
High-Performance Polynomial Root Finding for Graphics
Supplemental Document

CEM YUKSEL, University of Utah

In this supplemental document we present additional experiments with randomly-generated Bernstein poly-
nomials and specific cubic polynomial types. We also describe our ray intersection test with curves, using the
closest point and thick curves. Finally, we include the pseudocode of our method.

ACM Reference Format:
Cem Yuksel. 2022. High-Performance Polynomial Root Finding for Graphics: Supplemental Document. Proc.
ACM Comput. Graph. Interact. Tech. 3, 1 (July 2022), 11 pages. https://doi.org/10.1145/3406185

1 CUBIC POLYNOMIALS
In addition to the single (32-bit) precision tests in the paper, here we present our test results with
randomly-generated Bernstein polynomials using double (64-bit) precision floating-point numbers.
Figure 1 shows the performance results for finding all roots. These results with double precision
are slightly different, showing that the analytical solution is slightly faster than “Ours (low)” when
there are two roots.

0 ns

50 ns

100 ns

150 ns

200 ns

All polynomials No valid root 1 valid root 2 valid roots 3 valid roots
Ours (no deflation) Ours Ours (low) Analytical Blinn Flocke

Fig. 1. Cubic polynomial double precision (64-bits) performance tests for finding all roots
within [0, 1] for randomly-generated Bernstein polynomials with coefficients in [−1, 1]. The “all
polynomials” group includes 27% with no root, 48% with a single root, 23% with two roots, and 2% with
three roots. The other groups show the computation times for polynomials with different numbers of
roots within [0, 1]. All numerical methods use 𝜖 = 10−8, except for “Ours (low)” that uses 𝜖 = 5 × 10−4,
producing an average error of 5 × 10−17 with “Ours” and 7 × 10−8 with “Ours (low).”

Figure 2 shows the double (64-bit) precision tests for finding the first root within the target
interval. These results are similar to the single (32-bit) precision ones in the paper, except that all
methods take slightly longer time.
We have also experimented with different numerical root finding methods: bisection, Ridder’s

method, and regula falsi (the false position method). All of these methods provide guaranteed
convergence and match the given error threshold 𝜖 . However, with our randomly-generated
Bernstein polynomials, they all resulted in significantly slower convergence.
Author’s address: Cem Yuksel, cem@cemyuksel.com, University of Utah.

2020. 2577-6193/2022/7-ART
https://doi.org/10.1145/3406185

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

https://doi.org/10.1145/3406185
https://doi.org/10.1145/3406185

:2 Cem Yuksel

0 ns

50 ns

100 ns

150 ns

200 ns

All polynomials No valid root 1 valid root 2 valid roots 3 valid roots
Ours Ours (low) Analytical Blinn Flocke Newton

Fig. 2. Cubic polynomial double precision (64-bits) performance for finding the first root
using the same test setup in Figure 1. Note that regular “Newton” iterations fail to find an existing root
for 18% of all polynomials (33% of polynomials with one root and 11% of them with two roots).

0 ns

50 ns

100 ns

150 ns

200 ns

250 ns

300 ns

350 ns

400 ns

450 ns

500 ns

550 ns

600 ns

650 ns

Type 3
(1 root)

Type 21
(1 root)

Type 21
(2 roots)

Type 11
(1 root)

Type 111
(1 root)

Type 111
(2 roots)

Type 111
(3 roots)

Ours-Bisection Ours-Ridder Ours-RegulaFalsi Ours Ours (low) Analytical Blinn Flocke

-

Fig. 3. Experiments with different cubic polynomial types with different numbers of root within
the target interval. The darker portions show the performance values with single (32-bit) precision
experiments and the full bars correspond to double (64-bit) precision experiments.

