates the Traversal

Stack by placing intersected child nodes in the order of intersection.

The primary difference from existing hardware ray tracers is in

the process to decide whether to intersect the ray with the current

triangle or with its tessellated triangles. The LOD Test block inputs

the displacement bounds and checks to see whether any of the

edges require the triangle to be tessellated. If not, the triangle passes

immediately to the Triangle Intersect block. Otherwise, the edge

displacements are sent to the Tessellation block, which uses the

three inserted vertices stored in the node’s vertex data to compute

four sub-triangles. Then, the vertex positions are morphed between

the specified locations and the edge midpoints, if necessary. If the

current node is leaf, all four are sent to the Triangle Intersect

block. Otherwise, the traversal continues with testing the bounding

boxes of the four child nodes. The intersecting child nodes are sorted

and stored in the traversal stack, along with the vertex positions of

their triangles.

The added compute required by the new stages is moderate. E.g.

checking the edge quality requires 45 operations and morphing the

inserted vertices requires 9 operations. Our technique also requires

computing sub-triangle indices and barycentric coordinates within

the sub-triangle when a triangle is tessellated. Figure 10 illustrates

the simple logic needed to compute sub-triangle barycentric co-

ordinates, which replaces a dozen instructions if implemented in

software. Computing sub-triangle indices is similarly complex in

software and even simpler in custom hardware.

6 EVALUATION AND RESULTS
We provide an evaluation of our method using a cycle-accurate

simulation of a highly-parallel ray tracing hardware architecture

(Section 6.1). We include another evaluation that includes packetized

ray traversal for ray casting (Section 6.2). Finally, we present our

results with secondary rays (Section 6.3).

6.1 Ray Casting Simulation
The LOD technique we describe in this paper is designed to reduce

data movement when rendering high-resolution models from a

distance, such that they correspond to a relatively low-resolution

part of the rendered image. This is the key for efficiently rendering

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:10 • Jacob Haydel, Cem Yuksel, and Larry Seiler

EARLY
TERMINATION

LOD
TEST TESSELLATION

BOUND BOX
INTERSECT

TRIANGLE
INTERSECT

HIT
INFORMATION

TRAVERSAL STACK MEMORY SYSTEM

SORT
CHILD NODES

displacement
bounds

node’s
triangle

node’s
triangle

node’s
vertex data

bound data
of child nodes

sorted child
node info
& triangles

node info
(box hit & displacement bounds)

false internal
nodetrue

(i.e. the node’s LOD
level is sufficient)

leaf
node

tessellated
triangles

tessellated
triangles

current hit
distance

new hit information

node’s triangle

child node info
& triangles

Fig. 9. Block diagram of our ray traversal. Our addition is to perform the LOD Test and apply Tessellation if it fails (i.e. the current node’s level

is insufficient). The rest of the blocks are typical for ray traversal without LOD.

’ ’ ’

Fig. 10. Logic to calculate the barycentric coordinate in a child trian-

gle from the barycentric coordinate in the parent triangle (see Figure 7).

Either one or none of the parent barycentrics is greater than one half,

which selects how to compute the child barycentrics.

high-resolution scenes with a highly-parallel ray tracing hardware

architecture that contains sufficient computation power, augmented

with special-purpose ray traversal and intersection units.

Therefore, our performance evaluation concentrates on data

movement within the entire memory hierarchy. This includes

data movement between the processor cores and their L1 caches,

between multiple L1 caches and a chip-wide L2 cache, and between

the L2 cache and an off-chip DRAM. We measure the detailed

data movement using a cycle-accurate simulation of a generic ray

tracing hardware architecture and assume that there are no delays

due to computation.

The specific hardware system we simulate is a version of the

TRaX architecture [Spjut et al. 2008, 2009] packed with specialized

hardware units for handling all ray traversal and intersection logic

that can process the data as fast as the memory hierarchy can deliver.

This ensures that there is no computation related latency that could

be easily resolved by increasing the computational resources and

that our results are not narrowly limited to one particular hardware

configuration, but can be interpreted somewhat more broadly.

