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Figure 1: Given an input set of samples, sample elimination selects a subset with Poisson disk property: (a) 15K input samples,
(b) 5K selected samples from this input, (c) 100K strands randomly placed, and (d) 100K strands selected from 300K samples.

Abstract
In this paper we describe sample elimination for generating Poisson disk sample sets with a desired size. We
introduce a greedy sample elimination algorithm that assigns a weight to each sample in a given set and eliminates
the ones with greater weights in order to pick a subset of a desired size with Poisson disk property without having
to specify a Poisson disk radius. This new algorithm is simple, computationally efficient, and it can work in any
sampling domain, producing sample sets with more pronounced blue noise characteristics than dart throwing.
Most importantly, it allows unbiased progressive (adaptive) sampling and it scales better to high dimensions
than previous methods. However, it cannot guarantee maximal coverage. We provide a statistical analysis of our
algorithm in 2D and higher dimensions as well as results from our tests with different example applications.

1. Introduction

Sampling is commonplace in computer graphics and Poisson
disk sample sets are often desired due to their statistical (blue
noise) properties as well as the fact that no two samples are
placed too close together. Most Poisson disk sample set gen-
eration methods are based on dart throwing [DW85, Coo86]
that aims to generate as many samples as necessary to cover
the sampling domain based on the given Poisson disk radius.
In this paper we define sample elimination by approaching
the Poisson disk sample set generation problem differently.
Given a set of samples, we select a subset of exactly the
desired size with a Poisson disk property without explicitly
providing a Poisson disk radius. The sample elimination ap-
proach is especially useful for numerous sampling problems
in which the quality/performance of sampling is directly as-

sociated with the sample count. Hence, controlling the sam-
ple count directly is more desirable than specifying a Poisson
disk radius. Our approach also permits progressive sampling
such that when samples in the final set are introduced one by
one in a particular order, each subset in the sequence exhibits
blue noise characteristics.

We describe an efficient greedy algorithm for sample
elimination that relies upon common data structures, which
makes it extremely easy to implement. Sample sets gener-
ated with this algorithm have improved blue noise character-
istics over sample sets generated using dart throwing. Unlike
previous work, our method scales well with high dimensions
and it can produce unbiased progressive sample sets. More-
over, it allows varying density and it is suitable for any sam-
pling domain including arbitrary manifolds (Figure 1).
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2. Background

Poisson disk sample sets are typically characterized by the
Poisson disk radius r, the half distance between the closest
pair of samples, or the fraction ρ of the maximum possible
distance rmax for N samples to cover the sampling domain,
such that r = ρ rmax.

Perhaps the simplest way of generating Poisson disk sam-
ple sets is dart throwing [DW85, Coo86]. Given r, dart
throwing generates random samples and rejects or accepts
each sample based on its distance to the previously accepted
samples. Its main shortcoming is the termination condition,
since the algorithm does not know if the domain is fully
covered. Hence, the algorithm has poor convergence, which
makes it computationally expensive. Also, generating sam-
ple sets with a desired size is difficult, because fewer than
desired samples can fully cover the domain when ρ is large
(ρ > 1/

√
3≈ 0.58 in 2D). On the other hand, dart throwing

is easy to implement and applicable to any sampling domain.
As for its results, they are often used as the ground truth for
evaluating other algorithms. Therefore, in spite of its short-
comings, dart throwing is still used in practice.

For faster sample set generation some researchers pro-
posed approximate techniques that produce sample sets with
similar spectral characteristics to Poisson disk. The earlier
ones [Mit91, MF92] are relatively simple and they can be
used for a wide range of sampling domains, but the gain in
computational performance is limited. Methods that parti-
tion the space into grid cells can achieve linear time [Bri07]
and parallel sample generation [Wei08].

Tile based methods are proposed for generating a large
number of Poisson disk samples in 2D. Some of these meth-
ods generate a relatively small set of samples using an-
other Poisson disk sampling method and tile those sam-
ples [HDK01,CSHD03,LD05,KCODL06,KS12,WPC∗14],
while others use a regular tile structure for placing each sam-
ple [ODJ04, Ost07]. As a result, they can generate a large
number of samples efficiently at a cost of sampling quality.
Some of them are shown to support varying sampling den-
sity [ODJ04,LD05,Ost07], but none of them can be used for
sampling higher dimensions or arbitrary manifolds.

