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Fig. 1. Stages of our knittable garment modeling system: (a) We begin our interactive modeling process with an input polygonal mesh that
specifies the global shape of the model. (b) Using this polygonal mesh we produce a high-resolution stitch mesh, including shift-paths (green faces)
that form knittable spiral structures, splitting (yellow faces) and joining (blue faces) mismatched faces that connect them without seams, and
short-rows (red faces). Afterwards, we can either (c) generate the yarn curves from the stitch mesh and use a physically-based relaxation process to
produce the final yarn-level shape for rendering, or (d) knit the model using the knitting instructions generated from our knittable stitch mesh.

We introduce knittable stitch meshes for modeling complex 3D knit structures
that can be fabricated via knitting. We extend the concept of stitch mesh
modeling, which provides a powerful 3D design interface for knit structures
but lacks the ability to produce actually knittable models. Knittable stitch
meshes ensure that the final model can be knitted. Moreover, they include
novel representations for handling important shaping techniques that allow
modeling more complex knit structures than prior methods. In particular,
we introduce shift-paths that connect the yarn for neighboring rows, general
solutions for properly connecting pieces of knit fabric with mismatched
knitting directions without introducing seams, and a new structure for
representing short rows, a shaping technique for knitting that is crucial for
creating various 3D forms, within the stitch mesh modeling framework.
Our new 3D modeling interface allows for designing knittable structures
with complex surface shapes and topologies, and our knittable stitch mesh
structure contains all information needed for fabricating these shapes via
knitting. Furthermore, we present a scheduling algorithm for providing step-
by-step hand knitting instructions to a knitter, so that anyone who knows
how to knit can reproduce the complex models that can be designed using
our approach. We show a variety of 3D knit shapes and garment examples
designed and knitted using our system.
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1 INTRODUCTION
In computer graphics yarn-level simulations of cloth is known to
produce compelling animations [Cirio et al. 2015; Jiang et al. 2017;
Kaldor et al. 2008, 2010]. This is particularly important for knitted
cloth, as it often exhibits complex yarn-level deformations. The
challenging problem of designing yarn-level knitted cloth models
is solved by the stitch mesh modeling framework [Yuksel et al.
2012]. Stitch meshes provide a full 3D modeling interface for knits
with a collection of high-level and low-level modeling operations
that allow designing arbitrary knitting patterns, including complex
constructs like knitted cables. In fact, the stitch mesh modeling
framework, with its ability to model arbitrary 3D forms, is superior
to the modeling interfaces used in the textile industry.
Yet, stitch meshes do not produce knittable models (except for

flat swatches). This is partially because each row of stitches on a
stitch mesh form a closed yarn piece with no end points and knitting
direction inconsistencies of neighboring faces are ignored, resulting
in models that can be used for yarn-level simulation, but cannot be
produced via knitting operations. Furthermore, the original stitch
mesh representation does not support short-rows–a crucial 3D shap-
ing technique used heavily with most knit cloth. This severely limits
the 3D forms that can reliably modeled (and then simulated) us-
ing stitch meshes and precludes using the stitch mesh modeling
framework for fabrication purposes.

In this paper, we introduce knittable stitch meshes that can guaran-
tee that the designed final model is actually knittable. The technical
contributions in this paper include
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• Shift-Paths: a novel concept, which is extremely simple to
implement, for converting non-knittable tubular sections of
a stitch mesh into knittable helix form,
• Knittable Mismatched Directions: four different (including
two novel) types of mismatched knitting directions that are
needed for designing complex 3D forms and the correspond-
ing automated modifications to the stitch mesh structure for
ensuring that they are knittable,
• Short-Rows: a novel structure required for representing short-
rows within the stitch mesh modeling framework, and
• An algorithm for generating step-by-step knitting instruc-
tions from a given knittable stitch mesh.

Thus, we extend the concept of stitch mesh modeling for designing
more complex 3D models and for producing knittable structures
that can be fabricated via knitting. As long as the input mesh can
be completely labeled (using the labeling process of the stitch mesh
modeling framework [Yuksel et al. 2012]) and thus can be converted
to a stitch mesh, we guarantee that it can be converted to a knit-
table stitch mesh using our approach. To verify that our results are
knittable, we also developed a graphics interface for aiding a knitter
by providing step-by-step instructions. We present topologically
complex models knitted by following the knitting instructions using
this interface. An example model generated using our modeling
framework is shown in Fig. 1.
Our main goal in this paper has been solving the problems of

the stitch mesh modeling framework for representing realistic knit
structures and actually knittable models. We do not, however, con-
sider the physical limitations of knitting machines. Therefore, while
we guarantee that the resulting models are knittable, we do not
test whether the required sequence of knitting instructions can be
performed by a particular knitting machine.

2 BACKGROUND
Cut and sewn garments need to be converted to several, separate,
planar shapes which can then be sewn together to create amore com-
plex shape, a process which has beenmodeled in several ways [Carig-
nan et al. 1992; Decaudin et al. 2006; Luo and Yuen 2005; Mori and
Igarashi 2007; Robson et al. 2011; Turquin et al. 2007; Umetani et al.
2011; Volino and Magnenat-Thalmann 2005, 2012]. Knit structures,
however, are constructed by continuously looping yarn through
existing loops, creating stitches. There are only two basic types of
stitches: a knit stitch, made by pulling a new loop from the back
of an existing loop; and a purl stitch, made by pulling from the
front. Two or more loops can be combined together with a new
loop (stitch decrease) or new multiple loops created through one
existing loop (stitch increase). These techniques add 3D shape by
changing the length along the rows (i.e. the course direction) of the
material. Short-rows (additional partial rows in the middle of other
rows), meanwhile, add length along the knitting (wale) direction.
Therefore, shaping can be added to the structure as the material is
created, resulting in a single piece of material that can take various
arbitrary 3D shapes.