Nonetheless, cycle-accurate simulation requires a detailed speci-

fication of a part of the hardware configuration. In our tests, we use

a configuration that is in line with today’s GPUs. More specifically,

the processor we simulate contains 1024 independent ray tracing

cores issuing memory requests at a 2 GHz clock rate. These cores

are grouped into 64 thread multi-processors (TM), each containing

a 16 KB 2-way set associative L1 cache with 4 banks and 1 cycle

latency. Each L1 cache services 16 ray tracing cores within a TM

and is connected to a 2 MB 4-way set associative chip-wide L2 cache

with 32 banks and a latency of 4 cycles. This L2 cache is connected

to GDDR5 DRAM with 8 channels running at 5 GHz.

Figure 11 shows the results of ray casting in 3 different test scenes

with different camera distances, comparing ourmethod to a standard

quad-BVH (each node with 4 child nodes) of the highest-resolution

model, running on the same hardware. These scenes are represented

with full geometry without any instancing optimization. In these

tests we use 16-bit fixed-point bounding boxes for both BVH and

our method. This way, we can ensure that the 4 child node bounding

boxes of a node perfectly fit in 2 cache lines, similarly optimizing

the data movement for both BVH and our method.

As can be seen in the graphs in Figure 11, our method uses signif-

icantly less energy, up to 20× less in these tests. The main reduction

is in DRAM energy, as our method has 5× to 30× fewer DRAM

accesses, which dominate the total energy cost. Notice that with

BVHs the energy and render time costs peak at the distance when

the whole model is visible on the image. With our method, however,

the peak can be earlier, when more rays traverse deeper into our

tessellation trees.

Not surprisingly, when there is sufficient computation power,

improvements in energy cost and render time are correlated, as can

be seen in Figure 11. This is because DRAM is not only the main

energy consumer, but also the reason for most data-dependent stalls.

The improvements of our DRAM accesses result in up to 16× faster

render times in some of these experiments. After all, regardless of

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:11

0.0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1.0 ms

1.2 ms

0 mJ

13 mJ

26 mJ

39 mJ

52 mJ

65 mJ

78 mJ

BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours

DRAM
L2
L1

Energy Time

Distance: 1 2 4 8 16 32 64

0.0 ms

0.5 ms

1.0 ms

1.5 ms

2.0 ms

2.5 ms

3.0 ms

0 mJ

35 mJ

70 mJ

105 mJ

140 mJ

175 mJ

210 mJ

BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours

DRAM
L2
L1

Energy Time

Distance: 1 2 4 8 16 32 64

0.0 ms

0.5 ms

1.0 ms

1.5 ms

2.0 ms

2.5 ms

3.0 ms

3.5 ms

0 mJ

35 mJ

70 mJ

105 mJ

140 mJ

175 mJ

210 mJ

245 mJ

BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours

DRAM
L2
L1

Energy Time

Distance: 1 2 4 8 16 32 64

Fig. 11. Breakdown of total energy and time per frame for different distances comparing our method to regular BVHs in three test scenes.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:12 • Jacob Haydel, Cem Yuksel, and Larry Seiler

0 mJ

100 mJ

200 mJ

300 mJ

400 mJ

500 mJ

600 mJ

700 mJ

800 mJ

900 mJ

1,000 mJ

0 5 10 15 20 25 30 35 40

 BVH-4

 Ours

 Stochastic LOD

Energy

Camera Distance

Fig. 12. The estimated data movement energy cost during rendering

for different camera distances with the terrain scene. The LOD level

for stochastic LOD is selected based on the average LOD level that our

method uses; therefore, it results in a similar energy profile, except

for the peaks when it transitions between levels. Standard quad-BVH

consumes signifincantly more energy for most distances.

the compute capabilities of the processor, a scene cannot be rendered

faster the time it takes for the DRAM to deliver the necessary data.

Our experiments with full-precision BVHs showed that they con-

sistently performed slower and consumed more energy than the

reduced-precision BVHs in Figure 11 by about 10% to 40%.