More recently, many researchers explored the idea of par-
titioning the sampling space to avoid generating new sam-
ples that will be ultimately rejected by dart throwing. Some
of these methods only work in 2D [Jon06, DH06, WCE07,
JK11, EDP∗11, KS11] and others can be used for higher di-
mensions [GM09,EMP∗12], but their performance drops ex-
ponentially with increasing dimensions. The methods that
can handle 3D surfaces either repeatedly split the surface
definition into smaller fragments [CJW∗09, GZWW13] or
completely replace the surface with a large number of ran-
dom samples [BWWM10,CCS12,YXSH13]. Many of them
are shown to work with varying sample densities [Jon06,
CJW∗09, BWWM10, KS11, YW13], but few of them can

handle all these sampling domains simultaneously. The re-
sults of all these algorithms can mimic dart throwing and
the most efficient ones can even achieve linear time perfor-
mance [DH06, JK11, EDP∗11, EMP∗12], but they all have
an overhead for storing and updating the space partitioning,
and the algorithms are significantly more complicated than
dart throwing.

Relaxation methods can iteratively increase the Poisson
disk radius of a sample set [MF92,HDK01] by repositioning
the samples, but they can also converge to regular patterns
with tight packing unless randomness is explicitly enforced
[BSD09, Fat11, SHD11, XLGG11]. Iterative techniques are
also useful for reducing the sample count of an existing sam-
ple set while preserving the Poisson disk radius [EMA∗13]
or generating other sample distributions with different spec-
tral properties in addition to Poisson disk [ZHWW12]. There
are also other relaxation methods that can be used for sam-
pling smooth surfaces in 3D [Tur91, WH94].

Progressive sampling in previous work is achieved only
by reducing r progressively [MF92, MREB12]. The perfor-
mance and quality of this approach depend on how r is up-
dated and it is prone to introducing sampling bias.

In comparison, the weighted sample elimination method
described in the next section:

• Allows generating sample sets with a desired count with-
out having to specify a Poisson disk radius,

• Supports unbiased progressive sampling without any pa-
rameter tuning,

• Produces sample sets with more pronounced blue noise
characteristics as compared to dart throwing,

• Scales well with high dimensions enabling Poisson disk
sampling in extremely high dimensions,

• Supports any sampling domain including varying densi-
ties and arbitrary manifolds,

• Has O(N logN) computational complexity and O(N)
memory complexity, and

• Relies upon common data structures, which makes it ex-
tremely easy to implement.

3. Sample Elimination

We use the term sample elimination for algorithms that take
a set of samples as input and select a subset as output. For
example, the dart throwing method (with an upper bound
on the number of samples to be tested) can be considered
a sample elimination algorithm. Given the desired Poisson
disk radius, dart throwing tests each sample in the order of
increasing index, and decides whether to accept or eliminate
the sample based on its distance to the previously accepted
samples. Note that not all Poisson disk sampling algorithms
can be formulated as sample elimination, since some of them
move existing samples and others dictate where the next test
sample can appear. When two samples are close together,
dart throwing always eliminates the sample with the greater
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function WeightedSampleElim( samples )
Build a kd-tree for samples
Assign weights wi to each sample si
Build a heap for si using weights wi
while number of samples > desired

s j ← pull the top sample from heap
for each sample si around s j

Remove wi j from wi
update the heap position of si

Figure 2: The pseudo code of weighted sample elimination.

index. Hence, given a set of random samples in a particular
order, dart throwing picks an arbitrary subset with an arbi-
trary size. Since the index of a sample carries no informa-
tion on the sample’s contribution to the statistical properties
of the selected subset, dart throwing is not expected to pick
the subset with the largest Poisson disk radius or the one with
the best blue noise characteristics.