Nonetheless, there are special cases when these alternative numerical root finding methods can
outperform the hybrid method we use combining Newton iterations with bisection. For exploring
such cases, we have performed tests using different types of cubic polynomials, as classified by
Blinn [2006]. The results are shown in Figure 3 along with a representative example for each type.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

High-Performance Polynomial Root Finding for Graphics: Supplemental Document :3

Type 3 cubic polynomials (the first group) include three roots at the same position with polyno-
mials of the form 𝑎𝑥3 + 𝑑 = 0. In this case, the convergence rate of Newton iterations drop from
quadratic to linear. In fact, they perform clearly worse than bisection, which provides the best
performance for this case among all methods we have tested. Indeed, every bisection iteration
reduces the error by half, while Newton iterations can only reduce by 1/3 in this case. Notice
that Flocke’s approach of picking a good starting guess for Newton iterations (and shifting the
polynomial to improve the accuracy of this special case) cannot fully save it from the reduced
convergence rate. Yet, this starting guess certainly helps, as the absolute difference between “Ours”
and Flocke’s method is reduced in this case, though both methods perform poorly.
Type 21 cubic polynomials (the second and third groups) have one double and one single root,

representing another challenging case for Newton iterations. These polynomials barely touch the
𝑦 = 0 line at the double root. In these experiments, the double root is always inside the target
interval. Finding this double root is the most challenging case for our method. In fact, both with
32-bit and 64-bit floating-point numbers, our method failed to find the root for 7.4% of these
polynomials, regardless of the chosen error threshold (including 𝜖 = 0). The other methods in
Figure 3 had even higher failure rates: the analytical solution failed 33% of them, Blinn’s method
failed 12% with 32-bits and 21% with 64-bits, and Flocke’s method failed 40% of them. RPOLY,
however, failed for only 5% of these polynomials.

The computation cost of these double roots is another source of concern. Again, Newton iterations
result in a poor convergence rate and bisection provides a similar performance in our tests.

Type 11̄ cubic polynomials include one single real root and one complex conjugate pair. Finding
the real root poses no difficulty for our method in this case. The same is true for Type 111 cubic
polynomials with three distinct real roots. Type 11̄ and Type 111 cubic polynomials are the most
common ones and Newton iterations provide a good convergence rate in these cases, resulting in
much better performance than the alternative numerical root finding techniques.
We have also experimented with the Accelerated Newton’s Method of McDougall et al. [2019],

which uses an estimate of the second derivative to reduce the iteration count. In our tests, the
reductions in the iteration count was not sufficient to cover the additional cost per iteration. The
one exception is the case of Type 21 cubic polynomials, in which the Accelerated Newton’s Method
resulted in about 10% faster computation than ours using the same error threshold.

2 ERROR THRESHOLD
The error threshold parameter 𝜖 determines the resulting accuracy and the computation cost. We
provide experiments with randomly-generated Bernstein polynomials for finding all roots in [0, 1]
with different 𝜖 parameters. We also provide results with 𝜖 = 0 and 0∗ that includes additional
computations to bound the error and skips the deflation optimization for best accuracy, which is
taken as the reference for computing the error of the solutions with other 𝜖 values.

Figure 4 show our results with single (32-bit) precision, grouped by different 𝜖 parameter values.
The bars show 𝜖 , the maximum error, and the average error. We also show the average value of the
polynomials computed at the roots found and the computation times as curves. Notice that single
(32-bit) precision is not sufficient to bound the maximum error when 𝜖 is relatively small. Through
reducing 𝜖 can reduce the average error, numerical truncation can lead to a larger error than 𝜖 in
some cases, particularly when 𝑓 (𝑥) = 0 for a range of 𝑥 values near the actual root. Notice that the
average error can be more than 3 orders of magnitude smaller than 𝜖 in these tests (see 𝜖 = 10−3).
Our results with double (64-bit) precision are shown in Figure 5 for degrees 3, 4, and 5, and

Figure 6 for degrees 6, 8, and 10. Double (64-bit) precision is significantly better for bounding the
error, though numerical truncation still limits the maximum error. Notice that the average error
can be more than 6 orders of magnitude smaller than 𝜖 , particularly with 𝜖 = 10−6 in these tests.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

:4 Cem Yuksel

0 ns

20 ns

40 ns

60 ns

80 ns

100 ns

120 ns

140 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

Er
ro

r

Error vs. Performance
degree 3 polynomials (32 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

50 ns

100 ns

150 ns

200 ns

250 ns

300 ns

350 ns

400 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

Er
ro

r

Error vs. Performance
degree 4 polynomials (32 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

100 ns

200 ns

300 ns

400 ns

500 ns

600 ns

700 ns

800 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

Er
ro

r

Error vs. Performance
degree 5 polynomials (32 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

