
A Fast & Robust Solution for Cubic & Higher-Order Polynomials
Cem Yuksel

University of Utah
Salt Lake City, Utah, USA
cem@cemyuksel.com

ABSTRACT
We present a computationally-efficient and numerically-robust
method for finding real roots of cubic and higher-order polynomials.
It begins with determining the intervals where a given polynomial
is monotonic. Then, the existence of a real root within each interval
can be quickly identified. If one exists, we find the root using a
stable variant of Newton iterations, providing fast and guaranteed
convergence and satisfying the given error bound.

ACM Reference Format:
Cem Yuksel. 2022. A Fast & Robust Solution for Cubic & Higher-Order
Polynomials. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Talks (SIGGRAPH ’22 Talks), August 07-11, 2022. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3532836.3536266

1 INTRODUCTION
Polynomials can be found everywhere in computer graphics and
often times we are interested in finding their real roots. However,
an efficient analytical solution exists only for quadratic (second
order) polynomials. Even for cubic (third order) polynomials, we
must resort to numerical methods, because the analytical solution is
not efficient or robust enough. Higher-order polynomials are often
avoided, mainly because of the common misconception that they
would be too expensive to solve. Below, we correct this by present-
ing an efficient solution, starting with quadratics, then discussing
cubics, and finally extending it to higher-order polynomials.

2 QUADRATIC POLYNOMIALS
To find the roots of a quadratic polynomial 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, we
recommend using a variant of the commonly-known formula

𝑥1 = − 2𝑐
𝑏 + (sgn 𝑏)

√
Δ

𝑥2 = −𝑏 + (sgn 𝑏)
√
Δ

2𝑎 , (1)

where Δ = 𝑏2 − 4𝑎𝑐 . This version is more stable than the common
form, because it avoids evaluating the difference in 𝑏 ±

√
Δ. Also, it

works even when 𝑎 = 0, producing 𝑥1 = −𝑐/𝑏 and 𝑥2 = ±∞.

3 CUBIC POLYNOMIALS
While there exists a formula for computing the real roots of cubic
polynomials, it involves computationally-expensive cubic root oper-
ations and a direct implementation may lead to excessive precision
loss. The numerical solution we present below is 2.5× to 6× faster

SIGGRAPH ’22 Talks, August 07-11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Special Interest
Group on Computer Graphics and Interactive Techniques Conference Talks (SIGGRAPH
’22 Talks), August 07-11, 2022, https://doi.org/10.1145/3532836.3536266.

in our tests, provides better accuracy, and can be further accelerated
when an approximate solution is sufficient.

3.1 Splitting Cubic Polynomials
We begin with splitting the given cubic polynomial 𝑓 (𝑥) into three
monotonic intervals using its 2 critical points 𝑥1 and 𝑥2, where its
derivative 𝑓 ′ (𝑥) is zero. These critical points can be easily evaluated,
as they are the roots of the quadratic polynomial 𝑓 ′ (𝑥). In-between
and beyond these critical points, the cubic polynomial 𝑓 (𝑥) either
monotonically increases or decreases.

For any monotonic interval 𝑥 ∈ [𝑥1, 𝑥2], there exists a single
real root if and only if exactly one of 𝑓 (𝑥1) and 𝑓 (𝑥2) is negative.
Otherwise, 𝑓 (𝑥) cannot go through zero within 𝑥 ∈ [𝑥1, 𝑥2]. Thus,
we can quickly check the existence of a root by evaluating 𝑓 (𝑥1) and
𝑓 (𝑥2), and comparing their signs. For infinite intervals (−∞, 𝑥1]
and [𝑥2,∞), the cubic term’s sign determines the sign of 𝑓 (±∞).

Most applications, however, would need roots within a given
interval [𝑥start, 𝑥end]. Depending on whether the critical points 𝑥1
and 𝑥2 are within [𝑥start, 𝑥end], we split the given interval up to 3
pieces. For each piece, if a root exists within its interval, we perform
numerical root finding to evaluate it, as explained below.

3.2 Numerical Root Finding for Cubics
Newton iterations provide the fastest numerical method for root
finding. Starting with a guess 𝑥 (0)𝑟 , at each iteration 𝑗 we compute
the next guess using

𝑥
(𝑗+1)
𝑛 = 𝑥

(𝑗)
𝑟 − 𝑓 (𝑥 (𝑗)𝑟)

𝑓 ′ (𝑥 (𝑗)𝑟)
. (2)

Yet, Newton iterations are not always stable, particularly when
|𝑓 ′ (𝑥 (𝑗)𝑟) | is small. For cubics, this happens near the critical points.
Thus, the resulting guess 𝑥 (𝑗+1)𝑛 might be arbitrarily far from the
root, possibly even more so than the previous guess 𝑥 (𝑗)𝑟 .

