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ABSTRACT

Real-time Water Waves with Wave Particles. (August 2010)

Cem Yuksel, B.S.; M.S., Bogazici University, Turkey

Co–Chairs of Advisory Committee: Dr. John Keyser
Dr. Donald H. House

This dissertation describes the wave particles technique for simulating water

surface waves and two way fluid-object interactions for real-time applications, such

as video games.

Water exists in various different forms in our environment and it is important to

develop necessary technologies to be able to incorporate all these forms in real-time

virtual environments. Handling the behavior of large bodies of water, such as an

ocean, lake, or pool, has been computationally expensive with traditional techniques

even for offline graphics applications, because of the high resolution requirements of

these simulations.

A significant portion of water behavior for large bodies of water is the surface

wave phenomenon. This dissertation discusses how water surface waves can be simu-

lated efficiently and effectively at real-time frame rates using a simple particle system

that we call “wave particles.” This approach offers a simple, fast, and unconditionally

stable solution to wave simulation. Unlike traditional techniques that try to simulate

the water body (or its surface) as a whole with numerical techniques, wave particles

merely track the deviations of the surface due to waves forming an analytical solution.

This allows simulation of seemingly infinite water surfaces, like an open ocean.

Both the theory and implementation of wave particles are discussed in great

detail. Two-way interactions of floating objects with water is explained, including
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generation of waves due to object interaction and proper simulation of the effect

of water on the object motion. Timing studies show that the method is scalable,

allowing simulation of wave interaction with several hundreds of objects at real-time

rates.
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CHAPTER I

INTRODUCTION

In computer graphics, fluid simulation, particularly of water, is one of the major areas

of research focus. Simulating large bodies of water (such as seas, lakes, and pools)

has been especially important since they appear in various virtual environments and

it is difficult to achieve realism in such environments without proper simulation of

water behavior.

With improvements over the past decade, offline water simulation in computer graph-

ics has reached a remarkable level of realism. Existing techniques for offline simulation

are powerful enough to simulate a wide variety of fluid behavior and they can handle

simulations in large environments as long as sufficient computation power is provided.

Nowadays such simulations are commonly used in the visual effects and feature an-

imation industries. When simulating large bodies of water, however, effects artists

often employ ad-hoc techniques or unrealistically simplified methods whenever pos-

sible, since a full 3D fluid simulation can be too expensive to be used everywhere.

Moreover, full 3D fluid simulations are not easy to control and it may be very difficult,

if even possible, to drive the simulation towards an expected result. Therefore, one

This dissertation follows the style of ACM Transactions on Graphics.
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may have to run many simulations to achieve a single acceptable result that would

be close enough to the desired outcome. For these reasons, there is still room for

improvements in offline fluid simulations in computer graphics. In particular, better

distribution of computational resources to reduce simulation time while minimizing

the loss in visual quality is still an important area of research.

While offline simulations of water can produce stunning visuals, achieving a similar

level of realism at real-time frame rates remains an open challenge. This is because

real-time graphics applications have some additional challenges over offline graphics.

These challenges can be summarized as follows:

• Speed Requirements: The most obvious challenge is to make fluid simu-

lations fast enough so that the simulation can run at real-time frame rates.

While the definition of real-time frame rates varies (some researchers consider

15 fps real-time, others require at least 60 fps), for research purposes the ex-

act definition is often unimportant, since we expect any implementation to run

significantly faster on the new hardware that will come out within a few years.

However, it is important to note that in many environments water plays a

secondary role, so we cannot dedicate all our computational resources to the

simulation of water. In that sense, we not only need to satisfy the minimum

requirements of real-time frame rates, but also go beyond these requirements,

so that these simulations can be used in practical interactive applications.

• Stability Requirements: The need for stability of the simulation is more

pronounced in real-time environments compared to offline simulations. Offline

simulations in computer graphics are primarily used to generate a sequence of

images for a particular shot in a film, which is often a few seconds long and
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almost always much less than a minute. Therefore, the minimum expectation

from an offline simulation is that it should work properly at least once with

a certain set of parameters to produce the desired result. The parameters of

the simulation can be adjusted until the offline simulation produces acceptable

results. On the other hand, real-time simulations used in video games or other

interactive systems may run for hours, and these simulations are expected to be

stable for the entire time. Note that the stability requirement here is not simply

the stability of the software, but the stability of the underlying mathematical

and computational methods that are expected to produce visually acceptable

fluid behavior.

• User Interaction: User interaction is an inherent component of all real-time

graphics applications. The need for supporting arbitrary user interactions with

the simulation in real-time systems makes it particularly difficult to fine tune

the parameters of the simulation. Real-time simulations of water are expected

to work with a wide range of possible user interactions using predetermined

simulation parameters. On the other hand, offline scenarios are mostly fixed

for a particular shot and the parameters of the simulation can be adjusted

according to the desired water behavior for that shot, as opposed to having one

set of parameters for handling any possible interaction.

• Hardware Limitations: For many fluid simulations involving large bodies

of water, offline simulations can run on a large cluster of computers. Real-

time water simulations, however, are expected to run on an average PC or a

game console with limited memory and other computational resources. While

the parallel power of the graphics hardware provides significant acceleration

to all graphics related computation, hardware parallelism of a modern PC or
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a game console is not sufficient to provide the necessary computational power

to overcome the demands of realistic water simulations. Furthermore, in real

world applications, the computational resources that can be allocated to water

simulation alone is often only a small portion of the whole hardware system.

Therefore, expecting the same level of realism from a real-time implementation

of a computationally demanding simulation is simply not reasonable.

For all these reasons, achieving realistic real-time water simulations that would match

the quality of their offline counterparts remains (and perhaps will remain) an open

challenge. However, many researchers and graphics programmers have implemented

different techniques to enable better water simulations in real-time environments.

Such implementations mainly employ one or more of the following approaches:

• The simplest approach is to replace water simulation with some ad hoc math-

ematical formulation to animate a 3D surface such that the resulting motion

resembles water behavior. These techniques are extremely limited in terms of

the possible scenarios they can handle, and often fail to produce realistic results.

However, these techniques are still used to avoid the computational expense of

fluid simulations in various scenarios. While ad-hoc formulations can be ac-

ceptable for certain applications, such approaches alone cannot come close to

achieving the quality of offline simulations.

• Another common approach is to use the same water simulation techniques as for

offline graphics but with parameters chosen to reduce the computation require-

ments. Such approaches often generate low-resolution solutions with higher

error ratios than their offline counterparts. It is also possible to replace certain

steps of the water simulation with less accurate but more efficient alternatives.
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As expected, these simulations produce faster but significantly lower quality

results.

• Employing the parallel power of the graphics hardware is another approach.

With the new advancements in real-time graphics hardware, many researchers

and graphics programmers have modified existing offline fluid simulation tech-

niques such that they can be executed on the GPU. While very impressive

results can be achieved with this approach, the scenarios that can be simulated

in real-time frame rates are very limited. Furthermore, the parallelism provided

by modern GPUs can only account for a few orders of magnitude improvement

in the best case. Therefore, we cannot rely on the hardware parallelism that

is available on a modern PC or a game console alone to achieve desired perfor-

mance levels with high quality results.

• A promising alternative is to use precomputation, which is a technique com-

monly used for many other problems in real-time graphics. Precomputation

can be a very powerful tool when used in combination with other approaches to

replace computational requirements of certain tasks with additional memory re-

quirements. While such an approach has been investigated for fluid simulation

of gases and smoke, whether or not precomputed water simulation, where the

water surface needs to be represented, can be achieved using similar approaches

is an open question.

• Another alternative approach is to provide solutions for a subset of water be-

havior, rather than aiming for a complete solution that would cover all water

effects. Such methods can concentrate only on water waves, splashes, bubbles,

and various other water related natural phenomena. When needed, a more

complete solution can be achieved by combining a number of such algorithms.
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It is the premise of this dissertation that this latter approach of limiting the solution

domain of the simulation, is the key to achieving real-time results comparable to

offline fluid simulations. In real-time environments, a particular water simulation is

often employed to imitate a certain water behavior only. In that sense, a real-time

water simulation can be considered successful as long as it provides visually realistic

solutions to the desired behavior, and other water phenomena the simulation can offer

are irrelevant. Concentrating on only a subset of water behavior makes it possible to

introduce simpler physical models for water simulation that can be computed more

efficiently.

The wave particles technique described in this dissertation is an example of such an

approach, as it is designed to simulate only surface waves on large bodies of water.

Even though the water behavior that wave particles can simulate is limited to surface

waves, within its solution domain wave particles manage to produce high quality

results with very high computational efficiency. Therefore, the wave particles method

is ideal for simulating dynamic water waves in many real-time scenarios.

1.1. Motivation of Wave Particles

The main motivation behind the wave particles approach is to propose a water sim-

ulation technique that captures important visual components of a subset of water

behavior, while producing high quality visuals with very efficient computation within

its solution domain. The targeted water phenomenon is the wave behavior induced by

dynamic interaction of water with fixed or floating objects. In that sense, water-object

interaction is an inherent part of the wave particles approach.
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While existing full 3D fluid simulations are powerful enough to handle almost any

water behavior, their high computational requirements make them too expensive for

real-time applications. Especially when the task is to simulate large bodies of water,

full 3D simulations can be too expensive even for offline applications. Furthermore,

while it is possible to compute water-object interaction within some modern 3D fluid

simulators, doing so significantly increases the computational demands.

While examining water-object interaction with large bodies of water, one can observe

a number of visually important components of water behavior. These are splashes,

bubbles, foam, and waves. Another component that is often not visually apparent

is the 3D fluid flow and turbulence under the water surface. The first simplification

that can be introduced at this stage is ignoring water behavior that is not visually ap-

parent. In that sense, 3D fluid flow under the water surface, which is generally rather

expensive to compute, can be eliminated. One important advantage of introducing

such simplifications at an early stage of building the theoretical simulation model is

that the limitations introduced by this elimination become easy to identify. In this

case, we should not expect a method that ignores 3D fluid flow to properly handle

scenarios where the 3D fluid flow is a significant factor in driving visually identifiable

water behavior. An example of such a scenario would be simulating vortices formed

by a sinking ship. On the other hand, the method might be very good at representing

the persistent waves generated by the same event.

As for the visually apparent components, for the most part splashes, bubbles, and

foam are mainly the result of chaotic dynamics. For this reason, statistically derived

ad-hoc formulations used to emulate splashes, bubbles, and foam can produce rea-

sonable approximations to these phenomena. On the other hand, the wave behavior
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of water due to interaction with floating objects is not only visually significant, but

also generally predictable. For this reason, ad-hoc formulations that emulate wave

behavior often fail to produce visuals with acceptable realism. Therefore, the wave

behavior of water should be simulated properly to achieve high quality visuals.

If we are to consider surface waves only, we can build our simulation model based on

the wave equation, which is much simpler than the Navier-Stokes equations that for-

mulate general fluid behavior. Since the wave equation is a differential equation, the

first idea that comes to mind for solving the wave equation would be finite difference

techniques, which are commonly used in fluid simulations to solve other differential

equations, such as variants of the Navier-Stokes equations. However, the simplicity

of the wave equation makes it possible to envision simpler computational models to

estimate the result of the wave equation solution. The wave particles approach is one

such model.

To be able to construct such a model, we need to examine the wave equation closely.

After careful examination, one can see that the wave equation inherently formulates

a moving waveform. Therefore, the solution of the wave equation for water surface

waves can be approximated by moving deformations on the water surface. This is

exactly what wave particles aim to do.

1.2. Summary of Wave Particles

Based on the idea that a collection of moving waveforms provide a solution to the

wave equation, the wave particles technique uses a particle system to track the mo-
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tion of such waveforms. This simple particle system is composed of particles that

move on the flat water surface. Each particle is associated with a certain surface

deformation, and the total deformation caused by a collection of wave particles pro-

duces a waveform traveling over the water surface. Wave particles move on the water

surface, reflect from boundaries, and subdivide into smaller wave particles. While

a single wave particle on a flat water surface does not constitute a valid solution

to the wave equation, the collective behavior of wave particles provide an analytical

approximation to the wave equation.

Our careful formulation of wave particles permits considering each wave particle in-

dependently from all other wave particles that co-exist in the particle system. This is

a very important property of wave particles that distinguishes it from other particle

based water simulation approaches in computer graphics.

Since the behavior of each wave particle can be computed independently, the wave

particle system can be simulated very efficiently and can be parallelized very easily.

By employing the parallel computation power of modern GPUs, wave particles can

provide a fast simulation method for surface waves on large bodies of water. More

specifically, simulation speeds above 300 frames per second can be achieved with

interacting objects and complicated wave behavior.

Wave particles provide an approximate analytical solution to the wave equation rather

than a numerical solution. Therefore, the wave simulation with wave particles is un-

conditionally stable and it does not include any stability issues numerical approaches

suffer from. The properties of any wave particle, at any given time, can be computed

directly and accurately without the need for numerical iteration.
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In addition to computational efficiency and stability, wave particles also have other

important features that make them highly desirable for both offline and real-time

water simulations. Perhaps the most important additional contribution of wave par-

ticles is that they enable the simulation of wave behavior on extremely large bodies

of water. Since wave particles represent dynamic deformations due to dynamically

induced surface waves, as opposed to the water body itself, the volume of water is not

a limiting factor for wave particles. The performance of wave particles is determined

by the number of concurrent interactions with water that generate waves, but the size

of the water surface has no effect on the performance. This makes the wave particles

technique a desirable choice for simulating waves on an open ocean or a large pool.

Furthermore, wave particles permit high level control over the simulation result, which

is a very desirable property when the surface waves are expected to behave in a cer-

tain way for artistic reasons. Since the wave particles essentially form a 2D particle

system on a flat water surface, all one needs to do to modify the result of the simu-

lation is to move particles around or change their properties as desired. Unlike other

fluid simulation techniques, the properties of wave particles directly shape the water

surface. Therefore, it is very easy to predict the outcome of any modification to the

wave particle system.

1.3. Overview

This dissertation explains how the wave particles method can be used for real-time

water simulation with two-way object interactions using a simple 2D particle system.

After an overview of the related work in computer graphics and the theory of water
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waves discussed in Chapter II, we present the theory of the wave particles method

in Chapter III. Handling the interaction of water with dynamic objects in a wave

particle simulation system is discussed in Chapter IV. One important property of

wave particles is that it permits highly efficient implementation for a water simulation

system. The details of our implementation is provided in Chapter V. After presenting

our results in Chapter VI, we discuss advantages and limitations of the wave particles

method along with possible future extensions in Chapter VII.
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CHAPTER II

RELATED WORK ON WATER SIMULATION

There is a large body of work on simulating water and other fluids in computer

graphics. In this chapter we briefly overview some of these methods.

2.1. Explicit Surface Modeling

Early work on water simulation concentrated on directly modeling the water surface

and its animation due to surface waves. These methods are mostly based on trigono-

metric formulations, noise functions, or Fourier synthesis. One of the first attempts

for mathematically modeling the water surface was made by Schachter [1980], repre-

senting the water surface using narrow-band noise waveforms. Fournier and Reeves

[1986] used a simple parametric formulation of ocean waves that could produce break-

ing wave shapes. Another parametric model was proposed by Peachy [1986] for water

waves approaching a sloping beach. Ts’o and Barsky [1987] introduced wave tracing,

a method for tracing wave propagation directions. Using a Fourier synthesis method

based on an empirical spectrum model of real sea waves Mastin et al. [1987] gen-

erated water surfaces for ocean scenes. More recently, Schneider and Westermann

[2001] used graphics hardware for real-time simulation of waves using a noise func-

tion [Perlin and Hoffert 1989]. While these methods achieve realistic results, they are

not applicable for dynamic simulations of two-way interactions of water with floating
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objects.

The ocean wave simulation method in Tessendorf’s SIGGRAPH course notes [2001]

was also based on Fourier synthesis that depicts the behavior of real ocean waves. This

method is one of the most popular methods for simulating ambient ocean waves. For

handling interactions with the water waves and obstacles in waves, Tessendorf [2004]

proposed a simple convolution filter that simulates waves reflecting off of arbitrary

obstacles. This approach permitted fast computation of one-way interactions between

the water waves and obstacles in water.

2.2. Height Field Simulations

A height field is essentially a 2D image, each pixel of which keeps a floating point

value that determines the height of the water surface for the horizontal position that

corresponds to the pixel. Height field simulations of water are commonly used for

fast simulations of the water surface. Kass and Miller [1990] used finite differences

to solve simplified 2D shallow water equations over a dynamic height field. Chen

and Lobo [1995] used a pressure-defined height field arising from a 2D solution of

the Navier-Stokes equations. They proposed a way of handling two-way object to

fluid coupling; however, their implementation is limited to one-way coupling only.

Extending the approach of [Kass and Miller 1990], O’Brien and Hodgins [1995] added

a particle system to simulate splashing liquids. An interesting use of height field fluid

simulation was proposed by Baxter et al. [2004] for interactive watercolor painting.

Height field simulations provide a relatively fast way of simulation water as compared
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to full 3D water simulations. On the other hand, they are limited to height field

representations of the water surface, so they only handle the vertical motion of the

water surface. Furthermore, numerical simulations based on height fields are prone

to either instability or numerical dissipation, which introduces excessive damping to

the simulation.

2.3. Lagrangian Fluid Simulations

Lagrangian fluid simulations use 3D particle systems [Reeves 1983] for simulating flu-

ids. Miller and Pearce [1989] used a particle system for simulating deformable objects

and viscous fluids by applying interaction forces to nearby particle pairs. These forces

are strongly repellent when the two particles are too close to each other, and they

are weakly attractive when the particles are some distance apart. Terzopoulos et al.

[1989] proposed a method for simulating molecular dynamics for melting solids with

Lagrangian particles.

Müller et al. [2003] used the smoothed particle hydrodynamics (SPH) method [Lucy

1977; Monaghan 1977] that was introduced to computer graphics by Stam and Fi-

ume [1995] for simulating water. The SPH method models the fluid volume as a

collection of particles that interact with each other through hydrodynamic forces.

While the SPH method is very flexible and can be applied to simulating various fluid

related phenomena, it cannot enforce incompressibility; therefore, it is not ideal for

incompressible (or nearly incompressible) fluids like water. Premoze et al. [2003]

used the moving particle semi-implicit method [Koshizuka S. 1996] for introducing

incompressibility to particle based simulation of water. To achieve incompressibility
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with , Sin et al. [2009] proposed a Voronoi diagram based projection step for keeping

the velocity field divergence free. Recently, Solenthaler and Pajarola [2009] proposed

a predictive correction method for SPH that accounts for a large portion of incom-

pressibility, thereby allowing weakly compressible SPH simulations. An interesting

recent approach was proposed by Lenaerts et al. [2008] for simulating porous flow in

deformable solids with SPH.

Lagrangian methods can produce high frame rates when a relatively small number

of particles are used for simulating a relatively small volume of water. On the other

hand, for simulating relatively larger bodies of water, a large number of particles are

needed and computing the interactions among a large number of particles can be

computationally demanding. Adams et al. [2007] and Hong et al. [2008] proposed

adaptive models for reducing the number of particles with minimal quality loss. These

models merge neighboring particles inside the fluid volume to reduce the number of

particles, and split the particles wherever more detail is needed.

2.4. Eulerian Fluid Simulations

There is a large body of work on Eulerian grid-based solutions to fluid simulations

in computer graphics. These methods offer a numerical solution to the Navier-Stokes

equations that define the fundamentals of fluid motion. Eulerian methods offer some

form of spatial discretization or partitioning of the computation volume into a col-

lection of cells. Using this discretization, the fluid velocity is computed at discrete

locations in this space based on the Navier-Stokes equations and this velocity field

is used for advecting the fluid volume at each time step. Accurate numerical so-
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lutions to the Navier-Stokes equations appear in computational fluid dynamics. In

computer graphics, accuracy is often less important than computational efficiency;

therefore, Eulerian fluid simulations in computer graphics concentrate on efficient and

approximate solutions to the Navier-Stokes equations. Nonetheless, even these highly

simplified solutions to the Navier-Stokes equations are computationally demanding.

Eulerian fluid simulations were first introduced to computer graphics by Foster and

Metaxas [1996]. In this method they included a one-way water-object interaction by

advecting the floating objects using the fluid velocity. Foster and Metaxas [1997] also

proposed a method for controlling water animation within an Eulerian simulation.

The seminal work in this area was the stable fluids method [Stam 1999] that enabled a

relatively efficient and unconditionally stable solution to the Navier-Stokes equations

using semi-Lagrangian advection. Most Eulerian fluid simulation methods proposed

afterwards use some variation of the stable fluids approach. Unfortunately, the sta-

bility and efficiency of the stable fluids method also leads to excessive dissipation,

resulting in highly damped simulations.

Foster and Fedkiw [2001] proposed a similar Eulerian simulation technique that per-

mitted moving objects to properly affect the fluid simulation. Enright et al. [2002]

introduced the particle level set method that uses massless tracking particles for de-

forming an implicit representation of the water surface. Extending the particle level

set method, Losasso et al. [2006] developed a representation for simulating multiple

interacting liquids. Selle et al. [Selle et al. 2005] proposed a vortex particle method

for reintroducing small scale detail lost due to numerical dissipation. Zhu and Bridson

[2005] developed a hybrid Eulerian-Lagrangian method for simulating sand as fluid.
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Researchers also proposed methods for reducing the number of cells to accelerate

the Eulerian fluid simulations. Losasso et al. [2004] proposed an octree structure

for using smaller cells only when needed, thereby reducing the total number of cells

for achieving the same level of detail. Houston et al. [2006] proposed an Eulerian

simulation with run length encoding to reduce the memory footprint of the compu-

tation. Irving et al. [2006] presented a technique for simulating large bodies of water

with object to fluid coupling using the combination of a Navier-Stokes based fluid

solver and a height field formulation. This structure produced tall grid cells to reduce

the computational requirements for simulating large bodies of water with Eulerian

methods. In addition to these grid-based discretizations of the computation volume,

tetrahedral meshes have been used for fluid simulation of gases [Feldman et al. 2005;

Klingner et al. 2006] as well as liquids [Chentanez et al. 2007].

One-way fluid to object coupling is used by many researchers is in the form of bound-

ary conditions to the Navier-Stokes equations [Foster and Metaxas 1996; Foster and

Metaxas 1997; Fedkiw et al. 2001; Enright et al. 2002]. A number of researchers pro-

posed different methods for handling two-way interactions between water and objects.