For numerous sampling problems it is more desirable to
specify the number of samples rather than the Poisson disk
radius. Fortunately, the sample elimination problem for Pois-
son disk sample set generation can be defined as picking a
desired number of samples from a given sample set. Given
a set of M samples, finding the subset of N samples with
the largest Poisson disk radius is an NP-Complete problem.
However, an approximate solution can be obtained using a
greedy algorithm in M−N steps.

3.1. Weighted Sample Elimination

We introduce weighted sample elimination as a simple
greedy algorithm for picking a subset with a reasonably large
Poisson disk radius from a given set of input samples. We be-
gin with assigning a weight to each sample based on its dis-
tance to its neighbors. At each step we eliminate the sample
with the highest weight and adjust the weights of the remain-
ing samples around it. Therefore, an efficient implementa-
tion of this algorithm merely needs two relatively common
data structures: a spatial partitioning structure for quickly
finding the neighboring samples and a priority queue for
picking the sample with the highest weight. In our imple-
mentation we used a kd-tree and a heap respectively, result-
ing in an extremely simple algorithm shown in Figure 2.

We calculate the total weight wi of sample i as a sum of all
wi j, the weight contribution of sample j on sample i, for all
samples j (i 6= j) that are within 2rmax distance of sample i.
The weight function wi j we use goes to 1 when the distance
between the two samples di j goes to zero, and it drops to
zero as di j increases up to 2rmax, such that

wi j =

(
1−

d̂i j

2rmax

)α

(1)

with d̂i j = min
(
di j,2rmax

)
. In our implementation we use
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Figure 3: Comparison of dart throwing to weighted sample
elimination with and without weight limiting (i.e. β = 0 and
β= 1) using 1,000 samples generated from 4,000 random in-
put samples. For a fair comparison, the resulting r value of
weighted sample elimination is given as input to dart throw-
ing and dart throwing is given additional random samples
until it produces 1,000 samples. The instances where dart
throwing fails to generate 1,000 samples are ignored.

α = 8, so that smaller di j values have sufficiently greater
weight contributions as compared to a collection of greater
di j values, though smaller or larger α values produced sim-
ilar results in our tests. Note that the distance measure for
di j can be the Euclidian distance as well as the geodesic dis-
tance on a surface or any other function. Moreover, the dis-
tance metric does not have to be symmetric, such that di j can
be different than d ji.

The value of rmax depends on the sampling domain. In 2D
and 3D,

rmax,2 =

√
A2

2
√

3N
and rmax,3 =

3

√
A3

4
√

2N
, (2)

where A2 and A3 are the area and volume of the sampling
domain. In higher dimensions we use a conservative estimate
for rmax,d with d > 3, assuming that the hypervolume of the
domain Ad can be completely filled with hyperspheres with
no overlap. Note that this assumption causes overestimation
of the rmax values. The hypervolume Vd of a hypersphere
with radius r is Vd =Cd rd , where Cd is a constant such that
Cd =Cd−2

2π

d with C1 = 2 and C2 = π, resulting

rmax,d ' d

√
Ad

Cd N
. (3)
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3D 4D 5D 6D

Figure 4: Cross-sections of the high dimensional power
spectra for weighted sample elimination showing blue noise
characteristics. We reduce the power spectrum resolution
(and the sample count accordingly) in higher dimensions,
simply because the power spectrum computation time in-
creases exponentially with increasing dimension.

3.2. Weight Limiting

An approximate greedy algorithm cannot guarantee to pick
the subset with the largest Poisson disk radius, and the or-
der of elimination is important for selecting a subset with
a reasonably large radius. We found that weighted sample
elimination generates sets with a larger Poisson disk radius
when samples with many relatively close neighbors are re-
moved earlier than samples with fewer but very close neigh-
bors. We facilitate this using weight limiting to assign the
same wi j value to all pairs of samples with di j < 2rmin using

d̂i j =

{
min

(
di j,2rmax

)
, if di j > 2rmin

2rmin, if di j ≤ 2rmin
, (4)