Much of the work involving cloth in computer graphics has been
aimed towards the simulation of woven cloth [Baraff and Witkin
1998; Bridson et al. 2002; Chu 2005; Goldenthal et al. 2007; Grinspun

et al. 2003; Volino et al. 2009], but there has been some work devoted
to modeling, simulating, and predicting knit structures [Cirio et al.
2015; Igarashi and Mitani 2010; Jiang et al. 2017; Kaldor et al. 2008,
2010; Nocent et al. 2001]. Some researchers have looked to knitting
machines to help define yarn loop behavior, but only support a
small subset of possible stitches [Duhovic and Bhattacharyya 2006;
Eberhardt et al. 2000; Meißner and Eberhardt 1998]. The textile
community has also attempted to model knit structures using spline
curves [Choi and Lo 2003, 2006; Demiroz and Dias 2000; Goktepe
and Harlock 2002; Renkens and Kyosev 2011] or by simplifying a
pattern using representative cells holding swatches of knit struc-
ture [Kurbak 2009; Kurbak and Alpyildiz 2008; Kurbak and Soydan
2009]. Generating yarn geometry can be similar to texture synthe-
sis [Heeger and Bergen 1995; Kwatra et al. 2003], and some methods
have attempted to use these algorithms for adding fine-level repeat-
ing geometry to high-level shapes [Cabral et al. 2009; Lai et al. 2010;
Zhou et al. 2006].

Others have attempted to construct a knitting pattern from some
surface input. Igarashi et al. [2008a; 2008b] presented an interesting
system that semi-automatically creates a knitting pattern from a
3D model by covering the surface with a winding strip and finding
areas where increases or decreases are needed. However, it requires
manual segmentation of a surface, does not include all shaping
techniques, and the resulting physical structures can be different
from what is expected. McCann et al. [2016] recognized the lack of
tools available to instruct knitting machines to create intricate and
seamless 3D surfaces. They presented a compiler which translated
simple shape primitives, such as tubes and sheets, into low-level
machine instructions and proposed a system of scheduling con-
struction of their patterns on a knitting machine. Their system is a
promising start for expanding the use of knitting by giving more
control over knitting machines and making the design process eas-
ier. Knitting manufacturers have commercial tools for developing
and constructing a pattern [Shima Seiki 2011; Stoll 2011]. However,
achieving a desired shape for common items that differs from their
few templates can be difficult. Others focus only on flat panels of
texture and color, only altering the appearance but not the shape of
a pattern [Soft Byte Ltd. 1999].
Yuksel et al. [2012] developed over 30 types of different stitch

mesh faces to abstract the yarn-level geometry, which allows the
designing of yarn-level knit cloth models without explicitly model-
ing yarn curves. Each face of a stitch mesh corresponds to a single
stitch including knit, purl, yarn over, increase, and decrease. Edges
are labeled as course or wale edges depending on whether they
are aligned with the course or wale knitting direction, respectively.
In general, stitch-mesh faces do not have to be quadrilaterals, but
each face must have exactly two wale edges for yarn entry and
exit. A stitch-mesh face with multiple courses edges along the top
or bottom of the face represents a single stitch that is connected
to multiple stitches on another row–a stitch increase or decrease.
Loose ends on wale edges are connected to another loose end on
a nearby wale edge. Stitch-mesh faces on the first row represent
cast-on stitches and those on the last row represent bind-off stitches.
Stitch meshes provide a powerful interface for designing 3D knit
structures. However, while the faces ensure that the structure is
topologically valid in that there will be no unraveling, they do not
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(a) Separate Rows (b) Helix Progression

Fig. 2. An example stitch mesh with (a) separate rows that lead to
separate yarn pieces per row with no end points and (b) helix progres-
sion that connects the rows and can be knit by a single yarn piece with
end points at the first and the last stitches of the helix.

guarantee knittability. This is partially because faces of a stitch mesh
on a tubular section of the model correspond to a yarn piece (form-
ing the represented stitches) with no end points. Furthermore, any
inconsistencies in knitting directions of neighboring faces, which
are unavoidable except for relatively simple models, are practically
ignored, forming tiny yarn pieces with no end points that cannot
be produced by knitting operations. Our goal in this paper is to
extend the types of knit structures that can be represented using
stitch meshes and make these structures knittable, so this approach
could be useful for fabrication purposes as well.
More recently, Popescu et al. [2017] presented a method that

automatically generates knitting patterns for non-developable sur-
faces, and Narayanan et al. [2018] and Wu et al. [2018] introduced
methods for converting 3D models into knit structures. The method
of Narayanan et al. [2018] relies on a user-defined flow field to pro-
duce machine-knittable models. This approach allows fabricating
complex 3D shapes via machine knitting, but it lacks a design inter-
face. The method of Wu et al. [2018] automatically generates stitch
meshes from a given input shape, but the resulting models are not
knittable.
As an example application, we present a graphics interface that

provides step-by-step knitting instructions to a knitter. This applica-
tion is similar in spirit to prior work on assisting manual construc-
tion, such as designing assembly instructions [Agrawala et al. 2003],
block assembly [Gupta et al. 2012], beadwork [Igarashi et al. 2012],
and wire crafts [Iarussi et al. 2015; Miguel et al. 2016].

3 KNITTABLE STITCH MESHES
Knittable stitch meshes extend the concept of stitch meshes for de-
signing actually knittable structures. This is achieved by removing
the nonrealistic assumptions of original stitch meshes and introduc-
ing fundamental shaping concepts. In particular, our knittable stitch
meshes incorporate novel concepts to the stitch mesh modeling
framework in three groups: shift-paths (Section 3.1), knittable mis-
matched directions (Section 3.2), and short-rows (Section 3.3). These
concepts are necessary for modeling general 3D knittable structures
(Section 3.4) and sufficient for making sure that the final outcome is
indeed knittable (Section 4).

(a) Full
shift path

(f) Partial
shift path

(b) Shift
left-up

(g) Shift
left-up
(relaxed)

(c) Shift
left-down

(h) Shift
left-down
(relaxed)

(d) Shift
right-up

(i) Shift
right-up
(relaxed)

(e) Shift
right-down

(j) Shift
right-down
(relaxed)

Fig. 3. Shift-path and the shift operation on a tubular stitch
mesh: (a) full shift-path, (b-e) four different shift operation options
that can be selected by the user, (f) an alternative shift-path that
partially covers the tube, and (g-j) stitch meshes after mesh-based
relaxation.