6.2 Comparisons with Packetized Ray Casting
We also provide a simpler evaluation of data movement energy

for packetized ray casting, using a processor with a single thread,

connected to an L1 cache of 32 KB. Between L1 and DRAM, we place

an L2 cache of 256 KB. In these tests, we assume a relative energy

cost of 1× for L1, 1.5× for L2, and 40× for DRAM.

In Figure 12 we present test results with packetized ray-casting

using 32 rays per packet. We compare our method both to the refer-

ence full-resolution mesh and a mesh using discrete level-of-detail

with stochastic transitions, i.e. stochastic LOD [Brandon Lloyd 2020].

The stochastic LOD uses the same mesh resolution levels as our

method, but selects two levels prior to rendering and stochastically

alternates between them per ray during LOD transition regions. To

provide a direct comparison and make sure that this choice of the

LOD level would not impact our comparisons, we pick the LOD

level for stochastic LOD that matches the average LOD level used by

all rays with our method, after rendering the scene with our method

first. This circumvents one important difficulty with stochastic LOD:

deciding which level to use prior to rendering. On the other hand,

it limits the quality with stochastic LOD, as it cannot pick a higher-

resolution level where it is needed. Nonetheless, it allows us to

achieve a similar geometric complexity for both methods.

As can be seen in Figure 12, stochastic LOD results in a similar

data movement, as expected (due to matching our average LOD

level), except when stochastic LOD is transitioning between two

levels (by stochastically picking one of the two consecutive levels

per ray), which results in significantly increased data movement.

(a) Stochastic LOD (b) Ours (c) Reference

Fig. 13. An example terrain scene (camera distance=1.5), showing the

difference in the intersected triangles. Stochastic LOD uses too low a

resolution near the camera and too high a resolution farther from the

camera, since its LOD decision is not per ray, like ours.

(a) Ours (b) Reference

Fig. 14. Secondary rays of our method can properly pick the LOD

level that would maintain the quality of the secondary effects, such

as shadows. This visualization shows the final triangles intersected.

With our method, part of the shadow that is close to the camera uses

higher resolution, while the rest of the shadow and the model use

lower-resolution tessellations.

This can be clearly seen as spikes of energy use for stochastic LOD

in Figure 12.

Nonetheless, both LOD methods substantially outperform the

reference using quad-BVH of the full-resolution model.

It is important to note that, because the geometric complexity of

stochastic LOD is homogeneous (on average), it generally results

in lower quality tessellation than our method. Figure 13 shows an

example sample from the same tests. As can be seen in this image,

stochastic LOD results in much lower-resolution triangulation for

parts of the model that are close to the camera, while using too fine

triangulation for further away parts. Obviously, this is an expected

behavior with uniform LOD level selection prior to rendering.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:13

(a) Ours (b) Reference (c) Ours Mesh (d) Reference Mesh

Fig. 15. Example of using secondary rays for shadows, reflections, and diffuse global illumination. Shadows and lighting are rendered with no

visible artifacts, despite using large triangles for parts of the model with flat shape and low geometric detail.

Fig. 16. A cloth model on a teapot, rendered using our method with

glossy reflections, shadows, and diffuse global illumination. Notice

that our method automatically uses large screen space triangles for

relatively flat parts of the model.

6.3 Secondary Rays
Our method can also properly adjust the LOD level for secondary

rays. This is demonstrated in the shadow example in Figure 14,

visualising the triangles used for the final intersection tests. No-

tice that the mesh resolution on the parts of the shadow that is

closer to the camera is similar to the reference, but the model itself,

which is further away from the camera, is rendered using a lower-

resolution triangulation. Also, notice that our method results in a

similar triangle size for the entire image in this example.

When rendering models with more flat/smooth features and less

details, our adaptive LOD method can automatically use lower-

resolution triangles, as apparent in Figure 15. In this example, screen-

space geometric error is kept below the size of a pixel, though our

method picks triangles that are much larger than a pixel. Notice

that reflections and shadows are properly computed without visible

visual artifacts, while rendering significantly fewer triangles.

Figure 16 shows a cloth model on a teapot, rendered using our

method. Notice that our method automatically uses a low-resolution

tessellation for the flat parts of the model, even when it leads to

relatively-large triangles in screen space.