Takahashi et al. [2002] developed an impulse based collision system for simulating

two-way interactions between rigid objects and the fluid surface. Fedkiw [2002] pro-

posed the ghost fluid method to couple deformable solids with compressible fluids,

and Takashi et al. [2003] proposed the immersed boundary method for coupling de-

formable solids with incompressible fluids. Genévaux et al. [2003] also proposed a

method for allowing deformable solids to interact with fluids using fluid marker parti-

cles, which are attached to nearby solids via springs. The rigid fluid method proposed

by Carlson et al. [2004] handled two-way interactions between rigid objects and fluids

by advecting rigid objects as fluids and maintaining the rigidity of interacting objects
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by constraining the velocity of the cells that are inside the rigid objects. Guendelman

et al. [2005] proposed a method for handling two-way interactions of thin shells and

liquids, which prevents leaking of the liquid through the thin shell. Another method

for simulating two-way interactions of thin shells and fluids is proposed by Robinson-

Mosher et al. [2008], which resolves the stability issues of [Guendelman et al. 2005]

in a more general framework. More accurate tangential fluid flow near fluid-object

boundaries is computed by Robinson-Mosher et al. [2009] by decoupling normal and

tangential fluid velocities and constraining the normal velocity. Eulerian fluid sim-

ulations with tetrahedral meshes are also used for two-way interactions of fluid and

rigid bodies [Klingner et al. 2006; Batty et al. 2007] as well as deformable objects

[Chentanez et al. 2006].

While the Eulerian simulations of water can produce impressive results, these methods

are generally too computationally intensive for most real-time simulations. Real-time

implementations of such techniques can only handle limited simulation volumes with

limited simulation resolution and limited accuracy.

2.5. Real-time Fluid Simulations

There are also methods specifically targeted for real-time graphics applications. Jensen

and Goiáš [2001] used grid based Eulerian methods to model deep ocean waves, in-

cluding the effect of fluid on objects, but their computation of the effect of objects on

the fluid involves numerical differencing and the addition of artificial damping, so we

expect it to be highly sensitive to parameter tuning. Hagen et al. [2005] simulated

nonlinear shallow-water waves on the GPU and achieved up to 30 times speed up as
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compared to a CPU implementation. Kim et al. [2006] used the GPU to compute

buoyant forces on arbitrary models, achieving one-way fluid on object interactions in

real-time. They achieved 16 frames per second with 50 floating objects.

A CPU implementation of an Eulerian Navier-Stokes solver [Stam 1999] can easily

achieve real-time frame rates for low resolution 2D simulations. The GPU imple-

mentations of Eulerian fluid simulation techniques can achieve about two orders of

magnitude speed up, typically using less accurate advection schemes. Harris [2004]

demonstrated how a 2D simulation of Navier-Stokes equations for incompressible flow

can be implemented on the GPU. Crane et al. [2007] presented a full 3D simulation

of water on the GPU, achieving around 120-180 frames per second at a grid resolution

of 64× 64× 128 on a GeForce 8800 GTX graphics hardware. Cords [2007] proposed

a method for separating water surface simulation into two components: one of them

simulates low-frequency fluid flow using a 3D fluid solver, while the other component

simulates high frequency surface waves using a 2D height field simulation of surface

waves. In this method, the low-resolution 3D simulation efficiently produces a rough

water motion and the details of the water surface are introduced by the 2D wave

simulation.

Lately, Lagrangian simulations of water has been popular for real-time applications.

Following the SPH approach of Müller et al. [2003] for interactive applications, Clavet

et al. [2005] implemented a Lagrangian simulation of viscoelastic fluids and achieved

interactive frame rates. Using the parallel computation power of the modern GPUs,

high frame rates can be achieved with Lagrangian fluid simulations [NVIDIA 2010].

One very interesting approach for real-time simulation of fluids is the model reduction
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method of Treuille et al. [2006]. This method precomputes a large collection of

Eulerian fluid simulations. Then, the solutions of all these simulations are projected

onto a low-dimensional solution space using PCA. At run time the simulation works

on this low-dimensional space and projects the solution to the desired resolution. This

permits high resolution simulations of fluids at real-time frame rates. On the down

side, the precomputation time of this method can be extremely long. Furthermore, it

can only handle simulation scenarios that are “trained in” and can be represented by

the low-dimensional model. Moreover, this method is developed for simulating gases,

so it is questionable whether there is a way to develop a similar technique for liquid

simulations as well.
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CHAPTER III

WATER SIMULATION WITH WAVE PARTICLES

In this chapter we explain the wave particles technique for handling larger bodies of

water in real-time virtual environments, which was first published in [Yuksel et al.

2007]. Before going into the details of the wave particles method, we will talk about

the motivation behind this technique through a visual and technical analysis. These

are presented in the next two sections and detailed explanations of wave particles are

provided in the subsequent sections.

3.1. Visual Analysis of Large Bodies of Water

The aim of visual analysis is to observe the behavior of larger bodies of water and iden-

tify the visually significant components. Visual analysis is the first step of building

an efficient technique for handling large bodies of water in real-time virtual environ-

ments. While it might be possible to develop a method to handle all water related

phenomena, such comprehensive solutions would be complicated and inefficient. Since

computational efficiency is of prime importance for any technique that is targeted for

real-time graphics applications, it may be preferable to limit the scope of the wa-

ter related phenomena that a method can depict to make it more efficient. Visual

analysis helps us understand how the complicated overall behavior can be separated

into various components and which of these components deserve more attention than
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others.

Visually examining the behavior of large bodies of water, one can easily identify

various distinct components. The ones we consider here are the following:

• Splashes

• Bubbles

• Foam

• Surface deformations

Of these four components, surface deformations have been the most difficult to ad-

equately handle in real-time applications. While splashes, bubbles, and foam are

chaotic in nature, and thus lend themselves to representation by techniques with

stochastic formulations, surface deformations require more deterministic and com-

putationally expensive methods. Furthermore, the most noticeable and recognizable

large scale behavior of large bodies of water is due to surface deformation in one form

or another. Therefore, it is important to have efficient algorithms to properly handle

surface deformations.

Most surface deformations on large bodies of water are due to surface waves. In

fact, all other deformations are highly unstable and they quite rapidly evolve into

surface waves. Surface waves, however, are highly stable and they can travel very

long distances if their amplitudes are high enough. Therefore, it is important to

simulate surface waves for handling large bodies of water.

In a real-time virtual environment, surface waves can be classified into two groups:
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ambient waves and interaction waves. Ambient waves are waves that exist in the

environment, such as ocean waves in an ocean scene or subtle motion of water in

a still pool. These waves are generally wind induced. Regardless of their actual

source, ambient waves can be treated as the natural rest state of the system, and

they can be properly modeled by statistical formulations and even precomputed. On

the other hand, interactive waves are induced by locally applied ourside forces, such

as those due to the interaction of water with floating objects. These are the waves

that need to be simulated in real-time, since in an interactive environment these are

often generated by direct or indirect user interaction, so that precomputation is not

possible. The wave particles method described in this section aims to simulate these

interactive waves only.

3.2. The Wave Equation

The wave particles method provides a discrete analytical solution to the wave equa-

tion. Before we begin a discussion of the details of wave particles, it is important to

analyze and understand the wave equation itself. For a transverse wave, the wave

equation can be written as

∇2Z =
1

υ2
∂2Z

∂t2
, (3.1)

where Z(x, t) is the wave height at position x = (x, y) and time t, and υ is the

constant wave propagation speed for the medium. According to this equation, the

second spatial derivative of the function Z is directly proportional to the second time

derivative of Z by a constant factor determined by the wave propagation speed υ. In

other words, this equation means that the change of Z in time can be determined by

the shape of the function Z.
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Furthermore, it can be easily shown that the wave equation permits wave superposi-

tion. Let Z1 and Z2 be two functions that satisfy the wave equation above. Then, the

superposition Z3 of these two functions, such that Z3 = Z1+Z2, also satisfies the wave

equation. This means that different groups of waves can be simulated independently,

and the final result can be obtained as the superposition of all groups. We will use

this superposition property for completely separating ambient waves from interactive

waves, and the final result of the simulation will be the superposition of these two

groups of waves.

A differential equation in this form can be easily solved using one of several numerical

integration techniques. However, our aim is to provide an analytical solution, which

calls for a better understanding of the wave equation. In the following two subsections

we first discuss the wave equation in 1D, and then we discuss the wave equation in

2D, which corresponds to surface waves in 3D.

3.2.1. 1D Wave Equation

A transverse wave in 2D is essentially a 1D wave, since the other dimension is used for

the wave amplitude. Figure 3.1 shows a 1D wave on the x− z plane that is centered

at point x0 at time t0 with amplitude a and moving in the positive x direction. In

this case the wave equation 3.1 can be written as

∂2Z

∂x2
=

1

υ2
∂2Z

∂t2
. (3.2)

By closely examining this equation, it is easy to see that any waveform function Z

with a constant shape and moving in either the positive or negative x direction with
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Figure 3.1. A 1D transverse wave in 2D.

constant speed υ is a solution to this equation. The general solution to this function

is in the form

Z(x, t) = F (x− υt) +G(x+ υt) , (3.3)

where F and G are two traveling functions1 with constant speed υ in negative and

positive x directions respectively. Note that F and G themselves can in turn be the

linear sums of other functions travelling with the same velocity as F and G. This

means that any traveling function with any shape is a solution to the wave equation,

as well as linear combinations of such functions.

3.2.2. 2D Wave Equation

In 3D, water surface waves propagate on the 2D x− y plane and the wave equation

takes the form

∂2Z

∂x2
+
∂2Z

∂y2
=

1

υ2
∂2Z

∂t2
. (3.4)

1A traveling function is any arbitrary function f1 of position x and time t such that
it can be written in the form f1(x, t) = f2(x + υt), where f2(x) has a constant value
for all x.
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This extra dimension over 1D waves makes the wave propagation significantly more

complicated. Unlike 1D waves that could only propagate in two distinct directions,

surface waves can propagate in an infinite number of directions on the water surface.

Surface waves can not only travel in an infinite number of directions, but also can be

expanding and contracting. Thus, surface waves can form much more complicated and

perhaps more interesting functions as compared to the traveling constant waveforms

of 1D waves.

Wave particles are essentially used for tracking wave propagation on the 2D water

surface as a discrete solution to the wave equation. The following sections provide a

detailed explanation of the wave particles technique.

3.3. Representing Waves with Particles

The wave particles method uses a particle system for representing the dynamic devi-

ation of the water surface. Each wave particle is assigned a local deviation function

D that determines the deviation of the water surface around the wave particle. For

transverse waves we can represent the wave height function Z as the sum of all local

deviation functions, such that

Z(x, t) = z0 + ηz(x, t) , and (3.5)

ηz(x, t) =
∑
i

Di(x, t) , (3.6)

where z0 is the rest height of the water surface when there are no waves, ηz is the

deviation caused by waves, andDi is the deviation represented by the ith wave particle.

The position and propagation direction of the wave particle, along with a number of
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other wave particle properties, define the shape and behavior of its corresponding

local deviation function. This formulation converts the wave simulation to a simple

2D particle system. Note that the motion of the surface deviation caused by each

individual Di does not have to satisfy the wave equation on its own; however, the

wave height function Z should be a valid solution to the wave equation.

For the sake of simplicity we begin explaining wave particles in 2D and then we discuss

how this 2D definition can be extended to 3D.

3.4. Wave Particles in 2D

In two dimensions (one dimension plus height), we formulate the local deviation

function such that it corresponds to a finite wave form traveling with constant speed

υ, thus satisfying the wave equation. Letting ai be the amplitude, W a constant

waveform function and xi(t) the particle’s position at time t, the local deviation

function for particle i is

Di(x, t) = ai W ( x− xi(t) ) . (3.7)

Figure 3.2. (a) Shape of waveform function, (b) Continuous waves constructed from

local deviation functions, (c) Grouping waves
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As we discussed earlier, satisfying the wave equation in 2D is not difficult at all;

any constant waveform that travels with constant speed (i.e. xi(t) = xi(0) + υt)

satisfies Equation 3.2. Therefore, the choice for the waveform function is somewhat

arbitrary. However, some functions can be more beneficial than others in terms of

implementation and easily producing natural looking waves. The natural choice for

the waveform function is sinusoidal, giving a shape similar to the vertical deviation

of most water surface waves. Therefore, we use

Wi(u) =
1

2

(
cos

(
2πu

li

)
+ 1

)
Π

(
u

li

)
, (3.8)

where li is the wavelength and Π is a rectangle function2. Besides shape, there are

several other reasons behind the choice of this particular waveform function (Fig-

ure 3.2a):

• It is non-zero only in a finite range with the first derivative becoming zero at

the endpoints. Thus C1 continuity is maintained when waveforms are summed.

• It is very easy to create continuous waves with wavelength li by placing a number

of local deviation functions with positive and negative amplitudes that are li

distance apart (Figure 3.2b).

• Wave shapes with higher wavelengths can be approximated by grouping these

local deviation functions as in Figure 3.2c. This property will be especially

important when defining radial wave particles in Section 3.7.

• Finally, this waveform function will be useful when it comes to inducing the

circular motion of the water surface, as discussed in section 3.10.

2Rectangle function Π(x) is 1 for |x| < 1
2
, 1

2
for |x| = 1

2
, and 0 otherwise.
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In 2D, wave particles form a 1D particle system. Each particle moves with constant

speed υ toward the positive or negative x direction. The length li, amplitude ai, and

position xi of the wave particle i defines the deviation of the surface Di caused by the

wave particle. The sum of all deviation caused by all wave particles in the system

defines the final shape of the surface curve.

3.5. Wave Particles in 3D

(a)

(b)

Figure 3.3. (a) Individual wave particles (b) Wavefront formed by these wave particles

In 3D, we have waves traveling on a 2D surface. Unfortunately, the wave behavior

of surface waves is not as simple as for 1D waves. In three dimensions, water surface

waves take the form of continuous wavefronts. These wavefronts can take rather

complicated shapes depending on the propagation of a wave. Therefore, instead of

formulating our local deviation functions to represent a whole wavefront, we model

wavefronts by placing local deviation functions (wave particles) side by side as shown



30

in Figure 3.3. In this form a single local deviation function alone does not satisfy

the wave equation, but that a collection of local deviation functions can be used to

produce a wavefront that satisfies the wave equation.

For the sake of simplicity, we begin our description of wave particles in 3D by assuming

that the wavefront is linear. Then, we discuss how this formulation can be extended

to curved wavefronts.

3.5.1. Linear Wavefronts

On a linear wavefront we would like the shape of the deviation functions in the wave

propagation direction to be the same as for the 2D case defined in Equation 3.8 for

the reasons explained above. However, we need to convert this 1D function to a 2D

function to be able to represent surface waves. We achieve this using a tensor product

of two functions: the function in the direction of motion is the waveform function in

Equation 3.8 and the perpendicular function is the blending function that is used for

blending neighboring wave particles of a wavefront, such that the wavefront can be

properly represented. As a result, the deviation function of a wave particle can be

written as

Di(x, t) = ai Wi(u) Bi(v) , (3.9)

where u = ûi · (x − xi) and v = û⊥i · (x − xi) are the local coordinates of the local

deviation function such that ûi is the propagation direction and û⊥i is a horizontal

direction perpendicular to propagation, and Bi is the blending function. Note that the

choice of blending function is somewhat arbitrary: any function that has finite support

and whose translates sum to one is acceptable, yielding local deviation functions that
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are non-zero only over a finite quadrilateral area determined by the non-zero extents

of Wi and Bi.

In this formulation wave particles provide a discrete approximation to the continuous

wavefront. Each wave particle carries a number of properties that define the position

and the shape of its deviation function. The collection of all wave particles form a

2D particle system that travels on the planar water surface. Just like water surface

waves, wave particles do not interact with each other, and their speed is determined

by the water medium. The superposition of all wave particles (i.e. local deviation

functions) gives the total deviation of the water surface.

3.5.2. Expanding and Contracting Wavefronts

Wavefronts on a surface do not have to be linear. In fact, most wavefronts have a

curved shape and they either expand or contract depending on the direction of wave

propagation. Simple examples of expanding and contracting waves represented with

wave particles are shown in Figure 3.4. It is very important to be able to handle these

cases properly. One way to represent this behavior using wave particles is to bend

the local u-v coordinates of the deviation functions to give the wave particle a curved

(a) (b)

Figure 3.4. (a) Contracting wavefront, (b) Expanding wavefront
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shape, effectively warping the quadrilaterals (Figure 3.5a) over the non-zero domain

(Figure 3.5b).

(a) (b)

Figure 3.5. (a) Wave particle, (b) Warped wave particle

As one would expect, the width of an expanding wave particle increases in time.

Similarly, the width of a contracting wave particle decreases as the particle moves. A

contracting wave particle eventually turns into an expanding wave particle when its

width passes zero and the wave particle effectively “flips over.” Note that the width

property of a wave particle merely defines the distance between the centers of the

two sides of the wave particle, so an expanding or contracting wave particle (with

non-parallel sides) that has a zero width still has non-zero base area. Therefore, the

amplitude does not become infinite when the width is zero.

To keep wave particles simple, we assume that the part of a wavefront curve that

corresponds to a single wave particle has constant curvature. With this assumption,

the bending of the wave particle on an expanding or contracting wavefront can be

represented by a single curvature value. However, curvature is not a good choice

for representing this bending, since the curvature of the wave particle changes as the
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wave particle propagates. Instead, we represent an expanding or contracting the wave

particle with an angular property that we call the dispersion angle. This property

does not change with wave particle propagation.

Dispersion angle is the angle between the two side edges of a curved wave particle.

The dispersion angle of the wave particle is shown in Figure 3.6 as α.

Figure 3.6. Wave particle dispersion angle α and wave particle origin O.

Furthermore, the width of a wave particle w changes as the wave particle propagates;

thus, it is expanding or contracting. However, we would like to be able to represent

the wave particle width in terms of constant parameters. For that we use wave particle

origin.

The Wave Particle Origin is defined as the intersection point of the two lines aligned

with the two sides of an expanding or contracting wave particle. The wave particle

origin does not change as the wave particle propagates, because the side edge of an

expanding or contracting wave particle moves along the same line. The wave particle

origin also intersects with the line that is defined by the wave particle position and

the propagation direction. When the wave particle is expanding, the wave particle
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origin is behind the object; and when it is contracting, the wave particle origin is in

front of the object.

We denote the distance between the wave particle position (center) and its origin

as `. Note that this distance increases with constant speed υ as an expanding wave

particle propagates.

A curved wave particle is bent along the arc defined by its origin O, dispersion angle

α, and the distance `; and its length along this arc is defined by the wave particle

width w. The relationship between the curvature κ of the wave particle and wave

particle properties can be written as

κ =
1

`
=
α

w
. (3.10)

The position of the wave particle x can also be represented as x = O + `û, where û

is the direction of the wave particle. In Chapter V we discuss how these properties

can be used for building a highly efficient wave particle system.

While an expanding wave particle is propagating, its amplitude decreases and its

width increases linearly according to its dispersion angle. Amplitude may also be

decreased to account for energy loss due to viscosity or other damping. On the other

hand, the amplitude of a contracting wave particle increases while its width decreases

in time. Since contracting wave particles turn into expanding wave particles when

their width reaches zero, the amplitudes of all wave particles eventually decrease to

near zero.

When the amplitude of a wave particle falls below a certain threshold, its effect on the
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total deviation can be ignored and the wave particle can be removed from the system

by killing the wave particle. Note that damping in this system is optional. Even

with no damping, the amplitude of each wave particle decreases if the represented

wavefront is expanding, and finally falls below the threshold. However, damping can

be introduced to simulate fluids with different viscosities. Damping causes a wave

particle to loose energy, which effectively reduces its amplitude in addition to the

reduction caused by the expansion of the wave particle.

3.6. Diffraction and a Valid Solution to the Wave Equation

Diffraction is a well known wave behavior that is an inherent part of the wave equation.

Figure 3.7 shows the diffraction of water waves going through a wide and a narrow

slit.

Figure 3.7. Diffraction of water waves going through wide and narrow slit.

In the case of simulating water waves with wave particles, the narrow slit (along with

the two walls on either side) separates the wave particle that goes through the slit
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from its neighbors on the wavefront. As a result, the wave particle must change its

dispersion angle to immediately respond to this change. Otherwise, the wave equation

is not satisfied.

This shows a rather extreme case of a wave particle’s dependency on its neighbors

on the same wavefront. Note that a wave particle alone is not a valid solution to

the wave equation and it needs two identical neighbors on either side to be able to

form a valid solution locally around it. If the two neighbors are not identical, The

solution is locally incorrect, since the wave propagation direction dictated by the wave

equation does not align with the propagation direction of the wave particle. When

a wavefront diffracts such that only a small portion of the wavefront passes through

a slit, the wave particles on either side of that small portion would not have two

identical neighbors each; therefore, the simulation would not produce a valid solution

to the wave equation.

Diffraction is not the only thing that may violate the condition that each wave particle

must have two identical wave particles on either side on the wavefront. Whenever one

or both of these wave particles are missing or have a different amplitude than the wave

particle, the wave particle needs to respond by changing its properties accordingly to

be able to produce a valid solution to the wave equation. We refer to this behavior as

the diffraction effect, even though it does not have to correspond to a full diffraction

behavior.

Handling the diffraction effect properly requires that each wave particle tracks the

behavior of its neighbors and changes its properties accordingly to make sure that a

valid solution to the wave equation can be produced. Unfortunately, this breaks our
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initial desire to make each wave particle as independent as possible. Therefore, we

choose to ignore the diffraction effect by assuming that each wave particle always has

two identical neighbors on either side of it. The solution produced by wave particles

is valid as long as this assumption holds. As we will see in the following sections and

chapters, in many scenarios this is a reasonable assumption and wave particles can

produce a plausible solution without the need for modeling the diffraction effect. We

will discuss possible ways of extending the wave particles system to include diffraction

in Chapter VII

3.7. Radial Definition of Wave Particles

We can further simplify the wave particle system using a radial definition for wave

particles that approximates the shape of a wavefront. First, notice that Equation 3.8

can also be used as the blending function Bi in Equation 3.9. For radial wave par-

ticles, we use a radial definition for Di rather than the tensor product definition in

Equation 3.9, formulating our radial local deviation functions as

DR
i (x, t) =

ai
2

(
cos

(
π|x− xi(t)|

ri

)
+ 1

)
Π

(
|x− xi(t)|

2 ri

)
, (3.11)

where ri is the radius of the wave particle.