One simple way to ensure stability would be forcing the next
guess to remain within the given interval [𝑥min, 𝑥max], using

𝑥
(𝑗+1)
𝑟 = max

(
𝑥min,min

(
𝑥max, 𝑥

(𝑗+1)
𝑛

))
. (3)

Indeed, this simple step solves the convergence problems for cubics,
except for one special case when

𝑓 (𝑥 (𝑗+1)𝑟)
𝑓 ′ (𝑥 (𝑗+1)𝑟)

= − 𝑓 (𝑥 (𝑗)𝑟)
𝑓 ′ (𝑥 (𝑗)𝑟)

, (4)

which produces a next guess 𝑥 (𝑗+2)𝑟 = 𝑥
(𝑗)
𝑟 , resulting in an infinite

loop. Fortunately, this can only happen for the interval within the
two critical points [𝑥1, 𝑥2] and only when two consecutive guesses
are on either side of the inflection point 𝑥𝑐 , which is exactly at
the center of the two critical points 𝑥𝑐 = (𝑥1 + 𝑥2)/2, where the
second derivative changes sign. Therefore, we can easily avoid this

https://doi.org/10.1145/3532836.3536266
https://doi.org/10.1145/3532836.3536266

SIGGRAPH ’22 Talks, August 07-11, 2022, Vancouver, BC, Canada Cem Yuksel

case by splitting the interval between the two critical points into
two intervals [𝑥1, 𝑥𝑐] and [𝑥𝑐 , 𝑥2]. Note that only one of them can
contain a root and the other can be safely discarded.

When the step size |𝑥 (𝑗+1)𝑟 −𝑥 (𝑗)𝑟 | is below a desired error bound
𝜖 , the iterations can be terminated by returning the latest guess.
Because these iterations are guaranteed to converge, there is no
need to limit the number of iterations, though a fixed number can
be used when performance is more important than accuracy.

4 HIGHER-ORDER POLYNOMIALS
This approach can be easily extended to higher-order polynomials.

4.1 Splitting Higher-Order Polynomials
Similar to the cubic case, for a polynomial of degree 𝑑 , we first find
the critical points by solving for the roots of its derivative, which is
a polynomial of degree 𝑑 − 1. This results in a recursive algorithm.

Then, we split the given interval [𝑥start, 𝑥end] into smaller pieces,
using those critical points that are within this interval, if any. For
each piece, we check the value of the polynomial 𝑓 (𝑥) at its end
points. If these values have opposing signs (i.e one positive and the
other negative), we proceed to numerical root finding to evaluate
the real root within this piece. Otherwise, we discard the piece.

4.2 Generalized Numerical Root Finding
Again, Newton iterations can be used for quickly finding the real
root within each interval. However, ensuring stability of Newton it-
erations with higher-order polynomials is not as simple. We employ
two strategies for guaranteeing convergence.

First, we iteratively shorten the interval. Starting with the initial
interval [𝑥 (0)min, 𝑥

(0)
max], at each iteration we update it by splitting the

interval at the previous guess. Since we compute 𝑓 at each iteration,
we can shorten the interval with minimal additional work, using

𝑥
(𝑗+1)
min = 𝑥

(𝑗)
𝑟 , if sgn 𝑓 (𝑥 (𝑗)min) = sgn 𝑓 (𝑥 (𝑗)𝑟)

𝑥
(𝑗+1)
max = 𝑥

(𝑗)
𝑟 , if sgn 𝑓 (𝑥 (𝑗)max) = sgn 𝑓 (𝑥 (𝑗)𝑟) .

(5)

While shortening the interval helps, it does not guarantee conver-
gence. This is because Newton iterations can still bounce between
the two ends of the interval without ever shortening it. To avoid
this and ensure convergence, we fall back on bisection whenever
Newton iteration fails to produce a next guess inside the interval:

𝑥
(𝑗+1)
𝑟 =

{
𝑥
(𝑗+1)
𝑛 , if 𝑥 (𝑗+1)min < 𝑥

(𝑗+1)
𝑛 < 𝑥

(𝑗+1)
max(

𝑥
(𝑗+1)
min + 𝑥

(𝑗+1)
max

)
/2, otherwise .