Figure 1 shows a comparison of our method to the full-resolution

model, including secondary effects like shadows, reflections, and

diffuse global illumination. Our LOD metric ensures that the final

image of our method is indistinguishable from the reference, despite

accessing significantly fewer triangles during rendering.

To provide a quantitative comparison, we placed the same cloth

model in a box with an open side and rendered with path tracing,

using a Lambertian material. The results with our cycle-accurate

simulation using the same hardware setup as the tests in Section 6.1

are shown in Figure 17 in comparison to a quad-BVH with reduced-

precision bounds. In this test, our method consumes about 8× less

energy and renders about 7.5× faster using primary rays only. The

overhead of secondary rays with a single bounce is significant,

though BVH has more than 13.5× the render time overhead as our

method. Using additional bounces in this scene leads to a smaller

render time overhead, as each additional bounce has progressively

fewer rays in this scene.

7 DISCUSSION
While our method provides substantial savings in data movement,

this reduction is not free. It comes at an additional computation com-

plexity. Therefore, it is not suitable for software implementations

running on hardware that lacks sufficient computation power to

absorb the additional compute load. On the other hand, considering

hardware implementation, the additional logic required for our ray

traversal is relatively straightforward, as explained in Section 5.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

196:14 • Jacob Haydel, Cem Yuksel, and Larry Seiler

0.0 ms

0.5 ms

1.0 ms

1.5 ms

2.0 ms

2.5 ms

0 mJ

25 mJ

50 mJ

75 mJ

100 mJ

125 mJ

BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours BVH OursBVH Ours

Energy Time

Bounce: 0 1 2 3

Fig. 17. Energy and frame time overhead of rays for each bounce in a

path tracer, comparing a standard quad-BVH with reduced-precision

bounds to ours. The overhead values in the graph are calculated as the

difference between the total energy and render times for simulations

with different bounce counts. For bounce 0 the graph shows the total

energy and render times. Bounce 1 in the graph shows the difference

of total values between bounce 1 and 0. Bounce 2 and 3 overheads are

calculated similarly, as differences from bounce 1 and 2, respectively.

Integrating our technique into a modern API primarily requires a

new mesh type for locally adaptive tessellation meshes and a tune-

able parameter to allow the user to specify the amount of acceptable

error. The ray type would also have to include the ray cones used to

compute perceived error. This is similar to the kind of API changes

required to support micro-meshes [NVIDIA 2023].

Other than that, the meshes can be treated as normal meshes.

The hit record can be populated by computing the barycentric co-

ordinates and triangle ID of the highest-resolution version of the

mesh that can be trivially mapped to the coarser triangle using an

equal division the coarser polygons. This means that shading code

can just treat the mesh like the highest-resolution mesh.

Our method can also be used with animating models. After the

tessellation trees are built, they can easily be refit to a deformed

model. Since the structure of the tessellation trees are pre-defined,

there is no need to rebuild the acceleration structure beyond a

simple refit, except for the lowest-resolution level, which uses a

standard BVH. Therefore, our data structure can be quickly updated

for animating models.

An important limitation of our approach is that it does not support

arbitrary mesh topologies. The lowest-resolution mesh can have

arbitrary topology, but the topology of all subsequent levels must be

defined by the tessellation rule we use. Models that do not support

this topological structure must be remeshed before they can be used

with our method.

8 CONCLUSION
We have presented a locally-adaptive level-of-detail method for ray

tracing, aimed at reducing the energy cost due to data movement

via adaptive tessellation. By building a specialized data structure

alongside our BVH, we are able to support adaptive tessellation

without storing multiple versions of the model or BVH. Through

the use of screen-space metrics, we are able to use this data structure

to dynamically reduce the number of triangles accessed at render

time. Our results show that this technique is capable of reducing the

energy cost of rendering a mesh, while only marginally degrading

quality, the amount of which is controlled by a user-defined parame-

ter. Additionally, we show that this technique is capable of handling

secondary rays without introducing self-intersection artifacts.