3.1 Shift-Paths
An important nonrealistic assumption of the original stitch meshes
is that the yarn piece for each row is handled separately. There-
fore, a row on a tubular part of a model corresponds to a closed
yarn curve with no end points (Fig. 2a). Instead, knit structures
are formed by following a helix progression, as shown in Fig. 2b.
However, this helix formation effectively converts multiple rows
into a single (helix-shaped) row, and introduces unnecessary com-
plexity to all stages of the modeling framework from labeling to
stitch mesh generation and editing. In fact, this complexity is even
avoided in real-world knitting instructions by defining each row sep-
arately. Therefore, an ideal solution must preserve the separate-row
representation, but form the helix structure only when needed.

We introduce the concept of shift-paths for slightly modifying the
stitch mesh structure to automatically construct a helix formation
at the very end of the modeling process. A shift-path merely marks
a set of connected wale edges at consecutive rows (Fig. 3a). The
structure of the stitch mesh remains unaltered until the end of the
modeling process, so all prior stitch mesh modeling methods can
be used without modification. Each wale edge along the shift-path
indicates where the row begins and ends, and where the last stitch
should be connected to the first stitch of the next row.

It is easy to automatically pick a set of wale edges as a shift-path
where needed, but since it impacts the shape of the final model,
we leave the choice of where to place the shift-paths to the user.
Once a shift-path is specified by the user, the stitch mesh can be
automatically converted to the helix progression via a shift operation
that alters the course edges on one side of the shift-path by sliding
them along the shift-path (similar to prior helix creation meth-
ods [Bommes et al. 2011]). These course edges can “shift” along the
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shift-path either up or down, effectively determining the knitting
(course) direction. Therefore, a shift-path can modify the stitch mesh
in four different options shown in Fig. 3. All four options produce
valid knittable structures and the choice merely determines the knit-
ting order. In our implementation one of the options is automatically
selected by default, but we allow the user to pick a different option.

Selecting a single wale edge is enough to identify an entire shift
path.1 If the chosen shift-path begins in the middle of an increase
stitch and/or end in the middle of a decrease stitch (as shown in
Fig. 3f), additional shift-paths are needed for handling the rows that
are not covered by the chosen shift-path.

Shift-paths can be specified automatically by repeatedly picking
an arbitrary wale edge (marking an entire shift-path) until all rows
are covered. However, since the shift-path choice determines the
knitting order and the knitting pattern along a shift-path is altered
(due to the shift operation), we leave this choice to the user.

With typical 2D knitting instructions, the beginning and ending
of each row is implicitly defined. Shift-paths are indeed a simple
modification to stitch meshes, but they are essential for marking
the row ends within a 3D modeling framework.

w
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w
al

e

course

course

w
al

e

w
al

e

course

course

shift-path

(a) (b)

Fig. 4. Stitch mesh rows with open ends: (a) without a shift-path
and (b) with a shift-path. The “<” or “>” symbol on a face indicates
the course direction for the face.

Note that shift-paths are needed for tubular parts of a model. If
a series of rows have open ends, knitting can be done by simply
moving to the next row and turning after reaching one end of a row
(Fig. 4). Shift-paths can be used for such rows as well, but they are
not needed to make them knittable. Thus, the original stitch meshes
provide knittable structures only when all rows of a model are open
and that there are no tubular pieces.

3.2 Knittable Mismatched Directions
Typically, the wale and course directions on neighboring faces of a
stitch mesh are aligned with each other. However, restricting that
the knitting directions of all faces would match their neighbors
would significantly limit the 3D shapes that can be modeled. Since
what makes stitch mesh modeling powerful is its ability to represent
complex 3D shapes, it is important to provide support for having
neighboring faces with mismatched knitting directions.

We support four types of mismatched directions shown in Fig. 5
that cover all possible cases that include two stitch mesh faces
with a common edge. The first two types are joining and splitting

1If the stitch mesh contains triangular faces, multiple wale edge selections might be
required for specifying the desired shift-path.

(a) Joining (b) Splitting (c) Expanding (d) Contracting
Perpendicular Perpendicular

Fig. 5. Four types ofmismatched directions, covering all possible
cases that involve two stitch mesh faces with a shared edge: (a) join-
ing, (b) splitting, (c) expanding perpendicular, and (d) contracting
perpendicular. Arrows indicate the wale direction.

mismatches (Fig. 5a-b), where two faces on consecutive rows sharing
a course edge disagree on the wale direction. We also introduce
two new types of perpendicular mismatched directions (Fig. 5c-d).
These take place when two neighboring faces disagree on the type
of the shared edge, which is treated as a wale edge for one and a
course edge for the other. We refer to an edge that separates two
faces with mismatched directions as a mismatched edge.

Joining Mismatched Directions. As shown in Fig 5a, joining mis-
matched directions happen when the wale directions of neighbor-
ing stitch mesh faces point towards the mismatched edge. Joining
mismatched directions are needed for handling certain types of
singularities, such as the example in Fig. 6a.
A common knitting technique for handling joining mismatched

directions is called three needle bind-off. The knitter uses two needles
to hold the two knitted pieces and a third needle to knit through two
stitches (one from each needle) at a time, combined with a bind-off
stitch. To represent three needle bind-off within the stitch mesh
modeling framework, we extrude the mismatched edges along the
inverse normal direction and form faces that are (locally) perpendic-
ular to knit surface (Fig. 6b). The new faces act like decrease type
stitches, each joining two loops connected to the faces on either
side of the extruded edge. A bind-off stitch is used to terminate the
knitting progression after joining (Fig. 6c). This extrusion is per-
formed automatically and it takes place at the very end of the stitch
mesh modeling process, right before generating the yarn curves or
knitting instructions.
Three needle bind-off can use a separate piece of yarn for the

extruded row to join two knitted pieces on either side (Fig. 6c).
Alternatively, it is possible to use the yarn of one of the two knitted
pieces instead. In this case, the loop on the second row is extended,
as shown in Fig. 6d. This alternative version not only avoids the
extra piece of yarn but also avoids introducing an extra row of
stitches used for joining the two pieces. In practice, both of these
alternatives are acceptable solutions with slightly different final
results, so we support both of them, leaving the choice to the user.