(6)

Here, bisection guarantees convergence, though bisection alone
(without Newton iterations) would have much slower convergence.
We pick our initial guess as the center of the interval, which places
𝑥
(0)
𝑟 away from the two known critical points at the ends of the
interval, where there is a greater likelihood of a failed Newton step.

Yet, bisection requires a finite interval. If either end of the interval
is at±∞, we start at an arbitrary distance 𝛿 away from the other end.
If both ends are at ±∞, we start from an arbitrary point. Whenever
Newton iteration fails, we simply move the guess by 𝛿 . When the
interval becomes finite, we continue as explained above.

Another difficulty is the termination condition. The last step size
of the Newton iteration does not bound the error for higher-order

polynomials. Thus, we must continue until the interval is smaller
than 2𝜖 . On the other hand, Newton iterations often remain on one
side of the root, so even when they converge to the exact solution
(up to numerical precision), the interval can still remain arbitrarily
large. To avoid this, when the last step size is below 𝜖 , we produce
a guess that is likely to appear on the other side of the root. We
achieve this by replacing the next guess in Equation 6 with

𝑥
(𝑗+1)
𝑟 = 𝑥

(𝑗+1)
𝑛 +

{
𝜖, if sgn 𝑓 (𝑥 (𝑗)min) = sgn 𝑓 (𝑥 (𝑗)𝑟)

−𝜖, otherwise .
(7)

If 𝑥 (𝑗+1)𝑟 is on the other side of the root, we can return 𝑥
(𝑗+1)
𝑛 as

our final guess. Otherwise, we end up with a new guess that is even
closer to the root and we continue.

5 PERFORMANCE
The computation times of ourmethod varies depending on the given
polynomial. This is because we can quickly identify the absence
of a root without any Newton iterations. This is used for early
termination or skipping parts of the target interval. Also, the cost
of numerical root finding depends on the desired accuracy.

In our tests with randomly-generated cubics, our method pro-
duced a similar average CPU performance as regular Newton itera-
tions for cases when there is a root. Yet, when there are multiple
roots, regular Newton iterations find one of them and not neces-
sarily the one closest to the starting guess. More importantly, for
about 22% of these random cubics, regular Newton iterations failed
to find an existing root. Our method, on the other hand, has no such
stability issues. In addition, for cases when there is no root, our
method gets even faster by skipping numerical root finding. Regular
Newton iterations, however, get even slower, resulting in up to 9×
slower performance than our method in our tests (depending on
the maximum iteration count used with regular Newton iterations).

The analytical solution for cubics performed about 2.5× slower
than ours when there is a root and 6× slower when there is no root.

The cost of our method increases with increasing polynomial
degree. Quartic (fourth order) polynomials took 2.6× and degree 10
polynomials took 23× longer than cubics on average in our tests.

As compared to other (real and complex) root finders, with cu-
bics we observed that our solution is 12.9× faster than RPOLY
[Jenkins and Traub 1970] and 107× faster than the QR factorization
method in the Eigen library [Guennebaud et al. 2010] on average.
With degree 10 polynomials our method maintains a performance
advantage of 5.7× over RPOLY and 60× over the QR method.

6 CONCLUSION
We have presented a fast and robust algorithm for solving cubic
and higher-order polynomials. For cubics with no real root within
the interval, it incurs a minor additional cost over the analytical
solution for quadratics. The cost for root finding depends on the
desired accuracy. It is efficient for higher-order polynomials as well.
An implementation of our method is available online [Yuksel 2022].

REFERENCES
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
M. A. Jenkins and J. F. Traub. 1970. A Three-Stage Algorithm for Real Polynomials

Using Quadratic Iteration. SIAM J. Numer. Anal. 7, 4 (1970), 545–566.
Cem Yuksel. 2022. Polynomial Roots. http://www.cemyuksel.com/?x=polynomials.

	Abstract
	1 Introduction
	2 Quadratic Polynomials
	3 Cubic Polynomials
	3.1 Splitting Cubic Polynomials
	3.2 Numerical Root Finding for Cubics

	4 Higher-Order Polynomials
	4.1 Splitting Higher-Order Polynomials
	4.2 Generalized Numerical Root Finding

	5 Performance
	6 Conclusion
	References