Since the primary function of this method is to reduce memory

bandwidth use at the expense of compute, our approach would

not very helpful for software implementations of ray-tracing that

are compute bound. However, in memory bound contexts, such as

hardware-accelerated ray tracing, it would follow that our method

would lead to performance improvements. It also is highly beneficial

in any system where performance is limited by power use.

ACKNOWLEDGMENTS
This project was supported in part by a grant from Meta Reality

Labs and a gift from AMD.

REFERENCES
Carsten Benthin, Sven Woop, Matthias Nießner, Kai Selgrad, and Ingo Wald. 2015.

Efficient Ray Tracing of Subdivision Surfaces Using Tessellation Caching. In Pro-

ceedings of the 7th Conference on High-Performance Graphics (Los Angeles, Califor-

nia) (HPG ’15). Association for Computing Machinery, New York, NY, USA, 5–12.

https://doi.org/10.1145/2790060.2790061

Martin Stich Brandon Lloyd, Oliver Klehm. 2020. Implementing Stochastic Levels of

Detail with Microsoft DirectX Raytracing. Thing’s Credible!, blog. https://developer.

nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/

Per H. Christensen, Julian Fong, David M. Laur, and Dana Batali. 2006. Ray Tracing for

the Movie ‘Cars’. In 2006 IEEE Symposium on Interactive Ray Tracing. 1–6. https:

//doi.org/10.1109/RT.2006.280208

Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and Dana Batali.

2003. Ray Differentials and Multiresolution Geometry Caching for Distribution

Ray Tracing in Complex Scenes. Computer Graphics Forum 22, 3 (2003), 543–552.

https://doi.org/10.1111/1467-8659.t01-1-00702

Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and William R.

Mark. 2011. Razor: An Architecture for Dynamic Multiresolution Ray Tracing. ACM

Trans. Graph. 30, 5, Article 115 (oct 2011), 26 pages. https://doi.org/10.1145/2019627.

2019634

Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais Kudrolli,

WilliamX. Liu, HasanHassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal,

Mike O’Connor, and Onur Mutlu. 2018. What Your DRAM Power Models Are Not

Telling You: Lessons from a Detailed Experimental Study. Proc. ACM Meas. Anal.

Comput. Syst. 2, 3, Article 38 (dec 2018), 41 pages. https://doi.org/10.1145/3224419

Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. 2010. Two-Level Ray

Tracing with Reordering for Highly Complex Scenes. In Proceedings of Graphics

Interface 2010 (Ottawa, Ontario, Canada) (GI ’10). Canadian Information Processing

Society, CAN, 145–152.

Hugues Hoppe. 1998. Smooth View-Dependent Level-of-Detail Control and Its Appli-

cation to Terrain Rendering. In Proceedings of the Conference on Visualization ’98

(Research Triangle Park, North Carolina, USA) (VIS ’98). IEEE Computer Society

Press, Washington, DC, USA, 35–42.

Sho Ikeda, Paritosh Kulkarni, and Takahiro Harada. 2022.. Multi-Resolution Geometric

Representation using Bounding Volume Hierarchy for Ray Tracing. AMD GPUOpen.

Vol. 32. (2022.). https://gpuopen.com/download/publications/GPUOpen2022_

FusedLOD.pdf

Paritosh Kulkarni, Sho Ikeda, and Takahiro Harada. 2019.. Fused BVH to Ray Trace

Level of Detail Meshes. AMD GPUOpen. Vol. 32. (2019.). https://gpuopen.com/

download/publications/GPUOpen2022_FusedLOD.pdf

Aaron Lee, Henry Moreton, and Hugues Hoppe. 2000. Displaced Subdivision Surfaces.

In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., USA, 85–94.

https://doi.org/10.1145/344779.344829

Won-Jong Lee, Gabor Liktor, and Karthik Vaidyanathan. 2019. Flexible Ray Traversal

with an Extended Programming Model. In SIGGRAPH Asia 2019 Technical Briefs

(Brisbane, QLD, Australia) (SA ’19). Association for Computing Machinery, New

York, NY, USA, 17–20. https://doi.org/10.1145/3355088.3365149

Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis.