Splitting Mismatched Directions. Similar to joining mismatched
directions, with splitting mismatched directions (Fig. 5b) the wale
directions of neighboring stitch mesh faces point away from the
shared mismatched edges. Splitting mismatched directions appear
in similar cases as joining mismatched directions, but with inverted
wale directions (Fig. 7a). While the actual knitting operations needed
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(a) (b) (c) (d)
Fig. 6. Joining mismatch directions: (a) mismatched edges on one side of a valance 6 vertex between green and red faces, (b) the extruded row
of faces (shown in blue) with arrows showing the wale direction, (c) yarn curves using an extra piece of yarn (shown in blue) along the extruded
row, and (d) yarn curves using the yarn piece on one side of the mismatched edges. The arrows on the stitch mesh faces indicate the wale knitting
direction.

(a) (b) (c) (d)
Fig. 7. Splitting mismatch directions: (a) mismatched edges on one side of a valance 6 vertex between green and red faces, (b) the extruded
rows of faces (shown in blue) with arrows showing the wale direction, (c) yarn curves using an extra piece of yarn (shown in blue) along the
extruded rows, and (d) yarn curves using the yarn piece on one side of the mismatched edges. The arrows on the stitch mesh faces indicate the wale
knitting direction.

for handling splitting mismatched directions are different (i.e. three
needle bind-off cannot be used), we can handle them similarly in
the context of stitch mesh modeling. As in joining mismatched
directions, we extrude the mismatched edges along the inverse
normal direction to introduce additional faces. However, this time
we extrude two rows, as in Fig. 7b. Then, we can use an extra piece
of yarn for producing cast-on stitches (Fig. 7c). The stitches on
both sides of the mismatched edges are moved to the extruded row
and they are pulled through the same loops formed by the cast-on
stitches. This operation effectively connects the two rows on both
sides of the mismatched edges. Alternatively, one of the existing
yarn pieces can be used to form the cast-on stitches (Fig. 7d). This
effectively replaces the stitches on one side with the cast-on stitches
along the extruded rows and moves the stitches on the neighboring
row to the first extruded row.

Expanding Perpendicular Mismatched Directions. It is also possible
to connect two neighboring stitches that disagree on the type of the
common edge between them. As shown in Fig. 5c, expanding per-
pendicular mismatched directions happen when the wale direction
on one side of the mismatched edge is pointing away from the edge.
Fig. 8 shows two possible ways of handling such cases. The first one
(Fig. 8a) is done by pulling perpendicular loops though previously
knitted loops and the second one (Fig. 8b) corresponds to increase
stitches that are placed on a separate needle. Nonetheless, these two
stitch types are merely two example ways of handling expanding
perpendicular mismatched directions and one could imagine other
stitch types that could serve the same purpose.

(a) Expanding (b) Expanding (c) Contracting

Fig. 8. Expanding and contracting perpendicular mismatched direc-
tions and the corresponding yarn curves generated from the stitch
mesh. The mismatched edges are shown as blue lines. Arrows indicate
the wale direction.

Note that two stitches on consecutive rows on one side of the
mismatched edges are paired with slightly different yarn-level ge-
ometry. Yet, this does not require the number of stitches along
the mismatched edge to be even. When there is an odd number of
stitches, one end of the yarn is simply tied, forming a knot.

Contracting Perpendicular Mismatched Directions. The last possi-
bility, shown in Fig. 5d, appears when the wale direction on one side
of a mismatched edge is towards the edge. In this case, we simply
handle the stitch on the other side as a decrease type of stitch with
a minor modification that effectively treats the mismatched wale
edge as a course edge (Fig. 8c). In spite of the complexity of the yarn
geometry, this type of mismatched directions are relatively easy to
handle during knitting by simply moving stitches from one needle
to another and knitting them together to form a decrease stitch.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Knitting short-rows: (a) regular rows knit through all
stitches on the previous row, (b) short-rows begin with stopping knit-
ting before reaching the end of a row, then (c) reversing the course
direction and knitting stitches in the opposite direction, afterwards (d)
knitting direction is reversed again to finish a pair of short-rows, and
(e-f) knitting continues in the original direction. Arrows indicate the
course direction used for knitting the stitches below them.

3.3 Short-Rows
Short-rows are essential for shaping knit structures. Indeed, short-
rows are so commonly used in knitting that even some simpler
design tools for knitting support them [McCann et al. 2016], but
they are not supported by the original stitch meshes. A regular knit
row is formed by knitting through all of the stitches on a needle from
start to end (Fig. 9a). A short-row, however, uses only a subset of the
stitches on a needle. This is accomplished by stopping at a certain
stitch before reaching the end of the row (Fig. 9b) and starting to
knit in the opposite (course) direction (Fig. 9c). The stitches knit
in the opposite (course) direction form a short-row. After a desired
number of stitches are knit, another turn, changes the knitting
(course) direction back to its original. After the same number of
stitches are knit (Fig. 9d), two short-rows are completed. At this
point, knitting can continue towards the end of the row (Fig. 9e-f)
or additional pairs of short-rows can be added. Thus, short-rows
typically appear in pairs. Short-rows cause the knit surface to bend
by adding partial rows. A typical example of short-rows would be
the heels of knit socks that force the straight tubular shape of a sock
pattern to bend and make room for the heel.
For introducing short-rows to the stitch mesh modeling frame-

work, we introduce a new type of stitch mesh face that we call
a short-row face. Unlike typical stitch mesh faces that have two
wale edges separated by one or more course edges on either side, a
short-row face places the two wale edges together on a straight line,
forming a triangular shape with four (or more) edges, as shown in
Fig. 10a. Thus, a short-row face makes room for a pair of short rows
on one side. Therefore, it is often paired with another short-row
face marking the other ends of these short-rows (Fig. 10b).
We introduce two different types of short-row faces that corre-

spond to two different techniques for knitting short-rows. The first
type contains four edges and the corresponding yarn-level model
has the form in Fig. 10a. The other type of short-row face includes
five edges and forms yarn-level geometries in Fig. 10b. This second
type forms more stitches near the ends of the short-rows, thereby
avoiding large holes near short-row ends.