This radial definition makes the wave particle system even simpler. For example,

we do not need to worry about bending the wave particle to be able to represent

expanding or contracting wavefronts. On the other hand, unlike the generalized

definition of wave particles given in the previous section, radial wave particle cannot

exactly represent any wavefront. The wavefront produced by placing radial wave
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particles side by side can only provide an approximation.

According to our error analysis the maximum difference between the height of the

wave crest for a linear wavefront and its representation with evenly spaced radial

wave particles is less than 0.8% of the wave amplitude, and the maximum difference

between the shape of the wave and its wave particle representation is less than 7.1%

of the wave amplitude, as long as the distance between two neighboring wave particles

is less than or equal to half of the wave particle radius. We provide the details of

our error analysis in Appendix A. Based on this analysis the error introduced by the

radial definition by bounding the distances between the neighboring wave particles

on a wavefront to half of the wave particle radius.

Using this radial formulation of wave particles we cannot handle expanding and con-

tracting waves by simply changing the width parameter as above, since here ri defines

both length and width of the wave particle. On the other hand, handling expanding

waves is actually simpler with this radial definition. First, note that in the wave par-

ticle system each wave particle represents a certain packet of wave energy. If there is

no damping in the system, the energy of a wave particle must be preserved. Since the

radial definition of wave particles does not permit altering the wave particle width

independent from its length, we must keep the width constant. If the width of a

wave particle remains constant (i.e. constant base area), its amplitude must also be

constant for preserving energy. This means that the deviation function of a wave

particle preserves its shape and it merely travels with the wave particle. Yet, we

know that if a wavefront is expanding, the amplitude of the wavefront must decrease

due to energy preservation. With radial wave particles this happens automatically.

As the wavefront expands, the distances between neighboring wave particles on the
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wavefront increase. As a result, the total amplitude of the wavefront decreases, even

though each wave particle preserves its amplitude. Therefore, we can completely for-

get about adjusting the wave amplitude as the wave expands, since it is automatically

taken care of with the radial definition of wave particles. Yet, we need to make sure

that the distances between neighboring wave particles are always smaller than half

of a wave particle radius, so that the representation error on the wavefront can be

bounded. The next section explains the wave particle subdivision procedure, which

bounds the distances between neighboring wave particles.

3.8. Subdivision

On an expanding wavefront the distances between neighboring wave particles increase

as the wavefront travels. This not only reduces the spatial sampling resolution of the

wavefront, but also produces problems with the radial definition of wave particles.

Figure 3.8 shows an example expanding wave and what happens after the wave parti-

cles travel some distance. As can be seen in this example, using the radial definition

of wave particles does not allow the shape of the wavefront to be properly represented

when the distances between neighboring wave particles on a wavefront increase arbi-

trarily. Also, we need to make sure that the distance between two neighboring wave

particles on a wavefront is always less than half of a wave particle radius, so that we

can bound the error introduced by the radial definition of wave particles. The wave

particle subdivision procedure helps us achieve this goal.

Wave particle subdivision occurs when the distance between two neighboring wave

particles on a wavefront becomes larger than half of the wave particle radius. To
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(a) (b)

(c) (d)

Figure 3.8. An expanding wavefront represented by radial wave particles with no sub-

division. (a) and (b) are the initial positions of the wave particles and

the wavefront they form, respectively. (c) and (d) are the positions of the

wave particles and the wavefront shape they represent after wave particles

travel some distance.

reduce the distance between the two wave particles, we simply introduce new wave

particles in between these two wave particles. The new wave particles take their

energy (i.e. amplitude) directly from the existing wave particles; thereby reducing

the amplitudes of the existing wave particles. As a result, the overall amplitude of

the wavefront remains unchanged.

To be able to build an efficient particle system that can be simulated as fast as

possible, it is important to keep each wave particle independent. Therefore, we define

the wave particle subdivision procedure such that each particle can subdivide on its

own without having to coordinate with the neighboring wave particles on the same

wavefront.
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As we mentioned earlier, one of the properties that each wave particle carries is the

dispersion angle. In the generalized formulation of wave particles the dispersion angle

is a measure of curvature and it tells us how the width of the wave particle should

change as the wave particle travels. In the radial formulation of wave particles the

dispersion angle tells us when to subdivide the wave particles.

Figure 3.9. Calculation of the distance between two neighboring wave particles of a

wavefront that share the same dispersion angle.

We assume that the dispersion angle of the wave particle that is subject to subdivision

is the same as the dispersion angles of the neighboring wave particles on either side of

the wave particle. When the two neighboring wave particles have the same dispersion

angle, they are exactly on the same circular arc and their origin is the same point.

Moreover, the angle between the two wave particles is equal to the dispersion angle

of the wave particles as shown in Figure 3.9. Using this assumption, if we know the

distances between the neighboring wave particles at a previous time step, we can

compute the distance at any given time using the dispersion angle property. Let the

angular distance between the two wave particles be d0 at time t0. The distances of

both particles to the point O at time t0 is `0. Assuming that α is small, the distance

between the two wave particles can be approximated with the length of the arc that

connects the two wave particles. Using this notation we can write the dispersion angle
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as

α =
d0
`0

=
dt
`t

=
dt

`0 + υ(t− t0)
. (3.12)

By rearranging the terms of the equation above we can write the angular distance

between the two wave particles dt at time t as

dt = d0 + α υ (t− t0) . (3.13)

Using this equation we can tell exactly when the distance between the wave particles

dt will be greater than half of the wave particle radius ri. When dt >
ri
2

for the wave

particle i, all we need to do is to add new wave particles between this one and its

neighbors.

The simplest solution would be adding a wave particle in the middle of two subdi-

viding wave particles and adjust the amplitudes of the subdividing wave particles

accordingly. However, this means that we need to subdivide the two neighboring par-

ticles concurrently, which makes the two wave particles computationally dependent

on each other. As stated earlier, we would like each wave particle to be completely

independent. Therefore, instead of inserting a single wave particle in between the

two wave particles, we insert two new wave particles. Each one of the two new wave

particles comes from one of the subdividing wave particles making the subdivision of

the two wave particles computationally independent.

Since in the wave particle system we assume that each wave particle has two identical

neighbors on either side, when a wave particle subdivides it generates two new wave

particles on either side as shown in Figure 3.10. Note that the subdividing wave parti-

cle is not removed. These new wave particles are placed dt
3

away from the subdividing
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Figure 3.10. Calculation of the distance between two neighboring wave particles of a

wavefront that share the same dispersion angle.

wave particle. The amplitudes of the subdivided wave particle and the two new wave

particles become one third of the amplitude the wave particle before the subdivision.

Similarly, the dispersion angles of the subdivided and new wave particles become one

third of the dispersion angle before the subdivision. Finally, the angle between the

directions of the new wave particles and the subdividing wave particle is one third of

the dispersion angle before the subdivision.

Using this subdivision procedure each wave particle subdivides independently and

the shape of the wavefront is automatically preserved. The only assumptions we use

to achieve this are that the dispersion angle of a wave particle is the same as its

neighbors’ and that the neighboring two wave particles are the same distance away

from the wave particle. Note that regardless of initial conditions, after a wave particle
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goes through one subdivision operation these assumptions are precisely correct for the

subdivided wave particle that is at the center.

3.9. Boundary Behavior

Boundaries are the edges of the container that holds the simulated water. Wave

particles bounce back from the boundaries to simulate reflecting waves.

If the boundary that a wave particle is reflecting off of is linear, the reflection op-

eration only changes the propagation direction of the wave particle, exactly like a

mirror reflection. When a wavefront composed of multiple wave particles hits a linear

boundary, each wave particle gets reflected one by one as it hits the boundary and

the wave propagation continues with the updated wave particle directions.

Figure 3.11. Reflection of a wave particle from a curved boundary.

When the boundary is curved, this reflection becomes more complicated, since the

reflection operation also changes the dispersion angle of the wave particle based on
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the curvature of the boundary. Figure 3.11 shows an example wave particle reflecting

off of a curved boundary. In this figure O is the origin of the wave particle and ` is

the distance of the wave particle to the origin when the particle hits the boundary.

The width of the wave particle w at the hit position can be written as w = α `, where

α is the dispersion angle before the reflection. After the reflection the origin of the

wave particle O′ becomes the mirror reflection of the origin before the reflection O.

Note that in case of a reflection from a curved boundary, the wave particle origin after

the reflection can be on either side of the boundary depending on the curvature (i.e.

the focal point) of the boundary and the position of the wave particle origin before

reflection. Since the width of the wave particle immediately before and immediately

after reflection are the same, the dispersion angle of the wave particle after reflection

is

α′ =
w

` ′ = α
`

` ′ . (3.14)

This formulation of wave particle reflection is valid both when the shape of the con-

tainer holding the water (i.e. pool) is convex or concave. However, if the container

is concave, there is no guarantee that the line segment that connects two arbitrary

points within the boundaries will not intersect the boundary. As a result, while a

wavefront propagates, it is possible that only a portion of a particular wavefront gets

reflected by a part of the boundaries, while the rest of the wavefront does not hit the

boundary and continues to propagate without changing. If a portion of a wavefront

gets reflected, the wavefront is effectively divided into two wavefronts. At the sepa-

ration point of these two wavefronts the assumptions about the wave particle system

are no longer valid. Since each wave particle requires two neighboring wave particles

on either side to form a valid solution to the wave equation, if one of the neighboring

wave particles gets reflected and moves away, the result is no longer a solution to the
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wave equation. In reality, if a portion of a wavefront is reflected, the wave equation

is satisfied by wave diffraction. However, since we do not include the diffraction ef-

fect in our formulation, we cannot allow wavefronts to be partially reflected off of a

boundary.

If the edges of the container that holds the simulated wave volume form a convex

curved boundary that is smooth everywhere, we do not need to handle diffraction to

properly handle wave reflection. However, if the convex boundary has at least one

sharp corner, the same problem can arise. Consider a wavefront moving towards a

sharp corner. A part of the wavefront will reflect off of the boundary on one side

of the corner and move in one direction, while the other part of the wavefront will

reflect off of the boundary on the other side and move in a different direction. As a

result, the wavefront will separate into two disconnected pieces. Therefore, the result

will not be a valid solution to the wave equation.

One special case is a boundary corner making a right angle. Consider a wave particle

moving towards the corner. Just after the wave particle hits the boundary on one side

of the corner, it will hit the boundary on the other side. This will effectively invert the

initial wave particle direction, no matter which side of the corner the wave particle

hits firsts. Therefore, a corner with a right angle will not separate a wavefront and

introduce discontinuity to the solution. As a result, a container with a rectangular

boundary can be handled without the need for diffraction.

However, for all other boundary shapes, simulating diffraction is needed. Otherwise,

the end result of the simulation may not be a valid solution to the wave equation.

On the other hand, wave particles are ideal for scenes where there are virtually no
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boundaries, such as open ocean scenes. When there are no boundaries, there is no

wave particle reflection; therefore, there is no need to worry about diffraction for

handling partially reflected wavefronts. In that sense, open ocean scenes are the

easiest scenarios for the wave particles method. Contrary to the common perception

of water simulation techniques, open ocean scenes do not have higher computational

demands with wave particles. They indeed require less computation, since wave

particle reflection is eliminated.

3.10. The Circular Motion of Water Waves

Until now, we have considered only transverse waves that move the water surface up

and down in vertical direction. However, it has been known for centuries that water

waves are composed of both transverse and longitudinal waves [Gerstner 1802]. The

transverse component accounts for the vertical motion of the water surface, while the

longitudinal component refers to the horizontal motion due to waves.

transverse waves longitudinal waves

water waves

Figure 3.12. Transverse and longitudinal components of water waves
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Figure 3.12 illustrates the transverse and longitudinal components of water waves.

The transverse and the longitudinal components that form water surface waves have

a constant phase relationship with each other. They not only co-exist, but are also

aligned. This figure illustrates how the peak positions of the transverse component

(wave crest) are aligned with the position where the water particles are closest due to

the longitudinal component. This is why water waves can travel without translation

of considerable water volume. As the water particles come together due to the longi-

tudinal component, the water level rises, keeping the density constant while forming

the transverse component.

As a result of these transverse and longitudinal components of water waves, the water

particles near the surface of the water undergo circular motion as a wave passes by.

The radius of this circular motion is the largest on the water surface and this radius

exponentially decreases deeper into the water volume. Figure 3.13 shows this circular

motion of water as presented in Gerstner’s illustrations [Gerstner 1802].

When simulating water waves, it is important to properly account for both the trans-

verse and the longitudinal components of the surface wave motion. In computer

graphics, it is possible to come across wave simulation techniques and implementa-

tions that completely ignore the longitudinal component of water waves, resulting

in rather unrealistic wave behavior. A few important reasons why the longitudinal

component should not be ignored are the following:

• The longitudinal component is necessary for giving water waves a realistic shape.

Is is a common misconception that water waves have a sinusoidal shape. In fact,

due to the longitudinal wave motion, the wave crest takes a sharper shape, while
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Figure 3.13. Isopressure lines showing the circular motion of water due to surface

waves.

the wave trough expands horizontally and becomes smoother.

• The superposition of waves looks rather unnatural when the longitudinal com-

ponent is ignored. Consider two wave crests traveling towards each other as

in Figure 3.14. When the two waves collide, the superposition affects both the

transverse and the longitudinal components. As a result, when the two waves

collide, not only does the vertical amplitude of the surface deviation become

the sum of the two waves, but the resulting wave crest becomes sharper than

either one of the original waves because of the longitudinal superposition. If

the longitudinal component is ignored, the superposition takes the shape of the

dashed curve in Figure 3.14, which forms unnatural wave shapes in 3D.

• The longitudinal component is important when computing the velocity of the
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Figure 3.14. Superposition of two water surface waves traveling towards each other.

If the longitudinal component is ignored, the superposition in the middle

takes the shape of the dashed curve.

water surface and the interaction of water with floating objects. When a water

wave with a positive amplitude approaches a floating object, the longitudinal

motion of the water pulls the object towards the wave. Similarly, as the wave

moves away from the object, the longitudinal motion pushes the object away

from the wave, back to its original position. In this way, the wave induces a

circular motion on the floating object. This behavior cannot be accounted for

when the longitudinal component is ignored.

For the sake of simplicity, while discussing wave particles in the next chapter, we

will begin by considering transverse waves only. We will then talk about how the

longitudinal component of the water waves can be incorporated.

3.11. Longitudinal Deviation

For incorporating the longitudinal component of water surface waves into the wave

particle formulation, we extend the definition of the deviation function introduced

in equations 3.5 and 3.6, which is formulated for transverse waves, such that the



51

deformation of the water surface happens along the vertical z direction. To be able

to include longitudinal waves and the deformations caused by longitudinal waves we

define a surface deformation field η : R3 → R3, such that the final position x′ of a

point x on the water surface is

x′(x, t) = x + η(x, t) . (3.15)

Here the vertical component of η is the same as Equation 3.6, but the horizontal

component is

ηxy(x, t) =
∑
i

DL
i (x, t) , (3.16)

where DL
i is a horizontal local deviation function (Figure 3.15). This can be formu-

lated similar to Equation 3.9 as

DL
i (x, t) = ai Li(u) Wi(u) Bi(v) , (3.17)

where Li is a vector function describing the longitudinal waveform. We derive the

longitudinal waveform that corresponds to our transverse waveform function (Equa-

tion 3.8) from the circular motion of continuous waves (Figure 3.13).

horizontal deviation

Di(x, t)

vertical deviation

DL
i (x, t)

Figure 3.15. Components of the local deviation function in 2D

We find the longitudinal waveform that gives a circular motion when combined with
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the transverse component to be

Li(u) = − sin

(
2πu

li

)
Π

(
u

li

)
ûi , (3.18)

where ûi is the propagation direction of the ith wave particle. For radial wave particles,

note that the longitudinal component must only be created in the direction of motion.

Thus, we define the horizontal local deviation by radially blending the directional

deviation:

DRL
i (x, t) = Li(u) DR

i (x, t) (3.19)

Using this longitudinal formulation of wave particles each wave particle induces a

part of the circular motion that water waves should generate. We can produce a

perfect wave train with circular motion by generating wave particles with positive

and negative amplitudes that are wave particle radius apart.
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CHAPTER IV

WATER-OBJECT INTERACTION

In this chapter we discuss how the interaction between water and floating objects can

be modeled. A simulation method that is designed to work in a real-time graphics

application must permit some sort of user interaction. When it comes to simulating

water waves, user interaction can be as simple as generating waves directly on the

water surface based on user input. However, the useful scenarios supplied by this

kind of interaction would be quite limited. Another form of user interaction could

be coupling the wave simulation with a rigid body simulation, so that rigid bodies

moved directly or indirectly by user actions can properly interact with the water body.

This treats the water simulation as a component of a real-time rigid body simulation

system.

Computation of physically accurate water-object interaction is a rather complicated

and computationally demanding operation. A major part of the complication comes

from the fact that one needs to compute the forces between the interacting object

and the water at the boundary where the object touches the water. This boundary

might have a complicated shape. More importantly, the fluid behavior can be rather

complicated near this boundary. The motion of the object makes this computation

even more complicated, since it forms a moving boundary between the object and

water, as opposed to a static boundary, which would be significantly easier to handle.

Accurately and efficiently handling fluid-object interactions is still an open research
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area in both computational fluid dynamics and computer graphics.

For all these reasons, finding a reasonable simplification of physically accurate water-

object interaction is challenging. On the other hand, physical accuracy is not really

crucial for a simulation system designed for computer graphics applications. Es-

pecially for graphics algorithms that are intended for real-time simulation systems,

computational efficiency is often more important than anything else, as long as one

can find a way to achieve plausible animation results.

We begin simplifying water-object interaction by separating it into two components:

• Object to water coupling, and

• Water to object coupling.

Object to water coupling handles the effect of the object motion on water, and water

to object coupling is responsible for computing the effect of water on the motion

of the interacting object. Obviously, these two components are not independent of

each other; therefore, a physically accurate water-object interaction system would

solve for these two components concurrently. Instead, at each time step we handle

object to water coupling independently from water to object coupling. As a result,

the change in object motion caused by water to object coupling does not affect the

motion of water until the next time step. The inherent assumption that comes with

this separation is that the motion of water and the interacting objects do not change

within a time-step. As the time step duration approaches zero, the error caused by

this separation assumption approaches zero as well. On the other hand, when the

time step is too large, this separation might cause significant differences between
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consecutive frames, which might even cause visible fluctuations. The ideal setting

for the time step depends on the properties of the interacting objects as well as the

nature of the simulated motion.

4.1. Object to Water Coupling

The object to water coupling component of water-object interaction is responsible

for computing the effect of the interacting object motion on the motion of the water.

The object to water coupling technique presented here is designed to work with the

wave particles method. Since wave particles represent the water motion in the form of

surface waves, the object to water coupling technique is essentially about managing

surface waves due to object motion. Other products of object to water coupling,

such as splashes and bubbles, are ignored here as secondary effects. These secondary

effects might be incorporated into object to water coupling using methods such as

those discussed in Section 7.3.1.

Dynamic surface waves are very important for plausible object to water coupling.

Almost any interaction of objects with water generates waves on the water surface.

These waves not only affect the motion of water near the interacting object, but also

can travel long distances over the water surface, affecting the shape of the water

surface over a rather large area. Therefore, dynamic surface waves must be handled

properly to achieve realistic looking water-object interaction.
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4.1.1. Physical Wave Generation

Before we begin discussing the object to water coupling technique, it is important

to understand the physical process of wave generation due to object interaction with

water. When objects interact with water surface, waves are generated. However, the

actual process of wave generation does not really take place immediately and this sort

of wave generation is a rather complicated phenomenon.

Consider an object falling onto the water surface. As soon as the object hits the water

surface, it induces some motion onto the water around the contact surface between the

object and water. The motion induced by the object is often rather complicated and

includes 3D turbulent behavior. Generally speaking, this motion does not correspond

to a wave motion at all. However, as a result of this motion waves are formed on the

water surface. Therefore, if we are to model physical wave generation due to object

interaction, we can break the wave generation process into two components:

• Water motion induced by the object,

• Waves formed from this motion.

The object interaction with water often induces a rather complicated 3D fluid motion

that potentially has some amount of turbulence, so it cannot be properly represented

by efficient 2D structures or wave particles. Therefore, we can conclude that comput-

ing the first step as a part of a real-time water simulation system is rather ambitious

for the capabilities of today’s computer hardware.

While the first step of computing the 3D motion induced by the interacting object can
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be computationally expensive, the second step of converting this motion to surface

waves is in fact more challenging. To our knowledge, there is no method in computer

graphics that would take an arbitrary 3D water motion as input and compute the

surface waves that motion will eventually evolve into.

Due to the enormous difficulties of physical wave generation for our real-time water-

object interaction system we have to settle for a merely physically plausible model.

To make object to water coupling simpler, we assume that waves are generated imme-

diately when an object hits the water surface. Following this assumption, all motion

of an object inside the water volume immediately generates new waves. While this

assumption may not be physically correct, it allows us to significantly simplify the

object to water coupling computation. Using this assumption, we completely ignore

the 3D turbulent motion caused by object interaction and we do not worry about

converting this complicated motion to surface waves.

Obviously, assuming that surface waves due to object interaction are generated im-

mediately affects the accuracy of the object to water coupling. More importantly,

it presents challenges when it comes to building a physically based model for wave

generation, since we know that we are not exactly following the actual physical pro-

cess. Ideally, surface waves generated with this assumption should match the surface

waves that would result from pure physical wave generation. In this ideal case the

assumption of immediate wave generation only causes errors in close proximity to the

interacting object, while the waves that affect a much larger area of water surface can

still be represented properly.
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4.1.2. Effect of Objects on Existing Waves

Objects that are floating on the water surface not only generate waves as a result

of their motion but also affect the existing water waves. When there is an object

floating in the water, it changes the behavior of the water medium directly below and

above it as well as immediately around it. Therefore, when a surface wave arrives at

the position of a floating object, it effectively enters a different medium. In simplest

terms, some part of the wave continues through the new medium, while the rest of

the wave is reflected.

However, the real world interaction of existing waves with floating objects is far

more complicated than the brief summary above. The behavior of this interaction

largely depends on the wavelength of the existing wave as compared to the size of

the interacting object. If the wavelength is significantly smaller than size of the

interacting object, the existing wave is strongly affected by the presence of the object.

For example, it may reflect off of the object as it would a boundary. On the other

hand, when the wavelength of the existing wave is significantly larger than the size of

the object, the wave may be hardly affected at all. The most complicated interactions

happen when the object size is comparable to the wavelength of the existing wave.