University of Utah.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

https://doi.org/10.1145/2790060.2790061
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://doi.org/10.1109/RT.2006.280208
https://doi.org/10.1109/RT.2006.280208
https://doi.org/10.1111/1467-8659.t01-1-00702
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/3224419
https://gpuopen.com/download/publications/GPUOpen2022_FusedLOD.pdf
https://gpuopen.com/download/publications/GPUOpen2022_FusedLOD.pdf
https://gpuopen.com/download/publications/GPUOpen2022_FusedLOD.pdf
https://gpuopen.com/download/publications/GPUOpen2022_FusedLOD.pdf
https://doi.org/10.1145/344779.344829
https://doi.org/10.1145/3355088.3365149

Locally-Adaptive Level-of-Detail for Hardware-Accelerated Ray Tracing • 196:15

Jan Novák and Carsten Dachsbacher. 2012. Rasterized Bounding Volume Hierarchies.

Computer Graphics Forum (Proc. of Eurographics) 31, 2 (2012), 403–412.

NVIDIA. 2023. Micro-Mesh. https://developer.nvidia.com/rtx/ray-tracing/micro-mesh

Kai Selgrad, Alexander Lier, Magdalena Martinek, Christoph Buchenau, Michael Guthe,

Franziska Kranz, Henry Schäfer, and Marc Stamminger. 2016. A Compressed Repre-

sentation for Ray Tracing Parametric Surfaces. ACM Trans. Graph. 36, 1, Article 5

(nov 2016), 13 pages. https://doi.org/10.1145/2953877

Juha Sjoholm. 2018. Effectively Integrating RTX Ray Tracing into a Real-Time Rendering

Engine. Thing’s Credible!, blog. https://developer.nvidia.com/blog/effectively-

integrating-rtx-ray-tracing-real-time-rendering-engine/

Brian Smits, Peter Shirley, and Michael Stark. 2000. Direct Ray Tracing of Displacement

Mapped Triangles. Rendering Techniques 2000 (Proc. 11th Eurographics Workshop on

Rendering), 307–318. https://doi.org/10.1007/978-3-7091-6303-0_28

Josef Spjut, Solomon Boulos, Daniel Kopta, Erik Brunvand, and Spencer Kellis. 2008.

TRaX: A Multi-Threaded Architecture for Real-Time Ray Tracing. In Proceedings of

the 2008 Symposium on Application Specific Processors (SASP ’08). IEEE Computer

Society, Washington, DC, USA, 108–114. https://doi.org/10.1109/SASP.2008.4570794

Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. 2009. TRaX: AMulticore

Hardware Architecture for Real-time Ray Tracing. Trans. Comp.-Aided Des. Integ.

Cir. Sys. 28, 12 (Dec. 2009), 1802–1815. https://doi.org/10.1109/TCAD.2009.2028981

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.

Tessellation-Free Displacement Mapping for Ray Tracing. ACM Trans. Graph. 40, 6,

Article 282 (dec 2021), 16 pages. https://doi.org/10.1145/3478513.3480535

Elena Vasiou, Konstantin Shkurko, Ian Mallett, Erik Brunvand, and Cem Yuksel. 2018.

A Detailed Study of Ray Tracing Performance: Render Time and Energy Cost. The

Visual Computer (Proceedings of CGI 2018) (April 2018). https://doi.org/10.1007/

s00371-018-1532-8

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: fast LOD-

based ray tracing of massive models. The Visual Computer 22, 9 (01 Sep 2006),

772–784. https://doi.org/10.1007/s00371-006-0062-y

A FIXED-POINT RAY-TRIANGLE INTERSECTION
Our ray-triangle intersection uses Plucker coordinates with bit-

perfect precision in fixed-point. Let p𝑚 represent the midpoint of an

edge that connects vertices p𝑎 and p𝑏 . Note that we guarantee that
p𝑚 can be exactly represented in fixed-point without any truncation.