The fact that a short-row face spans two rows on one side causes
the neighboring stitches to deform significantly. Some amount of
deformation is expected near short-row ends and they are mini-
mized after mesh-based relaxation. However, prior to mesh-based

(a) (b) (c)

Fig. 10. Short-Rows:marked as red faces (a) beginning with a short-
row face marked as the blue face and (b) ending with another short-row
face. A short-row face can have four or five edges with different yarn-
level connections. We also support (c) short-row faces with more than
five edges that simply connect the yarn pieces of corresponding edges.
Arrows indicate the wale knitting direction.

Stitch Mesh Relaxed Stitch Mesh Yarn-level Model

Fig. 11. An example containing short-row faces with more than five
edges near joining mismatched directions, before and after mesh-based
relaxation and the final yarn-level model. Arrows on the stitch mesh
faces indicate the wale knitting direction.

relaxation, during stitch mesh editing, the extreme deformation
around short-row faces provides a poor representation of the knit
model. Therefore, we allow short-row faces to have more edges
than five, where the corresponding yarn pieces for the extra edges
are directly connected, as shown in Fig. 10c. During mesh-based
relaxation, we connect the corresponding vertices of the short-row
faces with zero-length springs that effectively collapse these extra
segments, as can be seen in Fig. 11.
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3.4 Modeling Framework
In our knittable stitch meshes we follow the original stitch mesh
modeling framework [Yuksel et al. 2012]. Yet, somemodifications are
required to accommodate the changes needed for handling knittable
stitch meshes.

These modifications begin with the labeling process, which is the
first step in stitch mesh modeling that allows the user to specify the
knitting directions on the input mesh faces. Labeling is typically
done by starting from one open end of the model. Simply clicking
on an edge along an open end automatically selects the neighboring
face without a label and labels an entire row of faces. However, the
input for knittable stitch meshes can contain triangles that would
eventually turn into ends of short-rows, so simply selecting an edge
does not always provide enough information for identifying a short-
row. To accommodate this, we allow the user to mark triangular
faces of the input mesh as short-row ends. Yet, depending on the
order of labeling, short-row ends can be detected automatically,
when all other faces surrounding a triangle are already labeled.

Labeling perpendicular mismatched directions also requires some
minor changes to the labeling process. It is possible to automati-
cally detect perpendicular mismatched directions when one side
of the mismatched edge can be labeled without considering the
mismatched directions, which is typically the case. When this is not
possible, mismatched edges can be marked by the user explicitly
or the labeling process can be done one face at a time, instead of
automatically labeling an entire row of faces.

Knittable stitch meshes support the same low-level and high-level
stitch mesh editing operations of the original stitch meshes, so no
modification is need to these operations. However, editing edges
along a shift-path may invalidate the shift-path, which must be
monitored during stitch mesh editing.
The mesh-based relaxation step also requires some minor mod-

ifications. First of all, the stretch and shear forces are computed
considering the modified mesh after the shift operation. This can
be done on-the-fly without actually modifying the topology of the
mesh, so that the user can change the location of the shift-path after
mesh-based relaxation (followed by another mesh-based relaxation
to get the final stitch mesh shape).
Second, mismatched edges along perpendicular mismatched di-

rections use the average rest length of wale edges and course edges,
since they are treated as course edges for one of their faces and wale
edges for the other.
Third, for handling short-row faces that contain more than five

edges, we introduce zero-length springs, so that pairs of these short-
row faces collapse after mesh-based relaxation, as shown in Fig. 11.
Finally, joining and splitting mismatched directions, which are

handled by extruding the mismatched edges perpendicularly, must
consider the impact of the extruded rows. Since these edges are
extruded right before generating yarn curves, these new faces do
not exist during mesh-based relaxation. Thus, we modify the rest
lengths of neighboring wale edges. If a joining mismatched direction
would use an extra piece of yarn, the rest lengths of the wale edges
that are connected to the mismatched course edges are extended (by
a factor of 1.5 in our implementation) to make room for the extra
row of stitches (Fig. 12a). If the yarn on one side would be used

(a) (b) (c) (d)
Fig. 12. Joining and splitting mismatched directions after
mesh-based relaxation and after yarn-level relaxation: (a) join-
ing mismatched directions using an extra (blue) yarn piece, (b) joining
mismatched directions using the green yarn piece, (c) splitting mis-
matched directions using an extra (blue) yarn piece, and (d) splitting
mismatched directions using the green yarn piece. Arrows indicate the
wale knitting direction.

for the extruded faces (Fig. 12b), the rest lengths of the wale edges
on that side are reduced (by a factor of 0.5 in our implementation).
In case of splitting mismatched directions with an extra piece of
yarn (Fig. 12c), the rest lengths of the wale edges on both sides
of the mismatched edges are reduced (by a factor of 0.5 in our
implementation). If one of the yarn pieces are used for the cast-on
stitches along the extruded row (Fig. 12d), the rest lengths of thewale
edges on the second row on that side are also reduced (by a factor of
0.5 in our implementation). Note that the purpose of the mesh-based
relaxation is to provide a rough approximation of the relaxed shape
and the final model is produced by yarn-level relaxation after the
yarn curves are generated. Therefore, the scaling factors we use for
the mesh-based relaxation do not have to be precise.

4 GENERATING KNITTING INSTRUCTIONS
Knittable stitch meshes provide a novel mechanism for representing
and modeling complex 3D knit structures. However, even though a
knittable stitch mesh includes all information needed for precisely
describing a knit structure, determining the sequence of knitting
instructions needed for fabricating the represented knit structure
can be highly complicated. Therefore, we describe a scheduling
algorithm that converts the information in a knittable stitch mesh
into step-by-step knitting instructions. This process also crucial for
verifying that the models we produce are indeed knittable.

4.1 Dependency and Knittability
Knitting begins with casting on, a term that refers to placing the
first stitches onto a needle. Only then can a second needle be used
to pull the next stitch through an existing one, an operation that
transfers the original loop from the first needle onto a new loop that
now exists on the second needle. Therefore, there is a strict order
dependency in knitting. A knitting project is completed and removed
from the needles by binding off. The bind-off stitches transfer loops
on the needle to a row neighboring stitch, closing all the open loops
except for one. A yarn end is pulled through this last stitch (as well
as the first stitch) to prevent unraveling.