Based on this knowledge, one rather obvious simplification of modeling existing wave

interaction with floating objects would be an ad hoc formulation to determine what

portion of the existing wave gets reflected and what portion of the wave continues

to travel without being modified. Yet, even with this simplified model, one needs

to compute the intersections of dynamic objects interacting with the water and all

existing waves on the water surface. Keeping in mind that a wave particle simulation
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can have a large number of active wave particles at any given time, this intersection

computation itself can be very slow for real-time graphics purposes. Furthermore,

the actual interaction of existing waves with an object is far more complicated than

this simple model. Especially in the presence of many existing waves interacting with

the floating object at the same time, computing the interaction of each wave particle

independently would not necessarily provide accurate results.

Instead, we propose a different simplification that is based on wave superposition. A

modified wave due to object interaction can be represented as the superposition of

two waves: the original unmodified wave and an interaction effect wave that is placed

on top of the original wave as shown in Figure 4.1. This interaction effect wave can

modify the original wave and even effectively cancel it out. In this way object inter-

action with existing waves is modeled by wave generation only. Therefore, assuming

that the wave generation properly takes the existing waves into account, the compu-

tation of object interaction with existing waves can be completely eliminated, and it

is inherently handled by the wave generation computation. With this assumption, we

can avoid computing the intersections of existing waves with floating objects, as well

as the complicated procedure of handling these intersections.

Figure 4.1. Modifying an existing wave by adding an interaction effect wave.
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4.1.3. Energy Preservation vs. Volume Preservation

Wave propagation is highly efficient and for the most part it preserves energy. How-

ever, wave generation due to object interaction does not preserve energy in the form

of waves. When an object hits the water surface a significant portion of the object’s

kinetic energy is converted into other forms such as turbulence, heat, and sound.

The energy of generated waves due to the interaction of the object with water only

corresponds to a portion of the initial energy of the object. Therefore, it is difficult,

if possible at all, to derive a wave generation technique that is based solely on energy

conservation.

On the other hand, since the compressibility of water is very low, water volume is

preserved. Especially when computing the interactions of open water with floating

objects, it is safe to assume that water is completely incompressible. (Note that

in many computer graphics applications even gasses are assumed to be incompress-

ible, while in fact they are highly compressible.) Therefore, we can base our wave

generation method on volume preservation.

However, wave generation based on volume preservation of open water can only dic-

tate the volume of waves generated by the interacting object motion; it does not

provide any information about the directions or the shapes of generated waves.

4.1.4. Heuristics for Wave Generation

The volume preservation principle only tells us that for all waves generated with pos-

itive amplitude there must be a number of waves generated with negative amplitude
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at the same time, such that the total volume of water displaced by generated waves

with positive amplitude should match the volume of water displaced by the ones with

negative amplitude. Other than this general principle, volume preservation does not

provide guidance about the shapes of the waves to be generated or their placement.

Formally speaking, there are three questions that need to be answered to be able to

build a wave generation system:

• Where should the generated waves be placed?

• What should be the directions of generated waves?

• What should be the sizes of generated waves?

We have developed heuristics for wave generation to attempt to answer these ques-

tions. These heuristics are based on experimental observations and analytical reason-

ing as well as convenience for implementing a highly efficient wave generation system.

In the rest of this section we discuss these heuristics.

4.1.4.1. Wave Placement Heuristics

We know that when an object moves inside the water volume, it induces some motion

to the water around it and this motion has some impact on the deviation of the water

surface. Our aim with wave placement heuristics is to come up with a set of rules

that would help use determine how these displacements should be distributed on the

water surface.

Let us consider the case of an arbitrarily shaped object whose surface is in contact with
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water moving inside the water volume. Therefore, as the object moves in a particular

direction, some part of the object surface “pushes” the water around it, while some

other part of the object surface “pulls” the water. Due to volume conservation, the

total volume of water that is pushed by the object motion is equal to the volume of

water that is pulled by the object. However, the flow of water around the moving

object also affects the water surface, if the object is close enough to the water surface,

and causes waves to be generated on the surface.

Figure 4.2. Wave placement of object faces. (a) Faces that have direct access to the

water surface, (b) faces that do not have direct access to the water surface

Figure 4.2 shows an arbitrary object moving upwards inside a water volume. In this

case, most of the top surface of the object pushes the water upwards, while most of

its bottom surface pulls the water upwards. Generally speaking, this kind of motion

generates 3D water flow around the object. However, since we are only interested

in the water surface and we are generating waves immediately, we disregard this 3D

water flow around the object. Instead, we try to determine how each part of the
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moving object surface would ultimately affect the water surface and generate waves.

As indicated in Figure 4.2, there are two distinct cases here:

• As shown in Figure 4.2(a), the object surface at the top of the object has a direct

connection to the water surface, meaning there is nothing but water between

the top object surface and the water surface. Therefore, we assume that the

displacement of water caused by the motion of the top surface of the object is

directly transmitted to the water surface directly above the object surface.

• Referring to Figure 4.2(b), we see that the object surface at the bottom of

the object, does not have a direct connection to the water surface. In other

words, the object itself lies between its bottom surface and the water surface.

Therefore, the displacement of water caused by the motion of the bottom surface

of the object cannot be transmitted to the water surface directly above the

object surface. Instead, this motion of water must induce water motion around

on either side of the object in this 2D case. As a result, the displacement caused

by the bottom surface of the object is transferred to the sides of the object, and

the water surface directly above either side of the object gets affected by this

displacement.

Assuming that the object interacting with water is a polygonal mesh, the volume of

water displaced by the motion of each face is used to generate waves

• directly above the face, if the face is on top of the object;

• around the object, otherwise.

In 3D we consider the silhouette of the object as seen from the top view and generate
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waves around this silhouette for the faces that are not on top of the object. Trans-

ferring the displacement of water caused by a face to the points around the object

silhouette is a bit more complicated in 3D. Since we do not use a 3D fluid simulation

system, we do not have any information about the actual water flow around the ob-

ject. Therefore, we cannot really tell which points around the object silhouette are

affected by the water displacement caused by any face that is not at the top side of

the object. Since we would like to avoid a full 3D fluid simulation around the object,

we need a simple rule for distributing these displacement effects. One could transfer

the whole displacement of a face to the nearest point around the object silhouette.

Alternatively, the displacement caused by the face can be transferred to all points

around the object silhouette evenly. It is safe to assume that the points around the

object that are closer to a face of the object are more likely to be affected by the

volume of water displaced by the face. Based on this reasoning, our heuristic is to

distribute the water displaced by a bottom face around the object silhouette in an

amount weighted inversely by their distances from the face.

Admittedly, the actual physical water motion induced by this object motion is far

more complicated than our approach suggest. However, our aim is to provide an

efficient wave generation system that produces plausible results, rather than a physi-

cally accurate one. Our simulation results have convinced us that this heuristic does,

indeed, produce convincing water surface waves in response to object motion.
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4.1.4.2. Wave Direction Heuristics

Wave direction heuristics are used for deciding on the propagation directions of gener-

ated waves. Our aim here is to propose a simple set of rules for assigning propagation

directions to generated waves, such that the outcome can depict the general behavior

of the waves generated by real water-object interaction. To achieve this purpose,

we first conducted various experiments observing waves generated by real physical

objects.

One of these experimental setups was particularly useful, since it allowed us to observe

wave generation behavior in 2D. This setup consists of two glass walls that are placed

very close to each other. We filled the region in between the two glass walls with water

up to a certain height. For an interacting object, we used a cylindrical slice of candle

cut slightly shorter than the distance between the two glass walls, so that it could

slide easily between the walls, but could not rotate around an axis parallel to the

plane of the walls. The candle was dropped onto the water and the interaction was

recorded by a camera. Figures 4.3 and 4.4 show frames from some of our experiments

with this setup.

In Figure 4.3 we show consecutive frames taken when the object hits the water surface.

The first set of waves generated in the second frame on either side of the object begin

to travel away from the object. While the object is inside the water volume and

continues to sink, a negative deviation is induced on the water surface directly over

the object and the water surface on two sides of the object slightly rise forming a

positive deviation. In the following frames, the positive deviation moves towards the

object and forms a sharp peak right above the center of the object. Even though
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Figure 4.3. Frames taken from one of our 2D wave generation experiments showing an

object falling into the water.

the actual motion of water is rather complicated, the motion of the surface can be

approximated by surface waves. In this case, the initial impact generates positive

amplitude waves that move away from the object. In the following frames, the dent

above the object can be represented by negative waves that travel in both directions

and the two bumps on either side of the object can be represented by positive waves

that move towards the object. In the next few frames these positive waves that are

formed on either side of the object travel towards the center of the object and form

the peak.

Figure 4.4 shows consecutive frames from the same experimental setup taken while

the object is coming out of the water. As the object moves up towards the water

surface, a bump is formed above the object. The dents on either side of the object

become clear when the object reaches the water surface. As the object moves up and

down it emits waves that travel away from it on either side.

Following these observations we propose a simple heuristic model for assigning direc-



67

Figure 4.4. Frames taken from one of our 2D wave generation experiments showing an

object coming out of the water.

tion to the generated waves. Figure 4.5 summarizes our wave direction heuristics.

There are four cases:

• As shown in Figure 4.5a, when the object is on the water surface and it is

moving up, it generates negative waves on either side, which is consistent with

our wave placement heuristics described above. The motion of these waves are

away from the object.

• Similarly, when the object is on the water surface and moving down, it generates

positive waves on either side as shown in Figure 4.5b. The wave direction is

away from the object in this case as well.

• When the object is below the water surface and moving up as shown in Fig-

ure 4.5c, negative amplitude waves are generated on either side of the object

and positive amplitude waves are generated on top of the object. The posi-

tive amplitude waves in the middle move in both directions separating into two

waves (similar to a ripple on a 2D surface). The negative waves, however, move
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Figure 4.5. Cases of wave generation, (a-b) object is on the surface, (c-d) object is

inside the fluid volume.

towards the object.

• Finally, when the object is below the water surface and moving down as shown

in Figure 4.5d, negative amplitude waves are generated directly above the object

and positive amplitude waves are generated on either side. Similarly, the waves

right above the object separate and move in both directions, while the waves

on either side move towards the object.

These four cases provide a unified procedure for assigning wave directions:

• If the wave is directly above the object, it moves in all directions forming a

ripple,

• If the wave is on the side of the object and the object is on the water surface,

the wave moves away from the object,

• If the wave is on the side of the object and the object is below the water surface,

the wave moves towards the object.

Notice that based on these rules the directions of waves are independent of the direc-
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tion of motion of the interacting object. This is a particularly useful property, since

the object motion is not limited to being just up or down as in the four cases we

considered. Furthermore, the object can have a rotation or even some deformation,

which makes it impossible to talk about a single direction of the object motion.

4.1.4.3. Wave Size Heuristics

Wave size is the length of a generated wave at a certain time step. We do not use the

term “wave length” to represent this value, because in our system wavelength refers

to the collective length of multiple waves generated in consecutive time steps. You

can see this in Figure 4.6. Wave size, on the other hand, determines the horizontal

area on the water surface that is displaced by the motion of the object within a time

step. Multiple waves generated at consecutive time steps can collectively represent a

wave shape with a larger wavelength as compared to the wave size of each generated

wave.

Figure 4.6. Difference between wave size and wavelength.

Using the principles of the wave placement heuristics, we can determine the volume

of water displaced by each generated wave. Now that we know the total volume, we
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need to find a way of using this information to determine the horizontal wave size and

the amplitude of the wave. If wave size or amplitude can be determined, the other

one can be computed using the wave volume.

Unfortunately, there is not enough information for determining the wave size or the

wave amplitude independently from one another. Consider an object falling into

water. We know that the object will induce water motion around itself and we

assume that it will generate waves as a result of it. However, we do not know what

the scale of this motion will be, i.e. how far this motion will stretch from the surface

of the object. The scale of the induced motion is affected by various factors, including

the shape of the object and the viscosity of water. Unfortunately, we do not have a

good way of estimating this size, and without knowing it we cannot properly estimate

the size of generated waves.

Since we do not have a proper way of estimating the wave size, we assume that it is

constant for a constant time step size. Thus, we make the horizontal sizes of generated

waves constant as a user defined parameter. This constant wave size assumption

also helps when it comes to designing an efficient implementation as discussed in

Chapter V.

One might expect to see waves with larger horizontal size when larger and heavier

objects interact with water as compared to smaller and lighter objects. This behav-

ior can be depicted using waves with constant size that are generated in consecutive

time steps. Note that even though the wave size is constant, we can represent wave

trains with different wavelengths as a superposition of multiple waves generated at

consecutive time steps (Figure 4.6). Since heavier objects would have a larger mo-
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mentum, the change in their velocity would be smaller as compared to lighter objects.

Therefore, heavier objects would create similar waves at each time step and due to

superposition would result in waves with larger wavelength.

4.1.5. Wave Particle Generation

Based on the principles explained above, when using wave particles for simulating wa-

ter, the whole object to water coupling process boils down to wave particle generation.

In this section we describe the wave particle generation process in detail.

The wave particle generation procedure generates wave particles around the inter-

acting object based on the shape and the motion of the object and the shape and

motion of the water surface around it at the time of computation. The existing wave

particles are not directly used in this procedure. However, their presence changes

the shape and the motion of the water surface, which in turn affects wave particle

generation. The shape of the water surface is primarily used for determining which

faces of the object are inside the water, while the motion of the water surface is used

for determining the velocity inside the water volume due to wave motion. Since we

do not have a full 3D fluid simulation system, this water velocity ignores the presence

of the object and only accounts for the wave motion. The velocity of water on the

surface can be directly taken from the wave particle simulation. Ignoring the presence

of the object, the velocity inside the water volume is typically in the same direction as

the surface velocity, but scales down exponentially deeper into the volume [Gerstner

1802].

For wave generation computations, we need to know the relative motion of the object
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as compared to the motion of the water body. If the object is moving exactly the

same as the water around it, it should not create any waves at all. Similarly, if the

object is steady but the water around it is moving, the object should generate waves.

Therefore, in the rest of this section when we talk about the object motion, we always

refer to the relative motion of the object as compared to the motion of water.

The wave particle generation procedure is executed at each time step to generate

wave particles around each interacting object. This procedure has three steps:

• Computing the volume of water displaced by the object,

• Finding the position and the net effect of this displaced volume on the water

surface, and

• Generating wave particles on the water surface based on this net effect.

For the sake of simplicity, assume that the interacting object is represented by a

triangular mesh. In the first step, we consider each face of the interacting object

and compute the volume of fluid displaced by this face. This volume is equal to the

volume traced by the motion of the face inside the water within the time step. We

call this volume the volume effect of the face. This volume effect is positive when the

face is pushing the water such that the motion vector of the object is on the front side

of the face (i.e. the dot product of the motion vector and the surface normal of the

face is positive). Similarly, the volume effect is negative, when the face is pulling the

water such that the motion vector is on the back side of the face (i.e. the dot product

of the motion vector and the surface normal is negative). A positive volume effect

eventually translates to a wave with positive amplitude and a negative volume effect

means negative amplitude. Assuming that the object velocity is constant within a
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time step ∆t, we can write the volume effect of a face as

Veffect = Aface(Uface ·Nface)∆t , (4.1)

where Aface is the area, Uface is the relative velocity inside the water, and Nface is

the surface normal of the face.

Once the volume effect of each face is computed, the next step is to determine the

positions on the water surface where each volume effect should be applied. For this

task we use the wave placement heuristic described above. If a face is on the top side

of the object, its volume effect is placed right above the face on the water surface.

If the face is not on the top side of the object, we distribute its wave effect to the

sides of the object. The sides of the object in this context are defined as the edges

of the object silhouette as seen from a top view. As suggested in the wave placement

heuristics, the amount of volume effect for a point on the silhouette boundary depends

on the distance of the point from the face that generates the volume effect.

After we distribute the volume effect of each face onto the water surface, we know the

volume of waves that should be generated at any point. A wave particle is generated

for each wave effect on the water surface such that the volume of water displaced by

the wave particle corresponds to the magnitude of the volume effect. The sign of the

wave particle amplitude is the same as the sign of the volume effect. The radii of all

the generated wave particles are the same based on the wave size heuristic. Using

Equation 3.11 we can write the volume V of a wave particle as

V =

∫ r

0

∫ 2π

0

a

2
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r

)
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where a is the amplitude and r is the radius of the wave particle. Note that this

equation only considers the vertical deviation and ignores the change in wave particle

volume due to horizontal deviation caused by the wave particle.

Now that we know the amplitude of the wave particles, we need to decide wave

particle directions and dispersion angles. Consider the object silhouette as seen from

a top view. The volume effects on the water surface are either inside this silhouette

or on the boundary of the silhouette. If the volume effect is inside the boundary, we

generate a wave particle in a random direction with dispersion angle α = 2π, thus

forming a ripple. Note that since α = 2π, the direction of the generated wave particle

makes no difference in practice. If a volume effect is placed on the boundary of the

object silhouette, we can use the shape of the silhouette boundary to determine the

wave direction and the dispersion angle. In this case the dispersion angle α comes

directly from the curvature κ of the silhouette boundary at the position that the wave

particle is generated. Let r denote the radius of the wave particle. By substituting 2r

as the wave particle width w in Equation 3.10, we can calculate the dispersion angle

as

α = 2 r κ . (4.3)

The direction of the wave particle on the boundary of the silhouette depends on

the vertical position of the object at the boundary. In other words, if a part of the

object is above the water surface at the silhouette boundary point at which the wave

particle is generated, the direction of the wave particle is assigned as the outward

normal direction of the object silhouette at that point. If the object is below the

water surface at that point, the wave particle gets the opposite direction, towards

the object. Note that this procedure is consistent with the wave direction heuristics

discussed in Section 4.1.4.2.
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As one would expect, the effect of an object moving inside the water volume on the

water surface depends on how close the object is to the surface. As the object goes

deep inside the water, the magnitude of this effect on the water surface approaches

zero. For emulating this behavior, we exponentially scale down the volume effect of

a face based on how deep it is inside the water surface. As a result, when the object

is closer to the water surface it generates waves with larger amplitudes than when it

is deeper inside the water volume.

4.1.6. Limitations

The wave generation system described above is designed to be simple and efficient.

While in practice it can generate plausible results, it is a vast simplification of a rather

complicated phenomenon. Therefore, it has significant limitations.

First and foremost, it is questionable as to whether this wave generation system can

produce a valid solution to the wave equation. As we discussed in Chapter III, the

wave particle system is a valid solution to the wave equation only if each wave particle

has two identical neighbors on either side. If the wave generation system can gener-

ate wave particles that obey this restriction, such that each generated wave particle

has two identical neighbors on either side, the wave particle system preserves this

condition assuming that there are no boundaries (waves on an open ocean) or the

boundaries are rectangular (a rectangular pool). When this condition is violated, the

wave particles do not provide an accurate solution to the wave equation. Unfortu-

nately, a wave generation system that would satisfy this condition can only generate

circular ripples, since any other wave shape would have to violate this condition at
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some point. The wave generation system described above can generate wave shapes

other than circular ripples; therefore, the wave equation is violated as soon as the

wave particles are generated. While the wave particle system is able to preserve the

validity of the wave equation solution, if the wave equation is not satisfied at the time

that the wave particles are generated, the wave particle system cannot correct this

initial error.

On the other hand, places on the water surface where the wave equation is violated

due to this wave generation process are expected to be relatively small. Waves that

are generated due to object motion rapidly expand as they propagate. This expansion

of waves is handled by wave particle subdivision as discussed in Chapter III. As a

result, each generated wave particle turns into a finite wavefront with multiple wave

particles as they propagate. The wave equation is violated only at the end points of

these wavefronts, since a wave particle on one end point of a finite wavefront does not

have two identical wave particles on either side, but one side only. However, for the

rest of the wavefront, the wave equation is locally satisfied.

Furthermore, the wave generation system is rather limited when it comes to accu-

rately depicting actual wave generation due to interaction of floating objects with

water. This is an expected limitation, since the wave generation procedure is highly

simplified, while the actual wave formation is a rather complicated phenomenon.

Unfortunately, without a full 3D fluid simulation, we will always be limited in the

accuracy of the waves created.

One limitation we observed in terms of depicting physical reality is that the wave

patterns generated by moving boats in reality deviate from those produced with this
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(a) (b)

Figure 4.7. Comparison of boat wakes generated by our simulation to real boat wakes.

(a) Photograph of waves generated by a moving boat, (b) waves generated

by our real-time wave generation technique

wave generation technique. Figure 4.7a shows a tugboat and wave generated by

the motion of this tugboat. Notice the wave patterns produced by the motion of

the boat. Unfortunately, we observed that the wave generation technique described

here can only capture a rough shape of these waves (Figure 4.7b) and the repetitive

wave patterns of the tugboat example do not form with our wave generation method.

Please keep in mind that the wave generation system is intended to be general and

it is not tailored for simulating boat wakes or any other specific situation. Yet, this

example shows us the limits of the wave generation system as compared to reality.

Since the wave simulation system has many significant inherent simplifications, it is

difficult to determine which one (or ones) of these simplifications is a major factor for

the wave generation system’s inability to properly generate realistic boat wakes. We

discuss this issue further in Chapter VII.

http://weblog.pell.portland.or.us/~orc/2005/08/17/000/
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Finally, in the beginning of this chapter we argued that an ideal wave generation

system can automatically handle the interaction of a floating object with the existing

waves in the system. While this assessment may be true, our wave generation system

is far from being ideal. The wave generation system takes the existing waves into

account for determining the shape and the velocity of the water surface. However,

since we know that the wave generation system does not produce physically accurate

results, we do not expect it to perfectly handle the interaction of the floating objects

with the existing wave particles.

4.2. Fluid to Object Coupling

Fluid to object coupling is the other half of water-object interaction and it handles

the effect of the water body onto the motion of interacting objects. This effect is

passed onto the interacting objects by applying forces based on the positions of the

objects and the relative velocities of their faces as compared to the relative velocity of

water. These forces are then used by a rigid body simulator to compute the motion

of interacting objects.

The forces acting on the object due to water are buoyancy force, drag force, and lift

force. We first discuss the buoyancy force in detail and then talk about drag and lift

forces together.
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4.2.1. Buoyancy Force

Buoyancy force is the force that keeps objects that have lower average density than

water afloat on the water surface. The magnitude of the buoyancy force is propor-

tional to the volume of the object inside the water.