To guarantee watertightness using Plucker coordinates, we simply

need to show that rays are guaranteed to provide exactly the same

intersection test results for the full edge p𝑎p𝑏 and the half edges

p𝑎p𝑚 and p𝑚p𝑏 . Further tessellations of the edge follow the same

proof via recursion.

Given a ray with (fixed-point) origin x, Plucker coordinates are
computed using the cross product of each edge and the vector from

x to the first vertex of the edge, forming an edge normal direction.

With our three edges (p𝑎p𝑏 , p𝑎p𝑚 , and p𝑚p𝑏), we get the following
normals:

n𝑎𝑏 = (p𝑏 − p𝑎) × (p𝑎 − x)
n𝑎𝑚 = (p𝑚 − p𝑎) × (p𝑎 − x)
n𝑚𝑏 = (p𝑏 − p𝑚) × (p𝑚 − x)

For the intersection tests to be consistent, these normal vectors

must have the exact same direction, but their magnitudes can be

different. Using 32-bit fixed-point values (for p𝑎 , p𝑏 , p𝑚 , and x), the
resulting normals require 64-bit fixed-point to exactly represent

without truncation.

Since our representation guarantees (p𝑏 − p𝑎) = 2(p𝑚 − p𝑎) is
exactly true by ensuring that both p𝑎 and p𝑏 are even numbers, it is

easy to see that n𝑎𝑏 = 2n𝑎𝑚 is also guaranteed. We can also show

that n𝑚𝑏 = n𝑎𝑚 with the following steps:

n𝑚𝑏 = (p𝑏 − p𝑚) × (p𝑚 − x)
= (p𝑚 − p𝑎) × (p𝑚 − x)
= (p𝑚 − p𝑎) ×

(
(p𝑎 − x) + (p𝑚 − p𝑎)

)
= (p𝑚 − p𝑎) × (p𝑎 − x) + (p𝑚 − p𝑎) × (p𝑚 − p𝑎)
= (p𝑚 − p𝑎) × (p𝑎 − x)
= n𝑎𝑚

The final step of the intersection tests for the edge is to compute

the dot product of the edge normal and the fixed-point ray direc-

tion d. Using 32-bit fixed-point d, computing the exact dot product

involves 96-bit adders, though we only need the sign of this dot

product in the intersection test. Since n𝑎𝑏 = 2n𝑎𝑚 = 2n𝑚𝑏 , we can

guarantee the same sign for all three edges.

Note that this requires using the same fixed-point representation

for the ray origin x as the mesh vertices. However, our fixed-point

representation is only valid within the bounding box of the mesh

and the ray origin may be outside of this bounding box. In that case,

this can be easily remedied by taking x as the point that the ray

enters the bounding box of the mesh for performing the ray-triangle

intersections.

ACM Trans. Graph., Vol. 42, No. 6, Article 196. Publication date: December 2023.

https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://doi.org/10.1145/2953877
https://developer.nvidia.com/blog/effectively-integrating-rtx-ray-tracing-real-time-rendering-engine/
https://developer.nvidia.com/blog/effectively-integrating-rtx-ray-tracing-real-time-rendering-engine/
https://doi.org/10.1007/978-3-7091-6303-0_28
https://doi.org/10.1109/SASP.2008.4570794
https://doi.org/10.1109/TCAD.2009.2028981
https://doi.org/10.1145/3478513.3480535
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1007/s00371-006-0062-y

	Abstract
	1 Introduction
	2 Related Work
	3 Locally-Adaptive Level of Detail
	3.1 Multi-Resolution Mesh Representation
	3.2 Acceleration Structure
	3.3 Displacement Bound
	3.4 Ray Traversal
	3.5 Watertight Tessellation
	3.6 Hit Information
	3.7 Level of Detail Metric
	3.8 Secondary Rays

	4 Implementation Details
	4.1 Number Format
	4.2 Vertex Data Storage
	4.3 Bound Data Storage
	4.4 Packetized Ray Casting

	5 Hardware Implementation
	6 Evaluation and Results
	6.1 Ray Casting Simulation
	6.2 Comparisons with Packetized Ray Casting
	6.3 Secondary Rays

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Fixed-Point Ray-Triangle Intersection