where rmin is a fraction of rmax. The resulting Poisson disk
radius r of the final sample set improves with increasing rmin
until rmin gets close to r, at which point the output includes
pairs of adjacent samples, resulting in an extremely small
Poisson disk radius. Unfortunately, the largest possible r as
well as the optimal value of rmin depend on the sample po-
sitions in the input and there is no closed form solution for
accurately calculating them. However, it is possible to itera-
tively search for the optimal value of rmin for a given input
sample set by running the weighted sample elimination al-
gorithm multiple times on the same input samples with dif-
ferent rmin values. Such an algorithm can locate the optimal
rmin value with 1/2s precision in s steps. In our implemen-
tation, instead of searching for the optimal rmin value, we
opted to use a conservative estimate for rmin that we formu-
lated based on our experiments with different N, M, and rmin
values in different dimensions, such that

rmin = rmax

(
1−

(
N
M

)γ)
β , (5)

where β = 0.65 and γ = 1.5. In this formulation rmin is set to
zero when N = M, and rmin approaches βrmax as M/N goes
to infinity. We found that this formulation produces sets with
greater r values for any combination of N and M values.
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Figure 5: Radially averaged power spectrum of 1,000 sam-
ples generated with weighted sample elimination from vary-
ing input set size between 1,000 and 5,000 samples using
weight functions with and without weight limiting: (left) β =
0 and (right) β = 0.65.

4. Statistical Analysis

We use three metrics for statistical analysis: power spectrum
(as described by Schlömer and Deussen [SD11]), Poisson
disk radius ratio ρ = r/rmax, and the mean radius ratio ρ̂ =
r̂/rmax, where r̂ is the average half distance of each sample
to its closest neighbor. All values are the averages of 1000
tests and the power spectrum intensities are scaled by 2 for
better visualization

Figure 3 is a comparison between sample sets generated
using dart throwing and weighted sample elimination with
and without weight limiting (i.e. β = 0 and β = 0.65). The
power spectra show more pronounced blue noise charac-
teristics for weighted sample elimination as compared to
dart throwing with the same ρ threshold and the same sam-
ple count. Even though dart throwing uses the same ρ val-
ues, it produces about 2% smaller ρ̂ values as compared
to weighted sample elimination. This is an expected result,
since dart throwing has no mechanism to favor results with
larger ρ̂. Figure 3 also shows that the blue noise characteris-
tics are amplified with weight limiting in 2D.

Cross-sections of the high dimensional power spectra are
presented in Figure 4, showing clearly visible blue noise
characteristics in all dimensions.

The progression of the radially averaged power spectrum
with increasing input size (M/N) is shown in Figure 5. No-
tice that the power spectrum starts flat when N = M, show-
ing white noise, since no sample is eliminated in that case.
As M/N increases, the blue noise characteristics quickly
emerge and get more pronounced with increasing input size.

We show the typical ρ and ρ̂ values for different input set
size ratios (M/N) in Figure 6. Notice that our weight lim-
iting formulation with β = 0.65 makes a significant differ-
ence when M/N > 2. Increasing the input size ratio M/N
beyond 4 makes only a minor improvement on ρ and ρ̂ with-
out weight limiting (β = 0), while weight limiting logarith-
mically improves ρ and ρ̂ with increasing input size ratio in
2D.
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Figure 6: Average Poisson disk radius ratios (ρ) of 128 sam-
ples generated using weighted sample elimination in 2D for
different input set sizes (M/N).
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Figure 7: Mean radius ratios and Poisson disk radius ratios
of 128 samples generated using weighted sample elimination
in 2 to 10 dimensions for different input set sizes.

The progression of the ρ and ρ̂ with increasing input size
(M/N) in 2 to 10 dimensions is shown in Figure 7. Note that
ρ and ρ̂ values in high dimensions beyond 3D are computed
using the overestimated rmax values, which make them ap-
pear lower. In 3D and higher dimensions ρ and ρ̂ continue
to grow with increasing input size even without weight lim-
iting, but our weight limiting formulation in Equation 5 still
provides a moderate improvement.

5. Results

We experimented with weighted sample elimination using it
in various sampling problems. Figure 1 shows an example of
distributing samples over a surface in 3D, which is used for
placing fur roots as an example application.

16 to 64 unordered
samples

16 to 64 ordered
samples

64 samples

Figure 8: Progressive sampling for rendering using the
same Poisson disk sample set showing the importance of or-
dering.