The buoyancy force is applied only to the part of the object that is inside the water

volume. While this concept of “part of the object inside the water” is quite natural for

any person to comprehend, it rather misrepresents what actually happens in physical

reality. When an object is partially submerged in the water, our general perception

is that the part of the object that is “inside” the water intersects with the water

volume. It is as if water and the submerged part of the object coincides together at

the intersection of these two volumes. However, what actually happens is that when

an object is partially submerged, it pushes the water around it, thereby elevating the

water level. It is the volume of this elevation that the buoyancy force is proportional

to, which perceptually can be interpreted as the volume of the object inside the water.

However, our aim here is to simulate the interaction of objects with large bodies of

water. Therefore, we do not consider the elevation of water level due to a submerged

object, and we compute buoyancy force using the volume Vinwater of the object inside

the water, such that

Fbuoyancy = −g ρ Vinwater , (4.4)

where g is the gravitational acceleration vector and ρ is the density of the fluid. This

buoyancy force is applied at the centroid (center of the volume) of the part of the

object inside the water.
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Note that the buoyancy force has no dependence on object velocity. Therefore, the

buoyancy force alone is never enough for water to object coupling. Note that the

direction of the buoyancy force is always in the opposite direction of gravity and that

it conserves energy. Therefore, when the buoyancy force is used alone without any

other interaction force acting on the interacting objects, the objects oscillate in and

out of the water without coming to a rest position. This is analogous to the harmonic

motion due to springs.

4.2.2. Drag and Lift Forces

Drag and lift forces are the dynamic forces acting on an object due to its motion

relative to the water. These forces are the result of fluid pressure on the surface

of the object as well as the friction force between the water and the object. In fluid

mechanics the drag force is defined as the component of the total dynamic force acting

on the object in the direction opposite to the relative motion. Therefore, the drag

force always acts to stop the object. The lift force is defined as the component of

the total dynamic force acting on the object perpendicular to the direction of relative

motion. Hence, the lift force effectively changes the motion direction of the object

and its direction depends on the shape and the orientation of the object relative to

its motion.

In fluid mechanics, the magnitudes of the drag and lift forces can be written as

Fdrag =
1

2
ρ CD A U2 and (4.5)

Flift =
1

2
ρ CL A U2 , (4.6)



81

where ρ is the density of the fluid, CD and CL are the drag and lift coefficients of the

object, A is the effective area, and U is the magnitude of the velocity of the object

relative to the fluid1 [Munson et al. 2006].

Unfortunately, we cannot take these equations and use them to compute the drag

and lift forces on arbitrarily shaped objects moving in water for several reasons:

• First of all CD and CL highly depend on the shape of the object as well as the

orientation of the motion vector. Since the fluid motion around an object can be

rather complicated, there is no closed form solution for computing CD and CL

for an arbitrary object. These values are generally obtained via measurements.

• Moreover, CD and CL also depend on U . The values of these constants can

change significantly when U is very large or very small.

• Furthermore, the effective area A also depends on the shape of the object and

the direction of motion. While in many cases A is simply the projected area of

the object in the direction of motion, this does not have to be the case for an

arbitrarily shaped object.

• Finally, while the direction of the drag force is in the opposite direction of

motion, the direction of the lift force is rather ambiguous. We know that the

lift force is perpendicular to the direction of motion, which restricts the set

of possible directions to the perpendicular plane only. We do not know which

direction on that plane would be the correct direction for an arbitrarily shaped

object.

1In fluid mechanics U is often used as the velocity of the fluid and the object is
considered stationary
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For having a general solution to water to object coupling, it is important that we can

compute drag and lift forces on an arbitrarily shaped object moving in an arbitrary

direction with an arbitrary orientation. However, in reality these forces are measured

for carefully specified conditions. Even though it might be possible to estimate these

forces using a full 3D fluid simulation, this would not be a practical solution and

would not be appropriate for a real-time simulation system. For this reason we

provide simplified approximations of drag and lift forces that are suitable for computer

graphics purposes.

For the sake of simplicity, let’s assume that the interacting object is represented by

a triangular mesh. We begin our simplification by assuming that the drag and lift

forces can be computed on each face of the object independently. The loss in accuracy

due to this assumption can vary significantly depending on the shape of the object.

If the object is convex, we make relatively little or no error with this assumption.

However, for an arbitrarily shaped object, the error introduced by this assumption

can be rather significant.

Figure 4.8. A box shaped object with a narrow cavity on one side. Such objects can

introduce extra error if drag and lift forces are computed independently

on each face.



83

For understanding the potential magnitude of the error caused by computing using

each face of the object independently, consider the object in Figure 4.8. This box

shaped object has a narrow cavity on one side. If this object is moving left or right,

and if we compute the forces applied to each face of the object independently by

ignoring the presence of all other faces, the faces on either side of the cavity would

have a strong effect, especially on the drag force. However, in reality the fluid flow

inside the cavity would be much different than what is suggested by this assumption;

thus, we might actually get a more accurate drag force computation by completely

ignoring the the cavity. While this counter example shows that computing drag and

lift forces independently on each face of an object can introduce significant error

under certain circumstances, the error is smaller for simpler shapes. We rely on this

assumption in our approach, because treating faces independently is much simpler, it

avoids the need for a full 3D fluid simulation, the forces can be computed quickly for

arbitrary objects, and the error is low for simple shapes. Note that when an object

has such an irregular shape, certain faces of the object (like the ones inside the cavity)

can be ignored or their effect can be scaled down while computing lift and drag forces.

Our second simplification is assuming that drag and lift coefficients CD and CL are

constant for each face. This is a somewhat less radical assumption than our first

assumption above. Keeping CD and CL constant ignores their dependence on the

orientation as compared to the direction of motion. To introduce the dependence on

the direction of motion we use the effective area A, which is defined as

A =

(
N ·U
|U|

ξ + (1− ξ)
)
Aface , (4.7)

where Aface is the area of the face inside the fluid and 0 ≤ ξ ≤ 1 is a user defined

parameter. This ξ parameter determines the amount of motion direction dependency
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for computing the effective area. When ξ is zero, the effective area becomes equal

to the area of the face regardless of the direction of motion. Setting ξ as 1 makes

the area equal to the projected area of the face on the plane perpendicular to the

direction of motion; thus, the effective area becomes highly dependent of the direction

of motion.

Considering that we are trying to compute the drag and lift forces on each face

separately, it is possible to come up with a more accurate formulation for CD, CL,

and A and their dependence on orientation of the face. Yet, since the faces are not

really independent but rather are pieces of a larger object, it is unlikely that one can

get higher accuracy with merely a more accurate formulation for an independent face.

Therefore, we choose simplicity over additional work for questionable gain, and keep

our formulation simple as stated above.

Finally, we need to determine the direction of the lift force, which can be in any di-

rection on the place that is perpendicular to the direction of motion. Our assumption

is that the direction of the lift force is in the plane defined by the velocity vector U

and the surface normal N of the face, and that it is on the opposite side of the face

from U. Figure 4.9 shows the directions of drag and lift forces on a triangle.

Using the simplifications stated above we can write the drag and lift forces acting on

a face as

Fdrag = −1

2
ρ CD A |U| U , (4.8)

Flift = −1

2
ρ CL A |U|

(
U× (N×U)

|(N×U)|

)
. (4.9)

The total drag and lift forces acting on the object are the sums of all drag and lift
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Figure 4.9. Directions of drag and lift forces on an object face moving with velocity

U relative to the fluid’s local velocity.

forces on all faces of the object. Each one of these forces are applied at the center of

the face, in order to compute the torque induced by these forces.

Please note that the magnitudes of both drag and lift forces are linearly proportional

to the magnitude of the velocity squared |U|2 as stated in equations 4.5 and 4.6 as well

as equations 4.8 and 4.9. A rather common mistake that has been repeatedly made

in computer graphics is formulating velocity dependent forces as linearly proportional

to |U|, instead of |U|2. This ad-hoc formulation results in rather unrealistic floating

object motion: when the object is slow the drag force becomes too large, but when

the object is fast the drag force becomes too weak to properly and realistically stop

the object.

Once we have drag and lift forces along with the buoyancy force, we have a complete

method for handling water to object coupling.
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CHAPTER V

IMPLEMENTATION OF WAVE PARTICLES

The power of the wave particles technique lies in the fact that it permits very efficient

implementations. Without such an efficient implementation, simulating a desired

number of particles can be considerably slower. Unfortunately, many details that

lead to an efficient implementation of wave particles are far from being trivial.

The first half of this chapter describes several tips and tricks used in the implemen-

tation of wave particles to achieve high frame rates. The second half of this chapter

provides information on how to effectively render a water surface in a real-time envi-

ronment.

5.1. Implementing the Wave Particle Simulation

While a straightforward implementation of wave particles is very easy, the perfor-

mance of such an implementation can be less than desired. In this section, we first

overview our implementation of the wave particles method, and then we provide

details about nontrivial steps and discuss how parts of this implementation can be

significantly accelerated.

At each time step the simulation system has to perform certain operations to compute
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the shape of the water surface as well as the positions of the interacting objects. We

handle these operations in five steps:

• Wave Particle Iteration: moves the wave particles to their new positions and

handles subdivision and reflection events that occur within the time step.

• Water to Object Coupling: calculates the forces acting on each object due

to water to object coupling.

• Rigid Body Simulation: moves the objects to their new positions, taking the

water to object coupling forces into account.

• Wave Particle Generation: creates new wave particles based on the object

motion.

• Height Field Generation: computes the new height field shape from the

deformations represented by the wave particles.

In the subsequent subsections we discuss these steps in detail. Note that the ordering

of these steps is not strict and some of them might be executed in parallel. At the

end of this chapter, we explain how this system can be designed to make use of thread

level parallelization.

5.1.1. Wave Particle Iteration

The task of wave particle iteration is computing the current positions of wave particles

as well as handling all subdivision and reflection events that should take place within

the time step. While a straightforward implementation of wave particle iteration can
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be considered trivial, this step can be significantly accelerated with a more elaborate

implementation. We first discuss accelerating the computation of new wave particle

positions, and then we explain how the wave particle subdivision and reflection events

can be efficiently handled in this framework.

5.1.1.1. Computing Wave Particle Positions

Wave particles form an exceptionally simplified particle system. First of all, wave

particles move on a 2D plane and they do not interact with each other. Moreover,

no external forces act upon the wave particle system, so all wave particles more with

a constant speed and their directions do not change apart from the subdivision and

reflection events. Therefore, computing the current state of the wave particle system

from its state at the previous time step is a rather trivial operation, and it can easily

be implemented with a single loop that visits all wave particles and updates their

positions. Since the wave particles do not interact with each other, this operation can

be carried out in parallel and computed on the GPU.

Furthermore, updating the positions of all wave particles at each time step can be

completely eliminated. Since wave particles move with constant velocity, if we know

the position of a wave particle x0 at any time to, we can easily compute its current

position as follows:

x = x0 + υ û (t− t0) , (5.1)

where υ is the constant wave speed and û is the propagation direction of the wave

particle. Therefore, we do not need to compute and store the value of x for each wave

particle at each time step. Instead, we can easily compute this value from x0, û, and
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t0 when needed.

While we still have to perform the same calculation to find the current position of

a wave particle, the fact that we do not need to store the current position of a

wave particle makes a significant difference in terms of performance. Note that if we

update the wave particle positions, the copy of the wave particle data in the CPU

cache becomes “dirty,” and it needs to be copied back to the main memory. Avoiding

the unnecessary updates of the wave particle positions eliminates a large portion of

memory write events regarding wave particle iteration. Furthermore, in a multi-core

system, if multiple CPU cores are accessing the same memory cache block, having to

update the data in the cache may result in further decrease in cache performance.

Note that the main performance cost of updating wave particle positions comes from

memory read and write operations, rather than the few multiplication and addition

operations we need for computing Equation 5.1. The size of the wave particle data

in memory is typically many times that of the whole CPU cache, and it can be quite

large if a large number of wave particles are used. By eliminating this update of wave

particle positions, we avoid all cost related to this operation and the only penalty

of doing so is a few additional multiplication and addition operations for computing

Equation 5.1 whenever we need the current position of a wave particle.

Therefore, in our implementation of the wave particle system, we do not keep the

current positions of wave particles in the wave particle data. Instead, we keep the

origin of each wave particle as well as the time when the wave particle was or will

be at the origin position. The fact that we also need to keep the time at origin

information does not increase the size of the wave particle structure, since we also
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use this information for computing the age of each wave particle, which is needed for

the subdivision operation.

As we discussed before, damping in this system is optional. If we would like to add

some damping, we can do so by computing the damped amplitude of the wave particle

adamped from its undamped amplitude a as

adamped = a exp (−ζ (t− t0)) , (5.2)

where ζ is the damping coefficient, t is the current time, and t0 is the time at the

wave particle origin.

5.1.1.2. Subdivisions and Reflections

Unfortunately, we cannot eliminate subdivision and reflection operations, like we

eliminated updating the wave particle positions. Therefore, we need to subdivide and

reflect each wave particle as needed within the time step.

Fortunately, typically only a very small portion of all wave particles need to go through

subdivision and reflection operations at an arbitrary time step. Therefore, if we can

find a way to visit only those wave particles that have to go through the subdivision

and reflection operations within the time step, we avoid accessing all of the wave

particle data.

This can be done using time tables for subdivision and reflection events. The time

table for subdivision keeps a list of all wave particles that need to subdivide for each

discrete time step, and the time table for reflection keeps a similar list for reflections.
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Note that when a wave particle is generated, the exact times that the particle will go

through a subdivision and a reflection event can be computed, since the boundaries

for reflection are stationary. If the particle should go through a subdivision before

reflection, we place the wave particle in the subdivision list for the time step at which

it much undergo subdivision; otherwise, we place it in the reflection list.

At each time step, we only visit the wave particles that are in the subdivision and

reflection lists of the current time step. We perform the subdivision or reflection

operation on each one of these wave particles, and then place the wave particle on

another list based on when it will subdivide or reflect again. If a wave particle

has to go through multiple subdivisions, reflections, or a combination of these two

operations, we perform them all before placing the wave particle in a new list.

Efficiently implementing these time tables can be tricky. For high performance, we

must avoid dynamic memory allocation at run time, so the memory for these time

tables must be pre-allocated in the beginning of the simulation. Unfortunately, we

have no way of knowing beforehand how much memory we will need for each list

in the time tables. In practice, the sizes of these lists can drastically different. No

matter how unlikely, it is possible that all wave particles in the system subdivide or

reflect at the very same time, so one of these many lists might have to be large enough

to contain all the wave particles, while most others might be empty. Yet, we know

that the total memory we need for these lists is bounded by the maximum number of

wave particles in the system, since each wave particle appears only once, and in only

one list.

As a solution, we use a linked list structure for each list shown in Figure 5.1. Both
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subdivision and reflection tables keep a number of pointers, each of which correspond

to a discrete time step in the future. These pointers are either null (meaning that the

list is empty), or point to the first wave particle in the list. Each wave particle has a

next pointer, which is either null (end of the list) or points to the next wave particle in

the list. In this way, we can access all wave particles at a given time and perform the

subdivision or reflection operation. Note that we only need a single pointer for each

wave particle, since a wave particle can be either in a subdivision list or a reflection

list, but not both. Also note that on 64-bit systems, keeping a 32-bit integer index

of wave particles instead of a 64-bit pointer would reduce the memory overhead for

these lists.
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…
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subdivision reflectionwave particles

current time current time

Figure 5.1. The linked list structure for accessing the subdivisions and reflections for

a given time step.

Therefore, the wave particle iteration time is related to the number of subdivision

and reflection events in the time step, but not directly related to the total number of

wave particles in the system. This allows the iteration of millions of wave particles
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with minimal cost.

Reflecting a wave particle is rather simple, since we only change the origin position

and the propagation direction of the wave particle. For curved boundaries, we also

change the dispersion angle and the origin time information. Note that the origin of

a wave particle can lie outside the boundaries of the container. This does not produce

any problems, since the origin information is merely used for computing the current

position of the wave particle.

On the other hand, subdividing a wave particle is more complicated, because we

spawn two more wave particles in addition to the subdividing wave particle. To

avoid dynamic memory allocation at this step, we pre-allocate the memory for the

maximum number of wave particles. To generate a new wave particle, we simply find

an unused wave particle and flag it as “alive.” Finding an unused wave particle itself

might be a costly operation, if we have to examine each wave particle.

For handling this in a simple and efficient way, we keep a pointer to the next available

wave particle. This pointer is initialized as the first wave particle in the beginning

of the simulation, and we increment this pointer as we generate new wave particles.

When this pointer reaches the end of the pre-allocated memory for all wave particles,

we set it back to zero and the wave particle that this pointer points to is always

assumed to be unused. The inherent assumption here is that when this pointer goes

through all wave particles and comes back to the first one, the wave particle at this

location must be already dead. Otherwise, we overwrite a “living” wave particle.

While more elaborate solutions can be easily found, such as efficiently searching for

next unused wave particle in the list, we prefer keeping this procedure simple for high
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performance. If we end up overwriting a living wave particle, it means that the simu-

lation has generated more wave particles that it can reliably handle as determined by

the maximum wave particles that are pre-allocated in the beginning of the simulation.

In our implementation, the possibility of overwriting living wave particles is reduced

by the steps we take for improving the memory access pattern as explained below.

Another thing we must consider for high efficiency is the order of memory accesses for

handling reflection and subdivision events. In general, memory accesses for handling

reflection and subdivision operations can have a random pattern, since wave particles

might appear in an arbitrary order in a subdivision or reflection list. Unfortunately,

it is not simple to efficiently order wave particles in a linked list structure to improve

the memory access pattern by making it closer to sequential. However, one thing

we know is that when we subdivide a wave particle, we end up with three identical

wave particles that will subdivide again all at the same time. Therefore, placing

these wave particles sequentially in the memory would improve the memory access

pattern, as compared to placing them in random order. Furthermore, since the two

child wave particles subdivide exactly at the same time with the subdividing parent

wave particle, we can also relocate the parent wave particle and place it right next to

the new wave particles. By relocating the parent wave particle to an unused location

together with the two new wave particles, we not only introduce some consistency to

the memory access pattern, but we also use up the wave particle list somewhat more

rapidly, meaning the unused wave particle pointer goes through the whole wave parti-

cle list somewhat faster. However, this actually reduces the possibility of overwriting

an existing wave particle, since the wave particle is likely to be relocated during a

subdivision operation before it is overwritten by another new wave particle. Note

that this approach is heuristic, and does not provide any guarantee that no wave
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particle will be overwritten.

5.1.2. Water to Object Coupling

We compute the water to object coupling forces for the parts of the objects that are

inside the water. For determining what part of the objects are inside the water, we

use the height field that is generated in the previous time step. Thus, we assume that

the shape of the height field does not change much within a time step, which is not

completely accurate.

We use the height field to determine the depth in water for any given position. How-

ever, the values that we read from the extended height field also have horizontal

displacement. This means that the extended height field cannot directly give us the

height for the point that we lookup in the extended height field. Finding the correct

location on the extended height field that would give us the height at the position

we want requires the inverse transformation of the final horizontal displacement field.

To eliminate this complicated procedure, we convert the extended height field to a

basic height field with no horizontal deformation. We can easily do so by rendering

the fluid surface using the extended height field onto the basic height field texture.

This overhead can be minimized by using a low resolution version of the surface for

this conversion. In this basic height field texture, we also keep the water velocity at

the surface that is directly taken from the external height field, as we need the water

surface velocity while computing drag and lift forces.

In our implementation of the wave particles technique, we the GPU for computing

water to object coupling forces. The parallel computation power of the GPU helps
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accelerate this computation. Furthermore, we make use of the other features of the

GPU hardware, such as the rasterizer while computing the buoyancy force and the

texture unit for height field lookups. Moreover, since we compute the basic height

field on the GPU from the extended height field, performing the force computations

also on the GPU is convenient, as we can avoid the need to pull the basic height field

data from the GPU to the main memory.

5.1.2.1. Computing the Buoyancy Forces

For computing the buoyancy force for an object, we need to find the total volume of

the object inside the water and centroid (center of the volume) of this part inside the

water.

We can efficiently compute the volume of the object inside the water on the GPU.

For this computation, we render a low resolution image of the object as seen from

a top orthogonal view (Figure 5.2b). For each fragment on each pixel, we output

the depth of the fragment inside the water, or zero if the fragment is outside the

water. Multiplying this depth value with the area that corresponds to a pixel gives

us the volume of the water column above this fragment. For fragments that have

a surface normal that is facing downward, we output a positive depth value. If the

surface normal of the fragment is facing upward, we output a negative depth value.

If the fragment is not inside the water, we either discard the fragment or output

zero. We render the object using additive blending, so the value on each pixel in

the end becomes the sum of all positive and negative depth values of all fragments

that correspond to the pixel (Figure 5.2a). By outputting negative depth values for
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(b)

(a)

(c)

Figure 5.2. Computation of the buoyancy force on the GPU. (a) side view of the

depth values that correspond to a pixel, (b) the orthographic top view of

the object, (c) the final image of the volume computation on the GPU.

upward facing fragments, we discard the volume of the water column that is not inside

the object. As a result, for each pixel we get the total volume of the object column

inside the water (Figure 5.2c). We refer to this final image as the buoyancy image.

Once we have the image that shows the volume of the object inside the water for each

pixel, we can compute the total volume and the horizontal position of the centroid for

this volume. Note that the vertical position of the centroid cannot be computed from

this image, because we do not know the vertical centroid of each pixel. However, since

we know that the buoyancy force is always upward in the vertical direction, we do

not need to know the vertical position of the centroid and we can apply the buoyancy

force at any vertical position on the object.
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Obviously, using a high-resolution buoyancy image would produce more accurate re-

sults, but it would also increase the amount of computation we need for calculating

the total volume and the centroid of this volume, in addition to the extra cost of

rendering a high-resolution buoyancy image. When a low-resolution buoyancy im-

age is used, the computation becomes less accurate but more efficient. Moreover,

in addition to the inaccuracy caused by the low-resolution buoyancy image, the ori-

entation of pixels is likely to cause some bias. In other words, merely rotating the

object some random amount around the vertical axis that goes through its center

and then computing the buoyancy image, is likely to produce a different value for the

total volume inside the water. A common technique for eliminating similar biases in

computer graphics is applying a different random rotation to the object each time the

computation is performed. Note that this rotation is only used for the computation

purposes and the object is not actually rotated. Applying a random rotation for

the buoyancy computation, replaces the bias caused by the low-resolution buoyancy

image with noise. While noise is often more desirable than bias in many computer

graphics algorithms, for computing the buoyancy force noise can be less desirable.

This is because if we compute a slightly different buoyancy force at each time step

due to noise, we might get a randomly vibrating object motion which would espe-

cially be visible when the object is about to come to a rest pose. Eliminating the

random rotation and accepting the bias caused by the low-resolution buoyancy image,

avoids this undesired vibration, even though the average buoyancy force applied to

the object can be less accurate.