In a knittable stitch mesh the knitting order dependency is simple:
each stitch depends on a neighboring stitch on the same row in the
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course

course

Fig. 13. An example of the special unknittable case, which in-
cludes two groups of joining mismatched directions. The dark faces
depend on the stitches on the opposing row. One piece of yarn is used
for knitting the top row and another yarn is used for knitting the
bottom row. The mismatched edges are colored according to the yarn
pieces that are to be used for knitting the stitches along the mismatched
directions. The first group of joining mismatched directions (on the
left side) use the yarn from the top row and the second group (on
the right side) uses the yarn from the bottom part. This case leads to
deadlock due to circular dependency, since the red stitches must be knit
before knitting the stitches for the first group of mismatched directions
and the green stitches must be knit before knitting the stitches for the
second group. Slightly modifying this model by either using the same
yarn for both groups of mismatched directions or using additional
pieces of yarn would avoid the deadlock case.

inverse course direction and it depends on all neighboring stitches
on the previous row (in the inverse wale direction). Extruded stitches
along joining mismatched directions depend on stitches on both
sides of the mismatched edges. Stitches on one side of expanding
perpendicular mismatched directions that treat the mismatched
edges as course edges depend on the stitches on the other side. Sim-
ilarly, stitches on one side of contracting perpendicular mismatched
directions that treat the mismatched edges as wale edges depend
on the stitch on the other side.
Note that the knittable stitch mesh structure is general enough

to represent unknittable models as well. Yet, given an arbitrary
knittable stitch mesh, it is easy to verify that the represented model
is knittable. Consider the dual graph of the knittable stitch mesh,
which replaces the stitch mesh faces with graph nodes and connects
the neighboring nodes with directed edges that follow one of the
two knitting directions (course or wale). If this dual graph has a
cycle, the model is not knittable, since a cycle would mean circular
dependency. If the dual graph has no cycle, we can conclude that
the model is knittable.

Nonetheless, our knittable stitch mesh modeling framework pro-
duces knittable models, so this verification is not needed in practice.
This is because the initial labeling step follows the dependency order.
There is only one exception that can lead to a unknittable model,
caused by the flexibility we provide on handling mismatched direc-
tions. Depending on the shift paths, a model may be unknittable if
it meets both of the two following conditions:

(1) If there are two or more separate groups of joining or splitting
mismatched directions on the same row.

(2) If extra pieces of yarn are not used for handling the mis-
matched directions, and one yarn is used for handling one
group of mismatched directions while the other yarn is used
for handling another group.

A simple example of this special case is shown in Fig. 13, and is
unknittable, because the specific way that themismatched directions
are handled in this case can cause circular dependency. Yet, it is easy
to avoid this special case. If there are multiple separate groups of
joining or splitting mismatched directions on the same row, we can
only permit using extra yarn pieces or the yarn on one side of the
mismatched edges for handling all mismatched directions on the
same row. Except for this special case, which is related to the extra
flexibility we provide to the user for selecting which yarn piece
should be used for handling joining/splitting mismatched directions,
input meshes that can be labeled always produce knittable models.

4.2 Identifying Separate Yarn Pieces
Before we start generating knitting instructions, we must identify
how many yarn pieces are needed for knitting the model and which
yarn piece should be used for knitting which stitch. Obviously,
the stitches on the same row are knit using the same yarn piece.
Stitches on consecutive rows can share the same yarn piece as well,
depending on the placement of the shift-paths and the row types. A
knittable stitch mesh can have three types of rows:

• Closed-rows that form complete loops with no ends,
• Open-rows that begin and end on either a border (marked
as a wale edge) or a perpendicular mismatched direction
boundary, and
• Short-rows that are placed between other rows.

Note that one end of a pair of short-rows can be on a border or a
perpendicular mismatched direction boundary.
Closed-rows form tubular pieces and neighboring closed-rows

are connected to each other via shift-paths. Therefore, closed-rows
along the same shift-path can be knit using the same yarn piece.
Consecutive open-rows that share wale edge borders can be knit
using the same yarn piece without needing a shift-path. Short-rows
that end on a border can be handled similarly. Short-rows between
closed-rows either connected to other rows via shift-paths passing
through them or they are knit using separate yarn pieces.
We can find the number of yarn pieces needed by counting the

number of separate shift-paths, separate groups of open-rows, short-
rows that are not connected to other rows, and joining/splitting
mismatched directions that use extra yarn pieces. Thus, stitch mesh
faces within the same group of rows that share a yarn piece are
assigned the same yarn index.
Then, we determine the first stitch for each yarn piece. For a

group of closed-rows, the first stitch corresponds to the stitch mesh
face on one side of the first edge along its shift-path (the side is
determined by the shift direction). The first stitch of a group of
open-rows that are not connected by a shift-path would be a stitch
on either end of the first row (the rows are ordered based on the
wale direction). Pairs of short-rows that are not connected to other
rows can be knit starting from either end of the first row. Separate
yarn pieces for joining or splitting mismatched directions can also
be knit starting from either end.
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ALGORITHM 1: Generate Knitting Instructions
Q ← list of first stitches for each yarn piece
while Q is not empty do

s ← the next ready stitch from Q
while true do

Generate knitting instructions for s .
Mark s as knitted.
sc ← the next stitch after s along the course direction
if sc exists then

s ← sc

else
sw ← the stitch after s on the next row in wale direction
if sw exists and yarn of sw = yarn of s then

s ← sc

else
Terminate the yarn piece
break

if s is not ready then
Enqueue s into Q .
break

4.3 Step-by-Step Knitting Instructions
Algorithm 1 shows how a knittable stitch mesh can be used for
generating step-by-step knitting instructions. We begin with plac-
ing the first stitch of each yarn piece in a queue. Then, we pick a
stitch that is ready to be knit from the queue. A stitch is considered
ready after all other stitches that it depends on are knitted. Initially,
only cast-on stitches can be considered ready, since they are not
connected to a stitch on a previous row. Knitting can begin with
any cast-on stitch in the queue.
We use the stitch type of the stitch mesh face to produce the

knitting instructions. The knitting instructions for a single stitch
mesh face can be as simple as a single knit or purl instruction or
it might consist of a series of instructions (as with increases and
decreases) and it might include complex instructions like combining
previously knit stitches from other needles.
We mark a stitch as knitted after it is knit and move to the next

stitch along the course direction. If there is no next stitch in the
course direction, we check the next stitch in the wale direction. If
there is no next stitch in the wale direction or if the next stitch in
the wale direction belongs to a different yarn piece, it means that
we have completed knitting all stitches of the current yarn piece.
After we move to a next stitch, we check if it is ready to be knit. If
it is ready, we repeat the same process; otherwise, we place it into
the queue.