5.1. Progressive Sampling

One of the most important properties of weighted sample
elimination is its ability to facilitate progressive sampling.
We achieve this by ordering the samples in the final set, such
that when the samples are introduced in this order, each sub-
set in the sequence exhibits blue noise characteristics. For
efficiently ordering the samples, we continue the elimination
process with target set sizes N/2k where k = 1,2,3... until
N/2k < 1, and we set the order of samples in the inverse or-
der of elimination by placing each eliminated sample to the
end of the current set.

An example rendering application using ray tracing with
progressive (adaptive) sampling is presented in Figure 8. A
set of 64 samples is generated in 6D as a union of three 2D
sets for antialiasing, depth of field, and soft shadows. Order-
ing the samples for progressive sampling allows us to adap-
tively adjust the number of rays generated per pixel, which
in turn makes it possible to render this scene approximately
twice as fast with a visually similar result as compared to
using all of the samples at each pixel. Notice that when the
samples are not ordered, the error estimation fails to accu-
rately predict when more samples are needed.

δ = 1×10−3
δ = 1×10−4

δ = 1×10−5

ρ = 26% ρ = 55% ρ = 66%

Figure 9: Power spectra of sample sets generated with pro-
gressively reducing the Poisson disk radius using ri+1 =
ri(1−δ) at each step i with three different δ parameters. The
power spectra and ρ values are computed for the full sample
sets, rather than the intermediate subsets in the sequences.
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n = 100 n = 200 n = 300 n = 400 n = 500 n = 600 n = 700 n = 800 n = 900 n = 1000

ρ = 65% ρ = 63% ρ = 62% ρ = 57% ρ = 64% ρ = 65% ρ = 66% ρ = 68% ρ = 68% ρ = 70%

Figure 10: A sequence of 2D sample sets generated using weighted sample elimination from a set of 3000 random samples.

32 64 128 256 512 1024 2048 4096
leaves leaves leaves leaves leaves leaves leaves leaves

Figure 11: A sequence of tree leaves placed on the surfaces of the branches using weighted sample elimination.

Generating sample sets by progressively reducing r em-
ployed in previous work [MF92, MREB12] is prone to sam-
pling bias as shown in Figure 9. Notice that depending
on how fast r is reduced, the resulting sample set either
gets poor blue noise characteristics or causes sampling bias,
caused by the shape of the sampling medium.

In comparison, Figure 10 shows frames from an example
sequence. Notice that the blue noise properties are preserved
throughout the sequence with reasonable Poisson radius ra-
tios ρ.

Weighted sample elimination enables progressive sam-
pling in all sampling domains and it is not limited to 2D
sampling problems. An example application is shown in Fig-
ure 11 that uses weighted sample elimination for progres-
sively distributing tree leaves on the surfaces of the branches.

5.2. Other Example Applications

An example importance sampling application is presented in
Figure 12 using an image as the density maps with rmax =
3rmax,2 and d̂i j = di j(3−2 Ii), where Ii is the density map in-
tensity at the position of sample i. Note that in this formula-
tion the boundary conditions between low-density and high-
density regions are handled automatically, since d̂i j is not
necessarily equal to d̂ ji. While this example clearly shows
that weighted sample elimination can be used for importance
sampling, it also demonstrates one of the shortcomings of
our approach. Since weighted sample elimination does not
introduce new samples, it cannot plug the holes that are ap-
parent in the input. Therefore, providing an input that is more

Uniform Random Random Density Jittered

in
pu

t
ou

tp
ut

Figure 12: Importance sampling example of 4,000 samples
selected using weighted sample elimination with β = 0 from
20,000 input samples generated using: (left) uniform ran-
dom distribution, (middle) random rejection sampling using
the target density map, and (right) jittered samples.

suitable for the desired output improves the quality of the se-
lected sample set.

Weighted sample elimination can also be used for gener-
ating different noise types by merely changing weight func-
tion. Figure 13 shows magenta noise generated using wi j =
2rmax/di j − 3 for di j ≤ 2rmax. This weight function pro-
duces negative values when 2rmax/3 < di j < 2rmax, thereby
favoring clusters of samples that are still separated by some
distance.

c© 2015 The Author(s)
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Figure 13: (left) 3,000 input random samples are used for
generating (middle) Magenta noise of 1,000 samples with
weighted sample elimination using a different weight func-
tion and (right) its average power spectrum.