Fig. 4. The error and computation times for different error threshold 𝜖 parameters for polynomials of
degrees 3, 4, and 5 with single (32-bit) precision.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

High-Performance Polynomial Root Finding for Graphics: Supplemental Document :5

0 ns

20 ns

40 ns

60 ns

80 ns

100 ns

120 ns

140 ns

160 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 3 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

100 ns

200 ns

300 ns

400 ns

500 ns

600 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 4 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

200 ns

400 ns

600 ns

800 ns

1000 ns

1200 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 5 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

Fig. 5. The error and computation times for different error threshold 𝜖 parameters for polynomials of
degrees 3, 4, and 5 with double (64-bit) precision.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

:6 Cem Yuksel

0 ns

200 ns

400 ns

600 ns

800 ns

1000 ns

1200 ns

1400 ns

1600 ns

1800 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 6 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

500 ns

1000 ns

1500 ns

2000 ns

2500 ns

3000 ns

3500 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 8 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

0 ns

1000 ns

2000 ns

3000 ns

4000 ns

5000 ns

6000 ns10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

Er
ro

r

Error & Computation Time
degree 10 polynomials (64 bits)

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 0 0*ϵ =

 Error Threshold (ϵ) Max. Error Average Error Average Value Computation Time

Fig. 6. The error and computation times for different error threshold 𝜖 parameters for polynomials of
degrees 6, 8, and 10 with double (64-bit) precision.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

High-Performance Polynomial Root Finding for Graphics: Supplemental Document :7

3 COMPARISON TO QR DECOMPOSITION
An alternative method for solving higher-order polynomials is using QR decomposition of the
polynomial’s companion matrix. The Eigen library [Guennebaud et al. 2010] includes an unsup-
ported branch with an implementation of this approach. Our experiments with this implementation
resulted in 50× to 100× slower results as compared to our method. Yet, these results may not be
representative of the QR method.

4 POLYNOMIAL RAY-CURVE INTERSECTIONS
In the paper, we present experiments with ray-curve intersections for hair rendering, using either the
closest-point method or thick curves. Here, we provide the derivations of polynomial formulations
for these intersection tests.

4.1 Closest Point on along Ray to a Curve
Let p be a point along a ray with origin q and direction d, such that p = q + 𝑡d, where 𝑡 is the
parameter along the ray, f (𝑠) represent a parametric curve formulation and 𝑟 (𝑠) is the thickness
(i.e. radius) of the curve at any parameter value 𝑠 . We represent the derivative of the curve as
f ′ (𝑠) = 𝑑f/𝑑𝑠 . At the closest point p, the vector to the closest point on the curve f (𝑠) − p must be
orthogonal to the ray, such that (

f (𝑠) − p
)
· d = 0 . (1)

Expanding this we can write

𝑡 =

(
f (𝑠) − q

)
· d

d2 , (2)

where d2 = d · d. At the closest point, f (𝑠) − p must also be orthogonal to the curve direction f ′ (𝑠).
Thus, we can write (

f (𝑠) − p
)
· f ′ (𝑠) = 0 , (3)

which expands to (
f (𝑠) − q

)
· f ′ (𝑠) − 𝑡d · f ′ (𝑠) = 0 . (4)

Substituting 𝑡 and multiplying by d2, we get an equation that does not depend on 𝑡 and only depends
on 𝑠 (

f (𝑠) − q
)
·
(
d2f ′ (𝑠) − (d · f ′ (𝑠)) d

)
= 0 . (5)

Note that if f is a polynomial of degree 𝑛, f ′ is a polynomial of degree 𝑛 − 1, so the equation above
is a polynomial of degree 2𝑛 − 1. Therefore, for a cubic polynomial curve it is degree 5 and for a
quadratic curve it is degree 3.
To find the closest point, we must find the real roots 𝑠𝑖 of Equation 5. Then, we can compute 𝑡

and compare ∥f (𝑠𝑖) − p∥ to 𝑟 (𝑠𝑖) for each root within the valid range.