Note that knitting can begin and continue with any stitch in the
queue that is ready. Therefore, for complex models, the implementa-
tion of the queue determines which parts of the model are knit first.
In our implementation we used a stack with First-In-Last-Out order.
When a stitch s is enqueued, we check its first dependent stitch t
and we move the stitch in the queue that uses the same yarn piece
as t to the top of the queue. This effectively prioritizes knitting one

Fig. 14. Our knitting interface: On the top-right corner the knit-
ting instruction code is displayed along with how many times the
instruction should be repeated. Below the instruction code a short
video-clip show how to perform the instruction. At the bottom-right
side the entire model is displayed, along with the previously knitted
part shaded in green and the stitches that correspond to the current
instructions shaded in red. The main view provides a yarn-level ren-
dering of the part of the model that is previously knit and the part
that is currently being knit.

part of a model before starting to knit the other parts, attempting
to reduce the number of needles needed during knitting.

5 IMPLEMENTATION AND RESULTS
Wehave tested our knittable stitchmeshmodeling framework in two
fronts: (1) generating complex yarn-level models containing short-
rows and various forms of mismatched directions, and (2) fabricating
models via assisted hand knitting.

5.1 Graphics Interface for Hand Knitting
We have developed a graphics interface that displays the step-by-
step knitting instructions to a knitter, shown in Fig. 14. At every step
our interface instructs the user to perform a series of knitting in-
structions. For simplification, short sets of knitting instructions that
are consecutively repeated are grouped together. In these cases, the
interface presents how many times the given knitting instructions
should be repeated.We have found this approach favorable to provid-
ing a single knitting instruction at a time. A 3D viewport shows the
previously knitted part of the model and the part that corresponds
to the current set of knitting instructions. We use the real-time
fiber-level cloth rendering method of Wu and Yuksel [2017a; 2017b]
to display the yarn-level model.
One difficulty with hand knitting is that it is easy to lose count.

A simple solution that is used in hand knitting is placing markers
between stitches on needles. If the knitter loses count, only counting
the stitches back to the last marker would be sufficient to identify
the current position. Therefore, our knitting interface includes mark-
ers as well. Our system instructs a user to place a marker when a
shift path is reached, right before the first stitch of a new row. The
user is also instructed to place markers before and after a group of
mismatched directions and the beginning and ending of short-rows.
Our system also keeps track of these markers and provides knitting
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Fig. 15. Knitted teapots with different numbers of stitches using different knittable stitch meshes generated from the same input mesh in Fig. 1.
They are all knitted using 6 separate yarn pieces and they contain 6.3K, 4.4K, and 2.6K stitches from left to right.

Fig. 16. Teapot models with different stitch mesh patterns.

(a) (b)

Fig. 17. The small teapot model (a) after yarn-level relaxation and
(b) after one frame of simulation with gravity.

instructions using them. For example, instead of instructing the
user to perform a set of instructions a certain number of times, we
can instruct the user to perform the instructions until a marker
is reached. We have found that this simple feature makes it much
easier to follow the knitting instructions in practice. We also permit
users to place markers after any groups of knitting instructions.
After a marker is placed by the user, upcoming knitting instructions
can use that marker.

5.2 Knitted Models
An example teapot model prepared using our system is shown in
Fig. 1. The input mesh model (Fig. 1a) is converted to a knittable
stitch mesh (Fig. 1b) with three shift paths; one group of joining,
two groups of splitting, and six groups of perpendicular mismatched
directions, and multiple short-rows. The simulated model (Fig. 1c) is
produced via yarn-level relaxation after generating the yarn curves
from the knittable stitch mesh. The knitted model (Fig. 1d) is fabri-
cated via hand knitting following the step-by-step knitting instruc-
tions provided by our knitting interface.
Fig. 15 shows three different teapot models generated from the

same input mesh with different levels of tessellations used for gen-
erating the knittable stitch meshes. Notice that higher levels of tes-
sellations lead to models with more stitches that can represent more

Fig. 18. Two bars intersecting: (left) knittable stitch mesh, (mid-
dle) simulated yarn-level model, and (right) final knitted model. The
model contains 1.5K stitches and it is knitted using 4 yarn pieces,
two of which are used for handling joining and splitting mismatched
directions.

details, but take longer to knit. Note that knittable stitch meshes
can be designed using any modeling operations of stitch meshes
(Fig. 16). The simulated models (Fig. 17a) are constrained to take the
shape of the stitch mesh model. We have noticed that removing the
shaping constraints and using one frame of yarn-level simulation
(Fig. 17b) produces shapes with similar features to the hand knitted
models that are stuffed with cotton.
We test our approach for handling different mismatched direc-

tions using simple models in Fig. 18 and Fig. 19. The model in Fig. 18
is knitted using two long yarn pieces along with two shorter yarn
pieces used for handling the joining and splitting mismatched direc-
tions. Expanding and contracting perpendicular directions appear
along the flat face of the model. The model in Fig. 19 shows two dif-
ferent ways of handling joining and splitting mismatched directions.
One of them uses extra pieces of yarn for handling all mismatched
directions and the other one avoids using extra yarn pieces, so the
entire model can be knit using only three yarn pieces.
For testing more challenging cases of topological connections

and short-rows, we have modeled and knitted some example letters
shown in Fig. 20. Most letters demonstrate how short-rows (red
faces) can be used for producing curved shapes, “R” and “A” include
sharp corners that can be generated using short-rows, and “R,” “P,”
and “H” show the importance of handling perpendicularmismatched
directions (yellow-green and blue-purple face pairs) for knitting
complex shapes. While these letters are relatively small knitting
projects, as compared to a larger model like a full-size sweater, they
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Fig. 19. Three bars intersecting: (left) knittable stitch meshes,
(middle) simulated yarn-level models, and (right) final knitted models,
showing joining and splitting mismatched directions handled (top row)
using four extra yarns pieces, two for cast-on stitches along splitting
mismatched directions and two for bind of stitches along joining mis-
matched directions in addition to the three yarn pieces needed for
knitting the rest of the model, and (bottom row) using one of the yarn
pieces near the mismatched edges, requiring only three yarn pieces for
knitting the entire model. Both models contain 2.1K stitches.

are excellent examples of complex shapes and topologies. In that
respect, they are more complex cases than typical garment models.