The total volume and the centroid of this volume can be computed on the GPU.

One can easily write a fragment shader that reads this whole image and outputs

the total volume and the centroid. Alternatively, this computation can be handled
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in parallel by rendering lower and lower resolution images (multiples of 2) until the

image becomes a single pixel, computing the total volume and the centroid at each

step. Which one of these approaches would be more efficient depends on the specifics

of the GPU hardware as well as the parameters of the simulation at hand, such as

the number of objects and the resolution of the initial buoyancy images.

In our implementation, we perform this computation on the CPU by pulling the low-

resolution buoyancy image we rendered to the main memory. This was convenient

for us, since our rigid body simulation runs on the CPU.

5.1.2.2. Computing the Drag and Lift Forces

We compute the drag and lift forces for each face of each object separately and apply

these forces at the center of the face. Again, we can use the parallel computation

power of the GPU for this computation.

Obviously, if a face is outside the water, no drag or lift force is applied to the face.

The simplest way of checking whether a face is inside the water is comparing the face

centroid against the water height that corresponds to the position of the face centroid.

This simple check would only produce a binary decision, such that a face would be

considered either completely inside the water or completely outside. However, this

binary decision is likely to produce problems when a face is partially in water. For

example, if the centroid of a face is slightly below the water level at one frame, the

whole face would be considered inside the water and we would apply drag and lift

forces on this face. In the next time step, a minor motion of the object (or the

water surface) might cause the centroid of this face stay outside the water, which
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would eliminate drag and lift forces on this face. As a result, we might have a

sudden change in the total interaction forces acting on the object, depending on the

magnitudes of the drag and lift forces that correspond to this face. Such sudden

changes in consecutive time steps are likely to cause undesired object motion with

sudden inexplicable jumps, especially when the object has relatively large faces.

Therefore, for handling the computation of drag and lift forces properly, we need to

calculate what fraction of each face is inside the water and scale the area of the face

that is used for the force computation by this fraction. For simplicity, we look up the

basic height field texture at the face centroid position to determine the water level for

the face, and we assume that the water level is constant around the face. We provide

a simple way of computing the fraction of a triangular face that is inside the water

in Appendix B.

In our implementation, we perform the drag and lift force computation on the GPU

and write the output to a force texture. We render each face of each object as a point

primitive on this force texture. Each one of these points is written onto a different

pixel of the force texture. We send the necessary information for computing drag

and lift forces as vertex attributes. We compute the dynamic forces using equations

4.8, 4.9, and 4.7. Then, we copy the force texture to the main memory and use it

to determine drag and lift forces on each face of each object. Note that a CUDA

implementation can be more efficient for this task.

In our implementation, we apply the forces at the centroid of each face, regardless of

what portion of the face is submerged in the water. A more accurate implementation

would be applying these forces at the centroid of the part of the face inside the
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water. While applying the drag and lift force always onto the face centroid produces

reasonable accuracy with high resolution objects, when the object has large faces,

this approach might provide undesired results. For example, consider a cube with 12

triangular faces (two triangles for each quadrilateral face). If we apply the drag and

lift forces always at the centroid of each face, we may not get proper torque when

the cube is partially submerged in the water. To avoid this, we simply used higher

resolution objects. Therefore, the cube shaped objects in our simulations have 48

faces.

5.1.3. Rigid Body Simulation

The rigid body simulation is not an integral part the wave particles system. It is used

for simulating the motion of the interacting objects, and most rigid body simulators

can be used for this purpose. The communication between the rigid body simulation

and the rest of the system is handled by applying water to object coupling forces on

the simulated objects and requesting object positions and velocities from the rigid

body simulator, which is used for both displaying the objects and generating waves

as they move.

We used a rigid body simulator that works on the CPU in our implementation of

the wave particles method. Therefore, all the forces we computed on the GPU had

to be transferred to the main memory, so that they could be passed to the rigid

body simulator. Since we perform most of the calculations on the GPU, a rigid body

simulator that works on the GPU might have been more suitable.

Since the rigid body simulator is not an integral part of the system, it could also
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be replaced by a more sophisticated simulation system that could handle deformable

objects as well as rigid bodies. As long as this simulation can provide the positions

and velocities of each face, and it permits applying forces to the simulated object

faces, it can be used instead of our rigid body simulator.

5.1.4. Wave Particle Generation

The wave particle generation step handles the object to water coupling by creating

new wave particles due to the object motion computed by the rigid body simulation.

This is one of the most complicated parts of our implementation. It has three main

components:

• Computing the wave effects of each face,

• Determining the positions and properties of the wave particles to be generated,

• Finally, generating wave particles.

In our implementation, we use the GPU for most of these computations. The wave

effect of each face can be easily computed in parallel on the GPU. Note that the

computation of the wave effects of each face has some common operations with the

computation of the drag and lift forces. Therefore, for higher efficiency, we perform

the wave effect computation while calculating the drag and lift forces.

For determining the positions and properties of the new wave particles, we render a

low-resolution silhouette of each object inside the water as seen from an orthographic

top view. Then, we place the wave effect of each face onto the pixel that corresponds
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to the face centroid. We leave this wave effect at this position, if the face is on top

of the object silhouette. If the face is below the top layer of the object, we distribute

its wave effect to the boundary of the silhouette. While distributing the wave effects,

we perform the necessary computations to determine the direction and the dispersion

angle for the new wave particles.

Once we determine the properties of the wave particles to be generated, we pull this

information from the GPU to the main memory, and generate wave particles on the

CPU.

For simplicity and efficiency, in our implementation we handle each object indepen-

dently. Because of this choice, even when nearby objects come close together and

touch each other, their silhouettes are not joined in our computation. As a result, the

wave effect of a face on one object cannot be distributed to the silhouette boundary

of another object. Therefore, the wave particles generated on the perimeter of an

object might be placed right on top of another object.

After testing various algorithms for implementing the wave generation based on the

procedures provided in Section 4.1, we developed a fast but approximate method for

generating waves, which we call the silhouette pyramid method. We first explain how

this method works, then we describe how this method is integrated into our system

and used for generating wave particles.
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5.1.4.1. The Silhouette Pyramid Method

The silhouette pyramid method is used for distributing wave effects to the object sil-

houette boundary and determining generated wave particle directions and dispersion

angles. This algorithm is designed for current GPU architectures, and it favors speed

over accuracy.

We start with a low resolution silhouette of the interacting object as seen from an

orthographic top view. The floating point color values in this image will represent

the object silhouette, as well as wave effects of the faces of the object. The aim of

the silhouette pyramid method is to distribute wave effects to the nearest silhouette

boundary pixels and compute wave directions at these locations. The resulting image

is used for generating wave particles due to object motion in the fluid.

Figure 5.3. Overview of the silhouette pyramid method
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The silhouette pyramid algorithm uses multiple iterations to convert the initial low-

resolution silhouette image to lower and lower resolutions, averaging wave effects and

directions. Then, using multiple iterations, the averaged values in the lower resolution

images are used to smooth directions and distribute wave effects while moving back

to higher resolutions. The above figure shows an overview of the algorithm. The

steps of the silhouette pyramid method are explained in the following:

• Step 1:

We begin by drawing a low resolution silhouette of the object on a floating

point texture buffer. Since we will generate wave particles from each pixel of

the silhouette boundary, we try to keep the texture resolution as low as possible

(4×4 to 32×32 should be enough for a single object). Ideally, the size of a

pixel of this low-resolution texture in world coordinates should be close to the

diameter of a wave particle. We discard all the fragments outside the fluid,

and write the depth in water and vertical component of the surface normal Nz

onto two separate color channels. Note that if all fragments are inside the fluid

volume (the object is fully submerged), all Nz values would be positive. We

will use the sign of Nz to identify if the object is fully submerged at any pixel

location.

• Step 2:

We copy this texture onto another texture buffer with the same size, and draw

each face as a point, writing the wave effect of the face. When writing the wave

effect, we check the Nz and depth values against the corresponding pixel that

are computed in the previous step, such that:

– If the Nz is positive (this means that the object is fully submerged at
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this pixel location), we compare the depth of the face point to the surface

depth value at the pixel. We use a small bias for this comparison so that

the depth values of a face recorded in the previous step do not occlude

the face itself at this step. If the depth of the point is larger than the

surface depth, the face is not on top of the object and the wave effect will

be distributed (indirect wave effect), otherwise the face is on top of the

surface and the wave effect will be direct.

– If the Nz is negative, the object is partially submerged at this pixel loca-

tion and the wave effect is indirect, meaning it will be distributed to the

boundaries of the silhouette.

We record the direct and indirect wave effects on two separate channels, and

combine them with additive blending so that if two face points correspond to the

same pixel, both values are added. The other two components of this texture

will keep the depth and the Nz values of the previous texture.

• Step 3:

Now that our silhouette and wave effects are ready, we draw the texture from

the previous step onto another texture buffer with the same size. This time our

task is to identify boundary pixels and assign boundary directions. For each

silhouette pixel, we copy the wave effect channels and check the four neighbors

of the pixel. There are two alternatives for picking the boundary pixel:

– outer boundary (pixels neighboring the object silhouette), and

– inner boundary (pixels on the object silhouette).

Figure 5.4 shows an example silhouette with outer and inner boundaries along

with initial directions at each boundary pixel computed from four neighbors of
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the pixel. Either one of these two alternatives boundary types can be used, as

long as the choice of boundary type is consistent in the following steps.

Outer boundary Inner boundary

Figure 5.4. Outer and inner boundaries and initial boundary directions.

When using outer boundaries, the boundary pixels are empty pixels with a non-

empty pixel as one of their four neighbors, and the boundary directions are the

sum of all directions towards non-empty boundaries. Note that this direction

can be a zero vector for some boundary pixels, if non-empty neighbors are on

either side of the pixel.

When using inner boundaries, if any one of the four neighbors of a silhouette

pixel is empty, this pixel is on the boundary and we assign a boundary direc-

tion. The boundary direction at this point is simply the sum of all directions

towards empty neighboring pixels. Note that when using inner boundaries, the

generated wave particles should be placed outside the silhouette using the fi-

nal boundary directions, so that the generated waves do not coincide with the

object silhouette.

If the Nz value at this pixel is positive (object is fully submerged at the pixel

location), we invert the direction since the direction of the waves generated at
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this point should be inwards from the boundary.

• Step 4:

This step is repeated a number of times to smooth the directions and distribute

the indirect wave effects. We draw the previous texture onto another texture

buffer with half the width and height. At each pixel of this new texture, we

look at the corresponding four pixels of the previous texture. We identify how

many of these four pixels are on the silhouette boundary and write it on a color

channel. If any of the four pixels is on the boundary, this pixel on the new

texture is also considered a boundary pixel. The final direction vector is taken

as the sum all four direction vectors, and the wave effect is the sum of the wave

effects from all non-boundary pixels. We repeat this step a number of times

(usually until the final texture size is 1x1).

• Step 5:

We move back to higher resolutions by repeating this step a number of times.

In this step we use two textures from the previous steps. The first texture is

the immediate previous texture. Since we are moving to a higher resolution, the

texture buffer of this step has twice the width and height of the first texture.

The second texture is a previous texture from an earlier step, which has the

same size as the current texture buffer (see Figure 5.5).

At each pixel, we compute the directions and indirect wave effects using the two

textures. The direction is simply the average of the corresponding directions

in the two textures. The indirect wave effect is computed only on the pixels

identified as silhouette boundary on the second texture. The value of the indi-

rect wave effect is the sum of the wave effect value on the second texture and

the wave effect value on the first texture divided by the number of boundary
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Figure 5.5. Previous textures used by the silhouette pyramid method while moving to

higher resolutions.

pixels (one to four) recorded on the first texture. Through this procedure, each

boundary pixel keeps half of its indirect wave effect, and distributes the other

half to neighboring boundary pixels.

We repeat this step until we reach the original silhouette resolution. When we

reach the original silhouette resolution, we also record the direct wave effects

on to this texture by directly copying them from the texture generated at the

end of Step 3.

The final texture we have at the end of these five steps has all the information we

need for generating wave particles. It has four floating-point values at each pixel, of

which two are the directions, one is the distributed indirect wave volume, and one is

the direct wave volume. We copy this texture to main memory and generate wave

particles as explained in the next subsection.
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5.1.4.2. Generating Wave Particles

The silhouette pyramid method explained above renders a low-resolution silhouette

image of the object such that each pixel keeps the direction for wave generation

together with direct and indirect wave volumes. After we copy this texture to main

memory, we examine each pixel and generate waves if the wave volume for the pixel

is non-zero.

For direct waves, we create a wave particle with 2π dispersion angle at the position

of the pixel. This wave particle corresponds to a circular ripple on the surface, and

it immediately subdivides into multiple wave particles propagating in all directions.

Therefore, the propagation direction we pick for this wave particle with 2π dispersion

angle is not important, and it is randomly assigned.

For indirect waves, we assign the direction at the pixel as the wave particle direction.

We compute the dispersion angle by checking the neighboring pixels that are on the

boundary and calculating the angle between the directions on those pixels with the

direction at the current pixel. We take the dispersion angle to be the average of these

differences. For determining the wave particle center position O, we use the following

equation that is derived from Equation 3.10:

` =
ω

α
, (5.3)

where α is the dispersion angle and ω is the wave particle width at the time of

creation, which is taken to be the corresponding size of a pixel on the silhouette

image in world coordinates. The wave particle center is computed as O = x − ` û,

where x is the corresponding position of the pixel and û is the wave particle direction.
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If we use damping, we adjust the wave particle amplitude such that when the damping

is applied at the current time step, the amplitude corresponds to the amplitude of

the wave to be generated.

Note that wave particles with zero dispersion angle never subdivide and continue

propagating until they are overwritten. This might lead to unrealistic results. There-

fore, we limit the dispersion angles such that when the computed dispersion angle

is too close to zero (determined by a user defined interval), we assign the minimum

positive dispersion angle in the permitted range.

5.1.4.3. Handling Wave Generation Bias

Both the silhouette pyramid technique and the fact that we use a low-resolution sil-

houette image tend to add some bias into the wave generation system. This produces

undesired results, such that certain directions are favored over others by the wave

generation method. To overcome this bias, we randomly rotate the silhouette image

such that the orthogonal top view of the wave generating object is differently oriented

at each time step. Note that the silhouette image is used for wave generation only and

it is completely independent of the height field grid. Therefore, randomly rotating

the orientation of which the silhouette texture is computed has no effect on any other

part of the simulation.
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5.1.5. Height Field Generation

The height field generation step is where the wave particle representation of the sur-

face deformation is converted into an extended height field. The extended height field

represents the vertical deformation as well as the horizontal deformation. Further-

more, in the extended height field structure we also keep the surface gradients (in

x and y directions ) for computing surface normals when rendering, and the water

surface velocity induced by the wave particles.

Perhaps the simplest way of converting the wave particle representation to a height

field is to render all wave particles onto a texture as circles. These circles are assigned

texture maps that keep the local deformation function DR for determining the wave

amplitude at each pixel, as well as other textures that help us easily compute the

deviations in surface positions and velocities caused by the wave particle. The final

height field is generated by rendering all wave particles with additive blending. While

this approach produces an accurate height field representation of the wave particles,

it tends to produce too many fragments for blending. In our early tests we found that

as the number of wave particles increases, height field generation with this method

can quickly become too slow.

To overcome this performance limitation, we developed an approximate method that

works significantly faster on current GPUs. This faster method begins with rendering

all wave particles as point primitives on the height field texture with additive blending.

Since point primitives are used, the number of fragments they generate for additive

blending is minimal. Then, we perform two filtering passes, one of which filters the

image in the horizontal direction and the other one in the vertical direction. At the
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end of these two filtering passes we achieve an approximation of the extended height

field representation of the wave particles in the system. While this approximate

approach has a constant additional cost due to the filtering passes, it can perform

orders of magnitude faster when there are a large number of active wave particles. In

the remainder of this section we explain this method in detail.

5.1.5.1. Rendering Wave Particles as Points

We begin with an empty height field with the desired resolution, where all pixel values

are initialized to zero. Then, we render each wave particle on this height field texture

as a point primitive with additive blending.

At this step it is important to have some kind of antialiasing; otherwise, the wave

particle motion that will be observed through the rendered height field will be aliased,

which produces very unrealistic results. In the GPU hardware on which we imple-

mented our system, we found that hardware antialiasing with floating point blending

while rendering to a texture was too slow. Therefore, we rendered each wave particle

as a point primitive with size 2, which creates a 2×2 cube. Then, we implemented

antialiasing in the fragment shader such that it scales down the output values we

compute by an antialiasing factor. In this way, we avoided the visual artifacts caused

by aliasing.

The output of this step is the sum of the antialiased amplitudes of all wave particles

rendered as point primitive, i.e. wave particle points.
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5.1.5.2. Filtering Wave Particle Points

After all the wave particles are rendered on the extended height field texture, the

next step is to filter this image in such a way that it will produce the extended height

field from these point samples.

The proper way of doing this would be to apply some kind of a 2D convolution

filter. This filter would check all the pixels around the computed pixel that are

closer than the wave particle radius. For each non-empty neighboring pixel, the filter

function would consider that there is a wave particle at that location with amplitude

as recorded in the height field texture and then would compute the 3D displacement

that is induced by that wave particle. The sum of all these displacements coming

from all non-empty neighboring cells would be the total displacement from all wave

particles around the computed pixel.

When simulating a rectangular pool, it is important to set the texture that we created

in the previous step in mirrored repeat mode. This way, wave particles that are close

to the edges of the pool will be partially reflected producing more realistic wave

reflections off the rectangular boundaries.

The vertical deviation of the 2D filter can be easily handled by deriving the filter

function dz from Equation 3.11 as

dz(p) =
1

2

(
cos

(
π|p|
r

)
+ 1

)
Π

(
|p|
2 r

)
, (5.4)

where p is the vector from the filter center position to the computed point, and r is

the wave particle radius.
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The horizontal deviation is more complicated, because it depends on the propagation

direction of the wave particle. However, we cannot reliably place the propagation

directions in the height field computed in the previous step, because multiple wave

particles can be on the same pixel of the height field overwriting the directions of each

other. Fortunately, we can eliminate this dependency on the propagation direction

using our knowledge about the wave particle system. We know that the horizontal

deviation induced by a wave particle with positive amplitude moves the water surface

in front of the wave particle in the opposite direction of the wave propagation, and

the water surface behind it is moved in the direction of wave propagation. In that

sense, a wavefront with positive amplitude pulls the water surface both in front of it

and behind it towards itself making the wave shape sharper. A negative wavefront

moves the water surface in the opposite direction, since its amplitude is negative. To

be able to move the surface towards the wave crest, we need to know the propagation

direction. On the other hand, we know that in a wave particle system that is a valid

solution to the wave equation, we have two identical neighbors for each wave particle.

Using this information, instead of moving the water surface along the wave propaga-

tion direction, we can pull the water surface directly towards the wave particle center.

The neighboring wave particles would also pull the water surface similarly towards

their centers, thereby correcting the error in the horizontal deviation direction. As a

result, our filter function for horizontal deviation becomes

dxy(p) = −
√

2

2
sin

(
π|p|
r

) (
cos

(
π|p|
r

)
+ 1

)
Π

(
|p|
2 r

)
p

|p|
, (5.5)

which is derived from Equation 3.19. Using this formulation introduces some error

to the horizontal deviation computation. Our numerical analysis concluded that the

magnitude of this error in the direction of wave propagation is bounded by 7.7% of

the wave amplitude, and in the perpendicular direction the error is bounded by 0.9%
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of the wave amplitude. The error is larger when wave particles are further apart and

the largest error happens when they are half a wave particle radius apart, which is

the maximum permitted distance between neighboring wave particles on a wavefront.

5.1.5.3. Separable Filter Approximation

While the 2D filtering method explained above produces an efficient implementation

of the height field generation, we can further reduce the cost of the filtering operation

by approximating the 2D filter with two 1D filters. We achieve this by approximating

the filter functions in Equations 5.4 and 5.5 as a tensor product of two 1D func-

tions. In this case, the vertical deviation for point p = {x, y} is approximated as

dz(p) ≈ dXz (x) dYz (y), where

dXz (x) =
1

2

(
cos
(πx
r

)
+ 1
)

Π
( x

2r

)
, and (5.6)

dYz (y) =
1

2

(
cos
(πy
r

)
+ 1
)

Π
( y

2r

)
. (5.7)

Similarly, the horizontal deviations are approximated as

dXx (x) = −1

2
sin
(πx
r

) (
cos
(πx
r

)
+ 1
)

Π
( x

2r

)
, (5.8)

dYx (y) =
1

4

(
cos
(πy
r

)
+ 1
)2

Π
( y
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)
, (5.9)

dXy (x) =
1

4

(
cos
(πx
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)
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)2

Π
( x

2r

)
, and (5.10)

dYy (y) = −1

2
sin
(πy
r

) (
cos
(πy
r

)
+ 1
)

Π
( y

2r

)
, (5.11)

such that dx(p) ≈ dXx (x) dYx (y) and dy(p) ≈ dXy (x) dYy (y). Figure 5.6 compares

the results of the 2D filter and the separable filter approximation for a single wave

particle. As can be seen from this figure, the difference in perceived shape is minimal.
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Our numerical analysis showed that the error introduced by the separable filter ap-

proximations are less than 6.4% of the wave particle amplitude for vertical deviation

and less than 3.1% of the wave particle amplitude for horizontal deviation.

2D filter Separable Filter Approximation

Figure 5.6. Comparison of the filtering result produced by the 2D filter and two 1D

filters using the separable filter approximation.

5.1.5.4. Additional Data in the Height Field

In our implementation, we also keep the surface gradient and the water surface ve-

locity along with the vertical and horizontal deviations. The surface gradient is used

for computing surface normals, which are used while rendering the water surface.

Once we compute the vertical and horizontal deviations, we can easily calculate the

surface gradients using finite differences. Similarly, the water surface velocity can be

computed from the difference of the deviations on the height field at two consecutive

time steps.

On the other hand, we can also compute the surface gradient and the water surface

velocity using a separable filter approximation similar to the ones described above. In

our implementation, we used these analytical approximations rather than the discrete

approximations obtained by finite difference. Analytical approximations are especially
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favorable when the surface deviation of the height field has high frequency changes.

The GPU shaders we use in our implementation are included in Appendix C.