Simplified Case Using Ray Coordinates. Consider the simplified case using ray coordinates where
q = (0, 0, 0) and d = (0, 0, 1). Then, Equation 5 simplifies down to

𝑓𝑥 (𝑠) 𝑓 ′𝑥 (𝑠) + 𝑓𝑦 (𝑠) 𝑓 ′𝑦 (𝑠) = 0 . (6)

When f is a cubic polynomial, such that

𝑓𝑥 (𝑠) = 𝑥3 𝑠
3 + 𝑥2 𝑠

2 + 𝑥1 𝑠 + 𝑥0 , and (7)

𝑓 ′𝑥 (𝑠) = 3𝑥3 𝑠
2 + 2𝑥2 𝑠 + 𝑥1 , (8)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

:8 Cem Yuksel

we get

𝑓𝑥 (𝑠) 𝑓 ′𝑥 (𝑠) = 3𝑥2
3 𝑠

5 + 5𝑥3𝑥2 𝑠
4 + (2𝑥2

2 + 4𝑥3𝑥1)𝑠3

+ (3𝑥2𝑥1 + 3𝑥3𝑥0)𝑠2 + (𝑥2
1 + 2𝑥2𝑥0)𝑠 + 𝑥1𝑥0 .

Once 𝑠 is found, we can compute 𝑡 using Equation 2, which simplifies down to 𝑡 = 𝑓𝑧 (𝑠).

4.2 Ray Intersection with a Thick Curve
A thick curve is defined by a center curve f (𝑠) and a radius 𝑟 (𝑠). All points p on the surface of a
thick curve must satisfy two equations. The first one is the distance to the curve center

∥f (𝑠) − p∥ = 𝑟 (𝑠) , (9)

which can be extended to (
f (𝑠) − q − 𝑡d

)2 −
(
𝑟 (𝑠)

)2
= 0 . (10)

The second equation declares that a point on the curve must be on the plane defined by the
corresponding center line position and direction. Thus,(

f (𝑠) − q − 𝑡d
)
· f ′ (𝑠) = 0 . (11)

By rearranging the terms we get

𝑡 =

(
f (𝑠) − q

)
· f ′ (𝑠)

d · f ′ (𝑠) . (12)

Then, we can substitute 𝑡 into the distance equation and multiply by
(
d · f ′ (𝑠)

)2 to get (dropping
function notation for brevity)(

(d · f ′) (f − q) −
(
(f − q) · f ′

)
d
)2
− (d · f ′)2𝑟 2 = 0 . (13)

If f (𝑠) is a polynomial of degree 𝑛, then left term in this equation is a polynomial of degree
4𝑛 − 2 and the right term is degree 2𝑛 + 2𝑚 − 2, assuming 𝑟 is a polynomial of degree𝑚. For𝑚 ≤ 𝑛,
it becomes degree 4𝑛 − 2. Thus, if f is cubic, the equation above becomes degree 10, and if f is
quadratic, it is degree 6.

Simplified Case Using Ray Coordinates. Once again, consider the simplified case using ray coor-
dinates where q = (0, 0, 0) and d = (0, 0, 1). Then, Equation 13 simplifies down to(

𝑓 ′𝑧
)2

(
𝑓 2
𝑥 + 𝑓 2

𝑦 − 𝑟 2
)
+ (𝑓 ′𝑥 𝑓𝑥 + 𝑓 ′𝑦 𝑓𝑦)2 = 0

Once we solve for 𝑠 , we can compute 𝑡 using Equation 12, which simplifies to

𝑡 =
f (𝑠) · f (𝑠)′

𝑓 ′𝑧 (𝑠)
. (14)

5 PSEUDOCODE
We show the pseudocode of our method in Algorithm 1, showing the splitting step. It is slightly
modified for cubic polynomials using the deflation optimization, as shown in Algorithm 2. A
high-performance CPU implementation for cubic polynomials would expand the for loop on line 6
of Algorithm 2 to minimize conditional jumps. A high-performance GPU implementation should
likely move the root finding (line 8) outside of the for loop to minimize thread divergence.
Both of these functions call the numerical root finding function when they detect the presence

of a root. Our numerical root finding with optimizations for cubic polynomials is presented in
Algorithm 3. Notice that this pseudocode checks the remaining size of the interval only after a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