More traditional examples involving sweaters with different sizes
are shown in Fig. 21. These sweater models are simpler, since they
do not include any mismatched directions or short-rows, but they
include three shift-paths that correspond to three yarn pieces used
for knitting each sweater model. They were modeled using our
framework and knitted using the step-by-step instructions provided
by our knitting interface. The size differences of the final models
are due to the yarn types and needle sizes used for knitting them.

5.3 Performance
By far the slowest part of our pipeline is hand knitting. It can take
hours or days to knit a model, depending on the experience of the
knitter and the number of stitches needed to complete the model.
The second slowest component is yarn-level relaxation that is used
for generating the simulated models, which can also take hours,
depending on the complexity of the model (see the performance
results of Yuksel et al.[2012] for yarn-level relaxation times of dif-
ferent models). The rest of the operations we use can be handled
interactively, except for the mesh-based relaxation that take several
seconds to about a minute.

6 LIMITATIONS AND FUTURE DIRECTIONS
Knittable stitch meshes provide a powerful structure for represent-
ing and designing knittable models. While they are general and
able to incorporate a wide variety of knitting patterns and complex
shapes, they cannot represent everything that can be knit. For ex-
ample, multi-layer patterns that are used for knitting multi-color
designs cannot be represented using our formulation. With hand

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 20. Example letters: (a) knittable stitch mesh models, (b) knit-
ted models, (c) simulated models, (d-f) yarn-level simulation results
with gravity after removing the cast-on and bind-off stitches. Each
letter model contains between 2.5K and 2.9K stitches, except for “I,”
which has only 1K stitches. “G” is knitted using 3 yarn pieces; “R,” “A,”
and “P” need 4 yarn pieces; “H” contains 6 separate yarn pieces for
handling the joining and splitting mismatched directions, and “I,” “C,”
and “I” are knitted using a single piece of yarn.

knitting it is possible to pull a loop through any previously knitted
loop, not just the loops on a previous row, but such operations can-
not be represented with stitch meshes. Consequently, we cannot
represent models that are knit as separate pieces and then sewn
together. The knittable stitch mesh representation is limited to the
stitch types that can be abstracted using stitch mesh faces.

Our modeling framework relies on the topology of the input mesh.
This allows precisely designing the desired knit structure, but re-
quires the user to have some understanding of the knitting process.
Thus, our framework cannot convert any polygonal mesh into a
knittable stitch mesh. In particular, modeling the input meshes for
unusual models, such as the teapot model in Fig. 1, may require
many iterations to figure out how the model can be knit. However,
once the user determines how to knit a model and prepares the
input mesh, the knittable stitch mesh modeling framework allows
quickly designing the final model. Afterwards, the knitting instruc-
tions generated from the final model can be used by any knitter
to fabricate the model. Therefore, combining our framework with
an automated stitch mesh generation process for a given arbitrary
3D model would be an important direction for future research [Wu
et al. 2018].
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Stitch Mesh (Front) Stitch Mesh (Back)

Fig. 21. Sweaters designed using our system and knitted by following
the step-by-step instructions we generate using different yarn types
and needle sizes. All sweaters use the same knittable stitch mesh model
with 5.7K stitches and they are knitted using three separate yarn pieces.

The stitch mesh modeling framework allows defining knitting
instructions on a given 3D input model shape, but it does not guar-
antee that the final rest-shape of the knit model would align with
the shape of the input model. This is because the final shape of a
model depends on the knitting instructions and the knittable stitch
mesh modeling framework provides enough flexibility to design
knitting instructions that would contradict with the shape of the
input model. In fact, it is a challenging problem to determine the set
of knitting instructions that would produce a desired shape. Yet, a
simple analysis of the excessive stretching or compression of stitch
mesh faces after the mesh-based relaxation step often provides a
good indication of how well the knitting instructions agree with the
input model shape. Therefore, majority of the modeling iterations
can be done at the stitch mesh modeling phase, without having to
fabricate each iteration via knitting.

Yet, the same knitting instructions performed by different knitters
often produce somewhat different results. This is because the final
shape of a knit structure not only depends on the properties of the
yarn and the needles used, but also the forces applied during the
knitting process. Therefore, accurately predicting the final shape of a
model that would be produced by a particular knitter is a challenging
problem that our approach does not address.

Using machine knitting, as opposed to hand knitting, allows more
precisely controlling the forces used during the fabrication process.

While contemporary knitting machines are extremely powerful and
highly customizable, they also impose additional constraints on
the types of knit structures that they can produce. Even though it
is theoretically possible to generate machine knitting instructions
from a knittable stitch mesh, since we do not consider the limitations
of knitting machines, it is reasonable to expect that some knittable
stitch meshes may not be knit by existing knitting machines. A
knitting machine can perform knitting operations only on the yarn
loops that reside on its needles, so all yarn loops that will be used for
knitting stitches later must be kept on some needles. Therefore, the
scheduling of knitting operations and the placement of these yarn
loops on the needles must consider the physical constraints of the
machine and the model, as well as the tension that will be applied
on the yarn to prevent breaking the yarn. In particular, operations
like three needle bind-off can be challenging to perform using a
knitting machine, depending on the local complexity of the stitch
mesh model. Therefore, incorporating the limitations of knitting
machines into the knittable stitch mesh modeling framework would
be an interesting direction for future research.

7 CONCLUSION
We have presented knittable stitch meshes that extend the powerful
concept of stitch meshes into models that can be fabricated via knit-
ting. By introducing shift paths and properly handling mismatched
knitting directions, we can convert any stitch mesh into a knittable
structure. We have also introduced novel representations for han-
dling shaping techniques that allow designing knit structures with
unprecedented complexity. Finally, we have presented an algorithm
that generates step-by-step instructions from a given knittable stitch
mesh. We have shown a variety of example models with complex
topologies to demonstrate the effectiveness of our approach.
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