Finally, we add the surface deviations caused by ambient waves onto the deviations

of the wave particles. For generating ambient waves we used the technique described

in Tessendorf’s SIGGRAPH 2001 course notes [2001]. This method produces a 2D

texture of 3D surface deformations of ambient ocean waves at each time step. This

2D texture is seamlessly tileable and the animation of the ambient ocean waves forms

a continuous loop. We precompute multiple time steps of ambient ocean waves and

combine the 2D textures we gather from this computation into a 3D texture. This

texture allows us to easily look up what the vertical and horizontal surface devia-

tions are at any point at any given time. Since in our implementation we compute

the surface gradient and the wave velocity using an analytical approximation, we

also precompute these values for the ambient waves and store them similarly in 3D

textures.

As a result, the extended height field we generate represents the final water surface

to be rendered and to be used for water object interaction computations.

5.1.5.5. Projected Height Field

When simulating a pool, we can place the height field such that it represents the

whole water surface of the pool. On the other hand, when simulating an ocean we

cannot represent the whole water surface as a height field, because the simulated

ocean water surface can be virtually infinite, while the height field is not. Therefore,

when simulating an ocean scene, we generate a height field only for the part of the
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water surface that is visible through the camera. This is accomplished by projecting a

screen-space grid onto the part of the x-y plane that intersects with the view frustum

of the camera. Figure 5.7 shows the part of the water surface that is used for height

field generation based on the view frustum of a camera. Details of this approach can

be found in Claes Johanson’s M.S. thesis on real-time water rendering [2004]. We

typically project the grid onto a slightly larger area than the view frustum of the

camera to ensure that when the surface deformations of the height field are applied,

the grid still covers the whole camera view.

Figure 5.7. Camera attached grid for height field generation in ocean scenes.

In an ocean setting where the height field moves around with the camera, the cor-

responding size of a pixel in world coordinates can be different at different locations

on the height field texture. Therefore, our filters get a different size at each pixel. In

this case, it is useful to set a minimum size to the projected surface; otherwise, when

the camera is too close to the water surface, the sizes of our filters can be too large

for efficient computation.
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Furthermore, the analytical approximations for the surface gradient are useful only

when the size of a pixel on the height field texture is smaller than the size of the wave

particles. When the pixel size is larger than the wave particle size, the filter size be-

comes smaller than a pixel and all the values come from a single pixel, which makes

it impossible to compute the surface gradient analytically. This typically happens

around gazing angles beyond a certain distance from the camera. As a solution, we

switch to finite differences for pixels on the height field, wherever the corresponding

size of a pixel in world coordinates is larger than the size of the wave particle. Alter-

natively, one can set a minimum limit to the corresponding size of a the wave particle

radius on the height field, which would ensure that the surface gradient would be

computed by considering multiple pixel locations on the height field texture.

5.2. Water Rendering

Properly rendering the water surface is crucial for achieving a plausible water anima-

tion. If the water surface we render does not really look like water, no matter how

realistic the water animations are that we produce using our simulation system, the

end result will not look like water.

Real-time rendering of water inherits certain challenges, because the water surface is

highly refractive and reflective. For this reason, perhaps the best way of rendering

water is ray tracing, which cannot be implemented with the desired efficiency even

on modern graphics hardware that we have today. However, if real-time ray tracing

becomes fast enough in the future, ray tracing will probably be the preferred way

of rendering water. Until then, we need to employ various tricks to approximate
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or “fake” certain visual components of water to achieve fast and plausible water

rendering.

Our water rendering system has many similarities to techniques described in Claes

Johanson’s M.S. thesis on real-time water rendering [2004], when it comes to handling

refractions and reflections on the water surface as well as attaching the rendered

water grid to the camera in ocean scenes. In our system, we also include a caustics

generation method in scenes where the bottom surface underneath the water is visible

through refraction. Figure 5.8 shows a frame from our real-time wave simulation and

water rendering system. In the remainder of this section, we discuss how we handle

different visual components of water rendering in our system.

5.2.1. Reflections

The water surface is highly reflective especially at near gazing angles. The aim of

the reflection computation is to approximate the color of the reflected view ray that

originates at a point on the water surface.

Since we cannot use ray tracing, we need to make some approximations to compute

the reflection color. We consider two limit cases, in which the color of the reflection

comes from an object at infinity and when it comes from an object at the water

surface. If the reflected object is infinitely far from the origin of the reflection ray, the

position of the ray origin can be ignored and the reflection can be determined from

the ray direction only. On the other hand, when the reflected object is very close to

the ray origin, the position of the ray origin becomes important and the ray direction

can be approximated as the reflection direction from a flat surface. Based on this



122

Figure 5.8. A frame captured from our real-time water rendering implementation that

includes reflections, refractions, and caustics.

analysis, we separate reflections into two groups:

• Far reflections, which are reflections from distant objects, and

• Near reflections, which are reflections from objects that are close to the water

surface.

Far reflections consist of the sky dome and distant objects that are far from the water

surface. For determining the color of far reflections we use the reflection direction

to look up color from a precomputed cube map. This cube map contains the color
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of reflections for any given reflection direction. For generating this cube map, we

render the six cube map faces one by one by placing a camera at the center of the

scene and rendering the sky dome and all distant objects. In our implementation we

perform this cube map generation only once at the beginning of the simulation, since

our distant objects are stationary. If the scene has animating distant objects, the

cube map for far reflections should be rendered at each frame.

Near reflections consist of objects in the scene that are interacting with water and

other stationary objects that are close to the water surface, such as the edges of a

pool. For computing near reflection texture, we assume that the reflection direction

at any point on the water surface is equivalent to a flat water surface where the

surface normal is pointing directly upward. Assuming that the water surface is flat,

we can compute the near reflection texture by flipping the scene upside down, creating

a mirror image of the scene as seen from the flat mirror surface, and rendering this

mirrored scene from the current camera position. Reflections do not include the parts

of the objects that are under the water surface. We replicate this effect by discarding

objects that are underneath the water and discarding the below-surface fragments of

the objects that are partially in the water.

For computing the near reflections while rendering the actual water surface, we look

up the near reflection texture at the position of the pixel. If no objects are visible

through the near reflection texture, we use far reflections instead.

Since the near reflection texture does not include the actual water surface normal,

the generated near reflections are not affected by the surface normal changes and

they look unrealistically flat. To overcome this we perturb the near reflection texture
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lookup coordinate slightly by the horizontal component of the surface normal scaled

with a user defined constant value, which determines the amount of this perturbation.

While this perturbation overcomes the unrealistic flatness of the near reflections, it

creates problems near the edges of the view where the perturbed texture coordinate

can be outside the view, i.e. outside the computed near reflection texture limits. One

way to overcome this is to slightly extend the view frustum while rendering the near

reflections texture. Unfortunately, this approach introduces difficulties while aligning

the computed reflection texture with the actual camera image and incorrect aligning

can cause shifts in near reflections, which might be different at different parts of the

image. Alternatively, one can scale the perturbation magnitude near the edges of the

view to guarantee that the perturbed reflection direction can never fall outside the

limits of the near reflection texture. In our implementation we simply changed the

texture tiling option for the near reflection texture such that it uses mirrored repeat,

so that even when the near reflection texture coordinate falls outside the limits, the

computed near reflection color comes from some pixels on the near reflection texture

that are close to the edge. While the artifacts of this simple solution can be visible,

they are often difficult to notice when you are not specifically looking for them.

Another problem with the near refraction texture is that it does not include the

deviation of the water surface, since it is computed assuming that the water surface

is flat. As a result, cracks might be visible between objects on the water surface and

their reflections. To avoid these cracks, we deform the objects while rendering the near

reflection texture. For this deformation we use the basic height field that is generated

for computing water to object coupling forces as explained in Section 5.1.2, so that

the deviation we read from the height field does not include horizontal deviation and

it corresponds to the actual vertical deviation of the computed horizontal position.
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5.2.2. Refractions

Refractions are handled similar to near reflections. For producing the refraction

texture, we render the part of the scene underneath the water surface, which includes

the stationary objects like the bottom of the pool as well as the parts of the interacting

objects that are inside the water. In the refraction texture we exclude all objects that

are outside the water and fragments that are partially above the water surface. When

rendering the water surface, we look up this refraction texture to find the refraction

color at a given pixel in the view.

When a view ray, which originates at the camera position and goes through the

shaded pixel, is refracted, its direction rotates towards the inverted normal of the

water surface. As a result, the objects inside the water appear shorter, i.e. scaled

down in the vertical direction. The amount of this scaling depends on the angle

between the view direction and the surface normal based on Snell’s law. In our

implementation we account for this scaling with a constant scale factor.

Similar to the near reflections, the refractions computed at the pixel position look flat,

since the refraction texture is prepared with the assumption that the water surface

normal is in the upward direction everywhere. To account for the actual surface

normal we can perturb the texture coordinate for refraction lookup, similar to the

near reflection texture lookup.

However, when it comes to refractions, it is not as easy to come up with a user

defined perturbation amount that would produce plausible results everywhere. For

example, refractions of the objects that are close to the water surface should not be
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perturbed too much; otherwise, they may not be aligned with the rest of the object

that is outside the water. On the other hand, using a small perturbation would not

be enough for objects deeper inside the water, such as the bottom of a pool.

To overcome this, together with our refraction texture, we also keep a refraction depth

texture that keeps the vertical depth of each pixel in the refraction texture. While

computing the refraction color at a pixel on the water surface, we first lookup the

refraction depth texture without any perturbation. The depth value we read from

this texture is used as an estimate for the actual depth of the refracted object. We

scale the perturbation amount using this depth value, and then look up the refraction

texture using the perturbed texture coordinate. As a result, refractions that are close

to the water surface are perturbed a small amount, while the refractions coming from

deep inside the water are perturbed more based on the water surface normal.

Just like rendering the near reflections texture, while rendering the refraction texture,

we deform the objects using the height field to avoid cracks between the objects

floating in water and their refractions.

5.2.3. Caustics

In water rendering, caustics are not only interesting visual elements that enhance the

quality and realism of generated images, but also extremely important in providing

necessary cues to perceive the shape of the rendered water surface. Figure 5.9 shows

a height field surface rendered from top view with and without caustics. As can be

seen from this image, caustics play a crucial role in visually defining the shape of the

water surface. Without proper caustics, visual cues provided by refraction are often
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Figure 5.9. A height field water surface rendering with and without caustics. The

image on the left only has reflections and refractions. The image on the

right shows the same water surface with caustics computed using our fast

caustics computation method for height field surfaces.

insufficient for a proper perception of the water surface.

In our system, we only consider refractive caustics that appear at the bottom of the

pool due to the refractions of light through the water surface. In reality, caustics

appear due to reflections of light from the water surface as well, but those caustics

are not included in our system.

Since we only consider refractive caustics, they only appear underneath the water.

Therefore, we use the caustics while rendering the refraction texture on objects un-

derneath the surface. The caustics generation step produces a caustics map texture,

which is used as an illumination map while rendering the objects for refractions. In

our implementation, we ignore the caustics on the interacting objects and use the

caustics map only for rendering the bottom of the pool.

Unfortunately, computing caustics can be computationally expensive. In our imple-
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mentation of the wave particles method, we first used the real-time caustics compu-

tation technique proposed by Shah et al. [2007]. Afterwards, we developed a special

caustics computation technique that is designed for caustics generated by refractions

from height field surfaces onto a planar receiver. This special method is not as gen-

eral as most previous real-time caustics computation techniques, but unlike previous

methods it can reach extremely high frame rates making it an ideal choice for a wave

particle simulation implementation. In the remainder of this section, we explain this

fast caustics computation technique in detail.

5.2.3.1. Fast Real-time Caustics from Height Fields

For fast computation of caustics we follow light paths starting from the caustic-

receiving surface instead of the light source. To simplify the computation, we assume

that the caustic-receiving surface is a flat finite plane. The final result of our caustics

computation is a caustics map that is mapped onto this plane. Figure 5.10 shows the

caustics map of the frame in Figure 5.9 computed using this method. The grayscale

value of each caustics map pixel represents the incoming light intensity of the corre-

sponding pixel area on the caustic-receiving plane.

To produce this caustics map, we consider the refracted radiance from the height field

water surface towards the caustic-receiving plane. For each pixel of the caustics map,

we sum the refracted radiances towards the pixel from all points within a rectangular

region R on the water surface. We refer to the center of this rectangular region as

the illumination center.

Let z = 0 be the ground plane underneath the water surface and PG be a point on
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Figure 5.10. The final result of our caustics computation is this caustics map that

includes bright and dark areas corresponding to caustics. This is the

caustics map of the frame in Figure 5.9.

this plane (Figure 5.11). The rest state1 of the height field is represented by the plane

z = h, where h is the rest depth that corresponds to the distance between the ground

plane and the water surface. The illumination center PC that corresponds to the

ground point PG can be found by

PC = PG + hL′ , (5.12)

where L′ is the refracted light direction L from the rest surface with normal ẑ in

positive z-direction.

The size of the rectangular region R limits the part of the height field surface region

1In the rest state, the water surface is flat and all the values of the height field are
equal to a constant value.
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from which we can capture the illumination contribution to PG. In other words, our

computation is accurate as long as the incoming radiance towards PG through the

water surface is confined within this rectangular region. The required size of R to

capture 100% of the illumination is a complicated function of L, h, and maximum

surface normal deviation. When the height field water surface has high frequency

deformations with large magnitudes, this size can be arbitrarily large and even cover

the whole height field surface. However, in our simulations we mostly produce smooth

water surfaces with low frequency deformations. Therefore, even a very small rect-

angular region can cover a significant portion of the incoming light, regardless of the

magnitudes of the deformations.

Figure 5.11. The illumination on point PG comes from the refractions trough the rect-

angular area on the water surface.

Let AG denote the area of a caustics map pixel on the caustic-receiving plane. As-

suming that the rectangular region R is sufficiently large, the average light intensity
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IG over the area AG can be written as

IG = Ir(AR, AG)
AR
AG

, (5.13)

where Ir(AR, AG) is the reflected light intensity though the rectangular region R

towards AG, and AR is the area of R. This equation can be written as an area

integral over R,

IG =

∫
R

Ir(Aw, AG) dAw
AG

, (5.14)

where Aw is an infinitesimal area on the water surface within R. To compute this

integral we discretize this equation as

IG =
∑
i

Ir(Ai, AG)
Ai
AG

, (5.15)

where Ai is the ith sample area within R.

We approximate the reflected intensity Ir for the ith sample by assuming that the

surface normal is constant within the area Ai. Thus, Ir(Ai, AG) ≈ αIr(Ai), where

Ir(Ai) is the average refracted light intensity through Ai and α is the fraction of the

refracted area of Ai that intersects with AG.

5.2.3.2. A Two-Pass Algorithm for Fast Caustics

To generate the caustics map efficiently we use a two-pass approach that minimizes

the number of texture lookups (Figure 5.12). In the first pass we read the height

field texture at multiple points along one direction (x-axis) storing the illumination

contributions of these points in multiple textures. In the second pass we read the

textures generated in the first pass along the perpendicular direction (y-axis) yielding
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the final caustics map.

Figure 5.12. The two-pass algorithm: the first pass reads the height field texture and

generates multiple outputs; the second pass reads the result of the first

pass and produces the final caustics map.

In the first pass, for each pixel Pi,j
G of the caustics map, we find the corresponding

illumination center on the height field and read N samples along the x-axis on either

side of the illumination center. We place these samples on the height field such that

the distance between two consecutive samples is equal to the width of a caustics map

pixel, such that each sample represents an area on the height field surface that is equal

to the area of a caustics map pixel. Note that the resolution or the orientation of

the height field does not have to match the caustics map, since we base our sampling

density and orientation only on the caustics map.

The aim of this first pass is not only to find the illumination contributions of these N

samples on the pixel Pi,j
G , but also on the neighboring M pixels of the caustics map

along the y-axis, from P
i,j−M/2
G through P

i,j+M/2
G . Therefore, the output of the first

pass needs M + 1 color channels, each of which correspond to a different pixel on the

caustics map. On modern graphics hardware we can output up to 64 channels using

multiple render targets (8 render targets with RGBA channels). However, in practice

we found that as few as 8 channels can be sufficient since most of the illumination

contribution comes from points close to the illumination center.



133

To compute the values of these M + 1 channels, we calculate the refracted ray di-

rections of each one of the N samples on the height field and find where these rays

intersect the ground plane. Assuming the surface normal is constant within each sam-

ple area, a pixel sized square centered on each intersection point indicates the area

illuminated by the refracted light through that sample. For each one of these square

areas, we find the nearest two pixels between P
i,j−M/2
G and P

i,j+M/2
G , then we compute

the fraction of this square that overlaps with each one of these two pixels. The sum of

all these fractions yields the total fraction of the refracted refracted intensity through

these N samples on these M + 1 pixels.

The pseudo code for the first pass is provided in Figure 5.13 for the case of N = 7.

Examining this this code one can easily see that a large portion of the computation

in the first pass is repeated by multiple neighboring pixels. The computation of the

refracted ray directions and their intersections with the ground plane are repeated

multiple times. In our implementation we introduce an additional pass before the

first pass to compute the intersection positions of the refracted light rays with the

ground plane. The first pass reads the output of this additional pass, rather than the

height field itself to reduce its computation load.

In the second pass, for each pixel Pi,j
G , we simply sum the values from the previous

pass that correspond to this pixel. These values are stored in different output channels

of the first pass at the pixels P
i,j−M/2
G through P

i,j+M/2
G . The resulting total values

yield the fraction of incoming light at each pixel of the caustics map. The pseudo

code for the second pass is provided in Figure 5.14 for the case of N = 7.

The two-pass algorithm explained here enables efficient computation of caustics. Most
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#define N 7

#define N_HALF 3

struct Pass1Out {

float4 color0 : COLOR0;

float4 color1 : COLOR1;

}

void CausticsPass1 ( out Pass1Out Out

, in float2 P_G : TEXCOORD0

, in float2 P_C : TEXCOORD1

, uniform sampler2D heightField

)

{

// initialize output intensities

float intensity[N];

for ( int i=0; i<N; i++ ) intensity[N] = 0;

// initialize caustic-receiving pixel positions

float P_Gy[N];

for ( int i=-N_HALF; i<=N_HALF; i++ ) P_Gy[i] = P_G.y + i;

// for each sample on the height field

for ( int i=0; i<N; i++ ) {

// find the intersection with the ground plane

float3 pN = P_C + ( i - N_HALF ) * xDirection;

float2 intersection = GetIntersection( heightField, pN );

// ax is the overlapping distance along x-direction

float ax = max(0, 1 - abs(P_G.x - intersection.x));

// for each caustic-receiving pixel position

for ( int j=0; j<N; j++ ) {

// ay is the overlapping distance along y-direction

float ay = max(0, 1 - abs(P_Gy[j] - intersection.y));

// increase the intensity by the overlapping area

intensity[j] += ax*ay;

}

}

// copy the output intensities to the color channels

Out.color0 = float4( intensity[0], intensity[1], intensity[2], intensity[3] );

Out.color1 = float3( intensity[4], intensity[5], intensity[6] );

}

Figure 5.13. The pixel shader pseudo code for the first pass.

of the computation is carried out in the first pass and the second pass merely combines

the outputs of the first pass to produce the final caustics map. The computations of

both of these passes take place in the fragment shader on the graphics hardware.

The efficiency of the algorithm comes from the fact that it does not require a high

resolution water surface or a large number of point primitives to be rendered. The

whole computation takes place in the fragment shader. It has a sequential texture
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void CausticsPass2 ( out float4 color : COLOR

, in float2 P_G : TEXCOORD0

, uniform sampler2D inColor0

, uniform sampler2D inColor1

)

{

float val = 0;

val += tex2D( inColor0, P_G + float2( 0, -3 ) ).r;

val += tex2D( inColor0, P_G + float2( 0, -2 ) ).g;

val += tex2D( inColor0, P_G + float2( 0, -1 ) ).b;

val += tex2D( inColor0, P_G ).a;

val += tex2D( inColor1, P_G + float2( 0, 1 ) ).r;

val += tex2D( inColor1, P_G + float2( 0, 2 ) ).g;

val += tex2D( inColor1, P_G + float2( 0, 3 ) ).b;

color = val;

}

Figure 5.14. The pixel shader pseudo code for the second pass.

access pattern, which highly utilizes the texture cache on the graphics hardware.

This algorithm produces physically-based results as long as the caustics receiving

surface is a flat finite plane. Therefore, using our method caustics on non-flat surfaces

can only be approximated.

5.3. The Overall Water Simulation and Rendering System

In our implementation of the wave particle simulation and water rendering system, we

make use of the parallel computation power of the GPU for computing various steps

of the simulation system in addition to rendering. We also use the parallelization

offered by the multi-core architecture of the CPU with multiple threads. In our

implementation we used three CPU threads: main thread, rigid body thread, and

wave particle thread. Figure 5.15 shows a diagram of our three CPU threads and

their communication. The main thread is responsible for most of the computation

and it includes all GPU related calls. The rigid body thread handles the rigid body
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– Render height field
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New
wave
buffer

Figure 5.15. Overview of our implementation of the wave particle simulation.

simulation on the CPU. Finally, the wave particle thread performs all operations that

change the wave particle system.

We place all GPU related calls into the main thread, so that different threads do not

try to use the GPU at the same time. Note that depending on the architecture of

the computer system, placing all GPU related tasks on one thread might increase or

reduce the efficiency of the computation. Our early tests on the computer hardware

on which we implemented our system indicated that having all GPU related tasks on

a single thread could provide better performance. However, this may or may not be

true for other hardware/software systems.

In our implementation, the main thread is responsible for a large portion of the

simulation computation and all of the frame rendering computation. For each frame,

the main thread first calls the simulation time step, and then renders the frame and

displays it on the screen. The simulation time step begins by advancing the time

value, which is read by all the threads for determining the current time. The next
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step renders the textures for water to object coupling. For this step, the main thread

requests the placements and velocities of all interacting objects from the rigid body

thread. Afterwards, the main thread waits for the GPU to finish rendering the force

texture and copies these textures to the main memory. The force textures include the

drag and lift forces and their torques, but not the buoyancy forces. The buoyancy

forces are computed at the next step together with the wave generation textures.

Then, all these forces are passed to the rigid body simulation and the rigid body

simulation for the time step begins. Afterwards, the main thread computes the new

wave particles to be generated and places them in a new wave buffer. This buffer

is read by the wave particle thread when creating new wave particles. Finally, the

main thread renders the extended height field using the wave particles and continues

to render the frame image to be displayed.

The rigid body thread is responsible for the rigid body simulation. The main thread

triggers the rigid body simulation when the object forces are ready and waits for the

rigid body simulation, when the rigid body thread can not complete its time step by

the end of the simulation time step of the main thread.