High-Performance Polynomial Root Finding for Graphics: Supplemental Document :9

Algorithm 1: Pseudocode of our splitting step.
1 function PolynomialRoots(𝑓 , 𝑥start, 𝑥end)
2 X𝐶 ← PolynomialRoots(𝑓 ′, 𝑥start, 𝑥end) // Find the critical points (the roots of 𝑓 ′).
3 X𝐸 ← X𝐶 ∪ {𝑥end} // Interval ends are the critical points plus 𝑥end.
4 X𝑅 ← {∅} // Initialize the set of roots as empty.
5 𝑥1 ← 𝑥start // Set the start of the first interval.
6 𝑦1 ← 𝑓 (𝑥1) // Evaluate the polynomial at the start position.
7 foreach interval end 𝑥2 ∈ X𝐸 do // For each interval
8 𝑦2 ← 𝑓 (𝑥2) // Evaluate the polynomial at the end position.
9 if sgn 𝑦1 ≠ sgn 𝑦2 then // If there is a root within this interval
10 𝑥𝑅 ← FindRoot(𝑓 , 𝑓 ′, 𝑥1, 𝑥2, 𝑦1, 𝑦2) // Find the root.
11 X𝑅 ← X𝑅 ∪ {𝑥𝑅} // Add it to the list of roots.
12 end
13 𝑥1 ← 𝑥2 // Set the start of the next interval.
14 end
15 return X𝑅 // Finally, return the set of roots.

Algorithm 2: Pseudocode of our splitting step with deflation (used for cubic polynomials).
1 function PolynomialRoots(𝑓 , 𝑥start, 𝑥end)
2 X𝐶 ← PolynomialRoots(𝑓 ′, 𝑥start, 𝑥end) // Find the critical points (the roots of 𝑓 ′).
3 X𝐸 ← X𝐶 ∪ {𝑥end} // Interval ends are the critical points plus 𝑥end.
4 𝑥1 ← 𝑥start // Set the start of the first interval.
5 𝑦1 ← 𝑓 (𝑥1) // Evaluate the polynomial at the start position.
6 foreach interval end 𝑥2 ∈ X𝐸 do // For each interval
7 𝑦2 ← 𝑓 (𝑥2) // Evaluate the polynomial at the end position.
8 if sgn 𝑦1 ≠ sgn 𝑦2 then // If there is a root within this interval
9 𝑥𝑅 ← FindRoot(𝑓 , 𝑓 ′, 𝑥1, 𝑥2, 𝑦1, 𝑦2) // Find the first root.

10 X𝑅 ← {𝑥𝑅} // Create a list of roots.
11 if there is another root then // If there is at least another interval with a root
12 𝑔← deflated polynomial of 𝑓 // Set 𝑔 as the deflated polynomial of 𝑓
13 X𝐷 ← PolynomialRoots(𝑔, 𝑥𝑐 , 𝑥end) // Find the roots of 𝑔
14 X𝑅 ← {𝑥𝑅} ∪ X𝐷 // Form the final list of roots.
15 return X𝑅 // Return the list of roots.
16 else return {𝑥𝑅} // Return the one root we found.
17 end
18 𝑥1 ← 𝑥2 // Set the start of the next interval.
19 end
20 return {∅} // If we reach here, it means we have not found a root, so return empty set.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

:10 Cem Yuksel

Algorithm 3: Pseudocode of our root finding with optimization for cubic polynomials.
1 function FindRoot(𝑓 , 𝑓 ′, 𝑥1, 𝑥2, 𝑦1, 𝑦2)
2 𝑥𝑟 ← (𝑥1 + 𝑥2)/2 // The initial guess is the center of the given interval.
3 if |𝑥2 − 𝑥1 | ≤ 2𝜖 then return 𝑥𝑟 // if the interval is small enough, return the initial guess
4 if 𝑓 is a cubic polynomial then // If 𝑓 is a cubic polynomial, we can use a simpler loop.
5 for a fixed number of iterations do // Begin with a fixed number of iterations.
6 𝑥𝑛 ← 𝑥𝑟 − 𝑓 (𝑥𝑟)/𝑓 ′ (𝑥𝑟) // Compute the Newton step.
7 𝑥𝑛 ← max(𝑥1,min(𝑥2, 𝑥𝑛)) // Clamp 𝑥𝑛 to the target interval.
8 if |𝑥𝑟 − 𝑥𝑛 | ≤ 𝜖 then return 𝑥𝑛 // If converged, return 𝑥𝑛 .
9 𝑥𝑟 ← 𝑥𝑛 // If not converged, take the step and continue.