5.3. Computation Time and Empirical Complexity

The average computation times of our single threaded appli-
cation for different dimensions are provided in Figure 14 and
Table 1. We present timing results from a single-threaded
CPU implementation. For higher efficiency with large sam-
ple sets in low dimensions parallel processing can be eas-
ily employed by splitting the sampling domain into tiles
[Wei08].

Notice that the timing results of weighted sample elim-
ination reflect the O(N logN) complexity in 2D and 3D.
In higher dimensions the empirical complexity increases
rapidly with increasing dimensions up to 10D, beyond which
there is only a minor increase in the empirical complexity.
This is due to the fact that the kd-tree representation does
not perform as efficiently in high dimensions and the ben-
efits of the kd-tree are almost completely lost beyond 10D.
Note that when no acceleration structure (such as a kd-tree)
is used, the theoretical complexity of weighted sample elimi-
nation becomes O(N2). Therefore, in extremely high dimen-
sions the empirical complexity of weighted sample elimina-
tion approaches O(N2), as expected.

For constant N, the computation times of weighted sam-
ple elimination increase linearly beyond 10D. This linear
increase appears simply because each additional dimen-
sion increases the data size linearly. Hence, weighted sam-
ple elimination is not affected at all by the “curse of di-
mensionality” aside from the inefficiencies of the accelera-
tion structure. Therefore, we can provide results from much
higher dimensions than reported by the previous methods
[GM09, EMP∗12], since their computation times increase
exponentially with increasing dimensions.

6. Discussion and Conclusion

We introduced a new approach for Poisson disk sample set
generation using sample elimination. We also presented a
greedy sample elimination algorithm that is easy to imple-
ment, computationally efficient, and general enough to han-
dle any sampling domain. This algorithm allows generating
sample sets in higher dimensions than previously reported,
and supports progressive sampling.
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Figure 14: Computation times of weighted sample elimi-
nation in milliseconds in different dimensions and N with
M = 3N.

The main drawback of weighted sample elimination, how-
ever, is that it cannot guarantee maximal coverage. There-
fore, it is not suitable for applications where maximal cover-
age is required. Nonetheless, when maximal coverage is not
necessary, weighted sample elimination is a good choice for
any sampling application due to its efficiency, implementa-
tion simplicity, and ability to handle any sampling domain.

Weighted sample elimination excels in three areas in par-
ticular as compared to previous methods:

1. It produces exactly as many samples as desired, which is
only possible with relaxation methods in previous work.

2. It is ideal for sampling in high dimensions, as it does not
suffer from the “curse of dimensionality” like prior meth-
ods and its memory consumption does not depend on the
number of dimensions (aside from the storage needed for
the input and output sample sets).

3. It can produce unbiased progressive sample sets starting
with a single sample in all sampling domains.

Prior methods that support surfaces in 3D by generating a
large number of initial random samples [BWWM10,CCS12,
YXSH13] can be considered sample elimination. However,
these methods do not permit directly controlling the output
size and they aim to mimic dart throwing. Therefore, they
require a significantly larger input set for producing the same
ρ as (with lower ρ̂ than) weighted sample elimination.

While we show that the statistical properties of weighted
sample elimination are superior to dart throwing, relaxation
methods can produce more pronounced blue noise charac-
teristics. Hence, a relaxation step could be employed to fur-
ther improve the sampling quality when the sampling do-
main permits relaxation.

Table 1: Samples per second with M = 3N.

N 2D 3D 4D 5D 6D 7D 8D
1K 100K 55K 23K 11K 5.9K 3.8K 3.3K
10K 91K 46K 16K 6.4K 2.7K 1.3K 590

100K 75K 38K 23K 4.4K 1.5K 560 230
1M 43K 21K 6.5K 2.1K 640 210 80

Timings using a single thread on an Intel Xeon X5690 @ 3.46 GHz.
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