10 end
11 if 𝑥𝑟 ∉ [𝑥1, 𝑥2] then // If 𝑥𝑟 is not a valid number (i.e. rare division by zero cases)
12 𝑥𝑟 ← (𝑥1 + 𝑥2)/2 // Start over with the initial guess.
13 end
14 end
15 𝑦𝑟 ← 𝑓 (𝑥𝑟) // Compute the polynomial at 𝑥𝑟 .
16 while true do // We loop until we converge.
17 if sgn 𝑦𝑟 = sgn 𝑦1 then // If 𝑦𝑟 has the same sign as 𝑦1
18 𝑥1 ← 𝑥𝑟 // Shrink the interval by setting the new start of the search interval.
19 else // Otherwise (if 𝑦𝑟 and 𝑦1 have different signs)
20 𝑥2 ← 𝑥𝑟 // Shrink the interval by setting the new end of the search interval.
21 end
22 𝑥𝑛 ← 𝑥𝑟 − 𝑦𝑟/𝑓 ′ (𝑥𝑟) // Compute the Newton step.
23 if 𝑥1 < 𝑥𝑛 < 𝑥2 then // If it is a valid Newton step
24 if |𝑥𝑟 − 𝑥𝑛 | > 𝜖 then // If the step size is larger than the error bound
25 𝑥𝑟 ← 𝑥𝑛 // Take the step.
26 𝑦𝑟 ← 𝑓 (𝑥𝑟) // Compute the polynomial at the new position and continue.
27 else // If the step size is small enough
28 if sgn 𝑦𝑟 = sgn 𝑦1 then 𝑥𝑟 ← 𝑥𝑛 + 𝜖 // Try to move the guess to
29 else 𝑥𝑟 ← 𝑥𝑛 − 𝜖 // the other side of the root.
30 𝑦 ← 𝑓 (𝑥𝑟) // Compute the polynomial at this new position.
31 if sgn 𝑦 ≠ sgn 𝑦𝑟 then // If it is indeed on the other side of the root
32 return 𝑥𝑛 // We can return our latest Newton step.
33 else // Otherwise, 𝑥𝑟 is closer to the root.
34 𝑦𝑟 ← 𝑦 // We have already computed the polynomial at 𝑥𝑟 .
35 end
36 end
37 else // If the Newton step failed
38 𝑥𝑟 ← (𝑥1 + 𝑥2)/2 // We take a bisection step.
39 if 𝑥𝑟 = 𝑥1 or 𝑥𝑟 = 𝑥2 or 𝑥2 − 𝑥1 ≤ 2𝜖 then // If the interval is too small
40 return 𝑥𝑟 // Return the bisection step.
41 else 𝑦𝑟 ← 𝑓 (𝑥𝑟) // Compute the polynomial at the new position and continue.
42 end
43 end

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

High-Performance Polynomial Root Finding for Graphics: Supplemental Document :11

bisection step. This may cause taking an extra step, but slightly reduces the cost of each step,
providing faster results in our tests.
The C++ source code of our polynomial root finding method is available online [Yuksel 2022].

Note that this implementation may differ from the simplified pseudocodes in this document to
achieve additional performance optimizations.

REFERENCES
J.F. Blinn. 2006. How to solve a cubic equation. Part 1. The shape of the discriminant. IEEE Computer Graphics and

Applications 26, 3 (2006), 84–93. https://doi.org/10.1109/MCG.2006.60
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Trevor J. McDougall, Simon J. Wotherspoon, and Paul M. Barker. 2019. An accelerated version of Newton’s method with

convergence order 3+1. Results in Applied Mathematics 4 (2019), 100078. https://doi.org/10.1016/j.rinam.2019.100078
Cem Yuksel. 2022. Polynomial Roots. http://www.cemyuksel.com/?x=polynomials

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article . Publication date: July 2022.

https://doi.org/10.1109/MCG.2006.60
https://doi.org/10.1016/j.rinam.2019.100078
http://www.cemyuksel.com/?x=polynomials

	Abstract
	1 Cubic Polynomials
	2 Error Threshold
	3 Comparison to QR Decomposition
	4 Polynomial Ray-Curve Intersections
	4.1 Closest Point on along Ray to a Curve
	4.2 Ray Intersection with a Thick Curve

	5 Pseudocode
	References