The wave particle thread handles all operations acting on the wave particle system.

It constantly monitors the new wave buffer that is written by the main thread, and

places new wave particles that are in the buffer into the wave particle list. It also

monitors the time value and performs all wave particle subdivision and reflection

operations that should be completed until the end of the current time step. In our

implementation, we do not have a mechanism to ensure that the wave particle thread

completes its computation for the time step. This is because the wave particle thread

does not actually perform any iteration as discussed in Section 5.1.1.1 and the current



138

positions of the wave particles can be computed at any time on the GPU while

rendering the height field. All operations that are handled by the wave particle thread

are very fast to compute and they can be completed in the background. Therefore,

in our implementation we assume that the wave particle thread always has enough

time to complete its operations for the current time step, and that the main thread

does not have to wait for it.
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CHAPTER VI

RESULTS

In this chapter we explore some of the results we have obtained with our implemen-

tation of the wave particles method. We first provide a qualitative analysis of our

results and then we present the results of our performance analysis.

6.1. Qualitative Analysis

6.1.1. Analyzing the Wave Shape

To analyze the wave shape, we observe the waves generated directly from user inter-

action. Figure 6.1 shows the deformed water surface due to wave particles generated

when the user drags the mouse pointer over the water surface. As the user clicks on

the water surface and drags the mouse cursor, we create wave particles in the form

of a circular ripple at the position of the mouse cursor. When the user drags the

mouse cursor in one direction, the generated wave particles at different time steps

superimpose and form a wave shape similar to that shown in Figure 6.1.

The superposition of wave particles includes the longitudinal component as well as the

transverse component of waves, and the extended height field we generate from the

wave particle system includes the effects of both vertical and horizontal deformations
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Figure 6.1. Waves generated by direct user interaction.

of the water surface. As the amplitude of the final wave shape increases, the wave

crest becomes sharper as occurs with natural water waves. This demonstrates the

visual importance of including the longitudinal wave component in the wave particle

formulation.

Note that even though the shape of the particular wave front in Figure 6.1 makes

it seem like the wave is about to break, it does not break, because breaking waves
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are not supported by the wave particles method. This is because the breaking wave

motion cannot be represented using the wave equation. We discuss breaking waves

further in Section 7.2.2.

6.1.2. Analyzing Water to Object Coupling

For testing the accuracy of our water to object coupling, we compare our simulation

results to real world experiments. The second row of Figure 6.2 shows frames from a

video recording of a ball floating in a wave tank. The top row of this figure shows the

scale of the wave on the right, and a composite of the second row frames on the left.

As can be seen from these frames, and from the composite, the ball makes a circular

motion as the waves pass. This is consistent with the formulations of Gerstner [1802].

The third row of Figure 6.2 shows corresponding frames taken from our simulation

with wave particles, and the bottom row is organized like the top row. In this simula-

tion, we have not modeled the waves as ambient waves that would match the shape of

the waves in the experiment. Instead, we used a wave particle system for producing

these waves. On one side of the simulated wave tank, we generate new wave parti-

cles at every time step that propagate towards the other side of the wave tank. For

determining the amplitudes at of the generated wave particles at each time step t we

use

at = amax sin

(
2πt

T

)
, (6.1)

where amax is the maximum amplitude of the generated wave particles and T is the

period of the waves. We tuned the values of amax and T such that the shapes of

the generated waves in the simulation match the shapes of the waves in the recorded
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Figure 6.2. Circular motion due to waves moving from left to right. (top two rows)

video capture, (bottom two rows) simulated using the wave particles

method with water-object interaction.

experiment.

Comparing the results of the simulation to the results of the experiment, we see that

the wave particle formulation of waves along with the water to object coupling com-

putation can produce realistic results. The circular motion of the ball we observe

in the experiment is properly simulated with our implementation of the wave par-

ticles method. Note that this motion cannot be simulated with simple height field

formulations that do not include the horizontal motion of water.

Notice that the shape of the circle in the real experiment is horizontally elongated,

which can be seen at the top left in Figure 6.2. Even though the motion looks like an



143

ellipse on this image, this is actually caused by the fact that each wave pushes the ball

slightly to the right side in the wave tank. This is because the waves in the wave tank

cause some minor mass transport at the water surface in the direction of the wave

propagation. While ideal waves should cause no mass transport, waves generated in

a wave tank do produce this effect.

For testing the behavior of our water to object coupling in more complicated scenarios,

we prepared the offshore boat model seen in Figure 6.3. This boat model consists of

two propellers and two rudders that are attached to the boat body with single-axis

rotational joints. We apply motor torques for rotating the propellers and the rudders

based on user interaction. These torques merely rotate the joints and do not, in

themselves, exert any net force accelerating the boat.

Figure 6.3. Propellers and rudders of offshore racing boat.

When the propellers are rotated, the lift forces on the blades of the propellers produce

a net force applied to the propellers, which is translated to the boat body. As a result,

the boat begins to move forward like a real boat. The lift force on the boat body

pushes the bow of the offshore boat upward. Similarly, when the rudders are turned,

the lift forces on the rudder blades as well as the lift force that is directly applied on
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the boat body due to water to object coupling make the turn in the desired direction.

Notice that in Figure 6.3, boats roll toward the direction that they are turning, just

like boats do in reality. This motion is the direct result of the water to object coupling

computation.

While the results we obtained with the offshore boat model show that our simulation

system can properly handle complicated interactions of water with floating objects,

the physical accuracy of the results we obtained is limited by the assumptions made

in our method. Consider a real boat similar to the one in Figure 6.3. The rudder of

such a boat is almost always placed right behind the propeller. In reality this provides

better steering performance, since the motion of water induced by the propeller has

its highest speed right below the propeller. However, in our simulation we do not

compute the 3D water flow around the interacting object; therefore, placing the

rudder at some other position than right behind the propeller does not make much

of a difference in terms of the effectiveness of the rudder.

6.1.3. Analyzing Wave Generation

The wave generation method we describe in Section 4.1 is a significantly simplified

model of the real world wave generation process. Although our method might not

produce results with accuracy suitable for engineering or design purposes, our goal is

simply to produce visually plausible waves based on water-object interaction.

Figure 6.4 shows 5 consecutive frames taken from a simulation of a box shaped object

falling into the water. As can be seen in this figure, waves are generated around

the object when it hits the water surface. The water to object interaction forces
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(specifically the drag force) immediately slow down the object after it falls into the

water. Therefore, the largest waves are generated when the object first hits the

water surface. Afterwards, the motion of the object is significantly slower; thus, the

object displaces a smaller volume of water, generating wave particles with significantly

smaller amplitudes.

Figure 6.4. A box shaped object falling into water and generating waves.

In Figure 6.5 we show a more complicated example for wave generation. In this case,

waves are generated around a boat due to its motion in water. This boat has a similar

setup to the offshore boat shown in Figure 6.3. Unlike the offshore boat, it has a single

propeller and a single rudder. Both the propeller and the rudder are used in wave

generation along with the boat body; therefore, in terms of wave generation there is

no difference between these three objects. Looking at the four frames in Figure 6.5

we see that the wave generation method can produce quite plausible results. Also

notice that the wave crests get a sharp shape when the amplitudes of the waves are

high due to the longitudinal component of waves and the wave crests get smoother

as the wave amplitude decreases, forming natural looking wave shapes.
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Figure 6.5. Boat in water tank, showing surface waves generated by the motion of the

boat.

6.2. Performance Analysis

To demonstrate the speed and scalability of our approach, we simulated a number

of scenes on a standard PC with a 2.13GHz Core2 Duo processor and GeForce 7900

GTX graphics card, recording performance data for each run. This data is shown in

Table 6.1. Note that the sum of the times spent for each component of the simulation

is greater than the total simulation time. This is because we used multi threading

with two cores, so that some of these computations could be carried out in parallel.

Our boat in tank scene from Figure 6.5 has a height field resolution of 128× 512, and



147

Table 6.1. Time results of our test scenes

boat in offshore boat & boat massive
tank ocean boxes armada boxes

Maximum Wave Particles 100,000 100,000 600,000 8,000,000 8,000,000
Height Field Resolution 128×512 256×256 256×512 256×512 256×512
Number of Objects 3 5 128 5,043 9,261
Number of Faces 176 130 6,176 295,856 444,528

Wave Particle Iteration 0.28 ms 0.12 ms 1.28 ms 57.54 ms 85.95 ms
Water to Object Coupling 0.29 ms 0.30 ms 1.74 ms 36.95 ms 129.23 ms
Rigid Body Simulation 0.04 ms 0.06 ms 0.49 ms 75.51 ms 1061.60 ms
Wave Particle Generation 1.15 ms 1.15 ms 2.59 ms 142.50 ms 115.15 ms
Height Field Generation 4.97 ms 6.27 ms 20.40 ms 132.93 ms 159.12 ms

Total Simulation Time 5.87 ms 7.83 ms 24.49 ms 206.78 ms 1073.38 ms
Frame Rendering Time 16.87 ms 8.43 ms 14.91 ms 126.04 ms 155.87 ms

Total Frames Per Second 44.1 fps 119 fps 27.3 fps 3.0 fps 0.8 fps
Simulation Frames Per Sec. 170 fps 128 fps 40.8 fps 4.84 fps 0.93 fps

includes a single propeller and rudder as user controllable elements, so the number

of simulated objects is three and the total number of simulated object faces is 176.

We allowed the simulation to use up to 100,000 active wave particles by keeping

the amplitude threshold for killing wave particles very low. Nearly identical results

can be achieved using far fewer (less than 10,000) wave particles. In Figure 6.5, the

height field generation operation is by far the slowest part of the system, and takes

about 5 ms. This is because the height field generation has a constant cost associated

with the resolution of the generated height field. The rest of the simulation system

works rather efficiently resulting in 5.87 ms total simulation time per frame, which

corresponds to 170 fps.

Our offshore ocean scene shown in Figure 6.6 has a height field resolution of 256×256,
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Figure 6.6. Offshore ocean scene with a single offshore boat that has two rudders and

two propellers in the open ocean.

and included a single offshore boat with two rudders and two propellers. The number

of simulated objects is five and the total number of simulated object faces is 130.

We limited the number of wave particles to 100,000 and we could achieve a total

simulation time of 7.83 ms, which corresponds to 128 fps. The computation times

of this scene are very similar to the boat in tank scene. The only difference is that

the height field generation takes a little more time, 6.27 ms, as compared to 4.97 ms

in the boat in tank scene. This is mainly because generating the height field for the

ocean is more costly than generating the height field for a pool.
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Figure 6.7. Boat and boxes scene with 125 boxes interacting with water.

Our third scene is the boat & boxes scene, shown in Figure 6.7, which used 600,000

active wave particles, a height field resolution of 256×512, and included an active boat

driving through water populated with 125 boxes with a total of 6176 faces. Each box

had eight triangular faces on each side, so that the lift and drag forces applied at the

center of these faces could produce proper torque and rotate the boxes realistically.

We achieved real-time performance with this scene as well. Each component of the

simulation in this scene was significantly slower than the previous two scenes due

to the increased number of interacting faces and objects. The number of objects

not only increases the computation time of interaction computations, but also more
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object interactions generate more wave particles, thereby increasing the computation

of the wave particle system as well. The height field generation computation is the

slowest part of the system in this scene as well, which takes about four times longer

as compared to the previous two scenes. This is because in addition to the constant

cost of height field generation, in this scene we have a lot more active wave particles;

therefore, the point rendering step of the height field generation takes significantly

longer. However, we still could achieve real-time performance with about 24.5 ms

simulation time, which is 40.8 fps.

To stretch our method, we constructed two massive scenes shown in Figure 6.8 and

6.9, both using 8,000,000 active wave particles with height field resolutions of 256×

512. The first, boat armada, had 1681 active boats with 295,856 faces, and runs at

several frames per second. The second, massive boxes, had 9261 falling and floating

boxes with 444,528 faces, and runs at nearly one frame per second. Comparing the

computation times of different components in these two large scale simulations and

in the other three scenes, we can see that the wave particle generation step took

substantially longer and became very close to the height field generation, which was

the slowest component in the other three scenes. The sheer number of interacting

objects causes a large number of wave particles to be generated at every frame, which

significantly increases the computation time of this component. In addition, the

massive boxes scene spent quite a lot of time for rigid body simulation, since a large

number of boxes were in collision throughout the simulation.

The computation times for each step of the simulation have different scene complexity

dependencies:
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Figure 6.8. Boat armada scene with over 1600 boats, all interacting with water and

generating wave particles.

• The cost of wave particle iteration is linearly dependent on the number of wave

events within a time step, which is roughly proportional to the number of objects

in the scene interacting with the water. Each object generates wave particles at

every frame. When the object motion is slow, the generated wave particles die

quickly and they do not add a major load onto wave particle iteration. Faster

object motion generates wave particles with larger amplitudes that stay alive

longer and each of them produces new wave particles as they subdivide.

• Object to water coupling computation depends on the total number of object
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Figure 6.9. Massive boxes scene with over 9,000 boxes, all interacting with water and

generating wave particles.

faces.

• The rigid body simulation time increases with the number of objects and the

number of collisions between these objects.

• The wave particle generation computation also depends on the number of object

faces.

• Height field generation has a cost due to the filtering operation that is related

to the height field resolution and the wave particle radius. While this cost

is fixed for a given simulation, there is also a cost based on the number of
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active wave particles. As long as the number of active wave particles is small

enough (less than 100,000 on our test hardware), the constant cost for the height

field generation is the dominant factor. If many more particles are used, then

rendering point primitives for these wave particles becomes the dominant factor.

Another interesting performance result we obtained is that in almost all tests the

simulation time was comparable to the frame rendering time. One exception is the

massive boxes scene, which spends quite a lot of time for rigid body simulation due

to the larger number of collisions.
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CHAPTER VII

DISCUSSION

The wave particles technique presented in this dissertation provides an approach

to water simulation that differs significantly from all other current methods. Unlike

water simulation techniques that discretize the water medium or the water body itself,

wave particles only discretize the deformations on the water surface by representing

them with a simple particle system. This approach to water simulation has various

advantages along with some important limitations. In this chapter we discuss the

advantages and limitations of the wave particles technique as well as possible future

directions for improving or extending the wave particle simulation and its solution

domain.

7.1. Advantages

The wave particles method is designed for real-time graphics applications, so it is very

effective when it comes to the requirements of real-time graphics applications, such

as computation speed, stability, scalability, and ability to handle various forms of

user interaction. Furthermore, the wave particles method has implementation related

advantages like its simplicity, its suitability for a GPU implementation, and the fact

that it does not require any major precomputation. Moreover, unlike traditional

fluid simulation techniques, the wave particles technique opens up new possibilities
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for art-direction. In this section we discuss these advantages in some detail.

7.1.1. Computation Speed

For any method in computer graphics that is designed for real-time applications, the

computation speed is perhaps the most important factor that determines the usability

of the method in practice. An algorithm that fails to deliver high frame rates with

reasonable quality has no place in a real-time application. On the other hand, there

seems to be no upper bound for the desired computational efficiency of any algorithm

that is intended to be used in a real-time application, because the extra computational

resources that are not consumed by one algorithm, can be used by another algorithm

that is supposed to run concurrently within the real-time application.

As we demonstrated in Chapter VI, the wave particles method provides high compu-

tational speed for moderately complex scenes. The implementation of wave particles

presented in this dissertation produced very high frame rates on currently available

computers with good gaming-level graphics hardware for all scenes we tested. Even

for a highly complex scene with thousands of interacting objects, the wave particles

method performs at near real-time frame rates.

Furthermore, it is possible to employ various techniques to achieve even higher per-

formance than presented in Chapter VI. Some of these techniques are the following:

• One can place a relatively smaller upper bound on the number of active wave

particles. This places an upper limit on the computation time devoted to the

extended height field generation from wave particles. Note that extended height
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field generation can easily be the bottle neck, when there are too many active

wave particles.

• One can limit the number objects that can generate waves within a time step

and force each object to generate waves only once in every few frames. This

will not only reduce the wave generation computation time, but also the whole

system will end up generating less wave particles, increasing the computation

speed of the entire wave simulation system.

• Different level of detail approaches can be used both for wave generation and

wave particle simulation itself. We discuss a few level of detail approaches in

Section 7.3.2

7.1.2. Unconditional Stability

Another important advantage of the wave particles method is its stability. The wave

propagation computation, including wave reflections and wave particle subdivisions, is

unconditionally stable regardless of the time step size. One can literally take any long

time step, and the result of the wave simulation can still be computed as accurately as

it would be by taking multiple smaller time steps. This is because the wave particles

provide an analytical solution to the wave equation, rather than a numerical solution

that is employed by most traditional water simulation techniques. If the state of the

wave particle system is known at any time, for any given time the state of the wave

particle system can be directly and accurately computed.

Most traditional water simulation techniques use some sort of numerical integration

method. While numerical integration is a very powerful tool in solving complicated
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differential equations, it is also prone to numerical inaccuracies. Computational inac-

curacies that arise at one step of the integration can quickly build up in subsequent

steps. These inaccuracies are reduced by reducing the step size, which in turn in-

creases the computation time. One popular fluid simulation technique in computer

graphics is the stable fluids approach [Stam 1999], which provides an unconditionally

stable integration method, but the numerical inaccuracies of this method results in

excessive damping of the fluid motion.

The wave particles method, on the other hand, is not based on numerical integra-

tion. Wave particles provide an analytical approximation to the solution of the wave

equation. Therefore, numerical inaccuracies do not build up and do not make the

system unstable or introduce excessive damping. In fact, damping is optional with

wave particles and one can implement a wave particle simulation system without any

damping.

However, it is important to note that this unconditional stability does not extend to

the water-object interaction computation, because at the heart of the water-object

interaction we have a standard rigid body simulation system. First of all, the accuracy

and the stability of rigid body simulation itself depends on the time step size.

The stability of the water to object coupling depends on the rigid body simulation,

since it merely applies forces on interacting objects based on the object motion at the

current time step. On the other hand, the magnitudes of the forces applied on the

objects due to interaction with water do not depend on the time step size. Therefore,

water to object coupling does not introduce instability based on the size of the time

step. However, large time steps might significantly reduce the accuracy of water to
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object coupling and may lead to undesired object motion.

The wave generation system itself is unconditionally stable. However, as the time

step size increases the amplitudes of the wave particles generated within a time step

increase as well, simply because as the time step gets larger each object face displaces

a larger volume of water within a time step while making the same motion (i.e. moving

with the same speed). Note that while the amplitudes of the waves generated within

a time step increases with increasing time step size, the frequency of time steps (the

number of time steps within a given time interval) decreases. Therefore, as long as

the object makes the same motion, the total volume of generated wave particles stays

the same.

However, if the time step size is too large, the amplitudes of the waves generated

within a time step can be unrealistically large. Furthermore, at the next time step

the object interacts with the deformed water surface that includes the deformation

of these new wave particles generated in the previous time step. Therefore, if the

amplitudes of the waves generated at a time step is too large, the change in the shape

of the water surface between consecutive time steps would be large as well, which

may introduce instability to the rigid body simulation.

7.1.3. Scalability

The wave particles method is designed for simulating water waves on large bodies of

water. One important advantage of the wave particles approach is that it decouples

the wave simulation from the water body and the water surface. As a result, extremely

large volumes of water, such as an infinite ocean, can be simulated.
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Traditional water simulation techniques use some sort of volumetric discretization

of the water body, either by discretizing the space of the computation domain or by

discretizing the water body itself by representing it with volumetric particles. In both

of these cases, the volume of water that can be simulated is bounded, and increasing

this volume either increases the memory use and the computation time or decreases

the resolution of the simulation. On the other hand, the discretization introduced

by the wave particles method discretizes the deformations on the water surface, not

the water surface or volume itself. Therefore, the limits on the memory use and the

computation time of the wave particles simulation bounds the number and/or the

resolution of the deformations of the water surface. As a result, the wave particles

simulation is not confined in a predefined space and it can be used for simulating an

infinite ocean.

The wave particle simulation decouples the wave simulation from the extended height

field that is used for displaying the water surface. The extended height field is needed

where the water surface is visible. The wave particles themselves are simulated com-

pletely independently. However, parts of the water-object interaction computation

described in Chapter V use the height field for achieving high computational efficiency.

7.1.4. User Interaction

As we discuss in the introduction of this dissertation, user interaction is an inher-

ent part of almost all real-time graphics applications. The wave particles method

as described in this dissertation permits two forms of user interaction: direct and

indirect.
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Direct user interaction refers to the direct manipulation of the wave particle system

by the user. One simple form of direct user interaction is generating ripples on the

water surface as the user drags the mouse cursor over the water surface. This form

of interaction is supported by many ad-hoc wave simulation techniques as well. With

wave particles, direct user interaction can also be in the form of removing waves or

creating waves that are not in the shape of ripples.

Indirect user interaction provides a more interesting and often more useful user in-

teraction. Water-object interaction described extensively in Chapter IV can be con-

sidered a form of indirect user interaction. As the user directly or indirectly moves

various objects in a scene, the water-object interaction computation can generate

waves on the water surface as well as produce physical responses on the objects in-

teracting with water.

Notice that water object interaction described in Chapter IV is not tailored for certain

types of objects or for certain types of motion, but it is designed to be as general as

possible. In Chapter VI we show how this water-object interaction computation can

be used, without modification, for simulating boats with propellers and rudders, thus

demonstrating the generality of the water-object interaction computation.

7.1.5. Parallelization

In Chapter V we present how thread level parallelization can be used, together with

the parallelization provided by implementing parts of the system on the GPU. The

fact that each wave particle is handled independently from other wave particles makes

the wave particle simulation very suitable for parallelization. Furthermore, different



161

parts of the simulation system can be executed concurrently on parallel threads.

The implementation of the wave particles method described in Chapter V heavily

uses the GPU. However, this implementation does not use the GPU as a general

purpose parallel computation unit, but only for graphics related tasks. For example,

the extended height field generation from wave particles is simply a particle rendering

task. For this task, we render point primitives and then apply image filtering to get

the final result. Similarly, the computation of the buoyancy force as well as the

silhouette pyramid method for wave generation use simple rendering and filtering

operations. In that sense, the implementation of the wave particles method described

in Chapter V uses the GPU largely for tasks that it was designed to be used for.

For this reason, the wave particles method can be implemented on almost all GPUs,

including those from earlier generations.

7.1.6. No Precomputation

Many algorithms designed for real-time graphics use extensive precomputation. Some

of these algorithms require a very long computation time and they almost always

require a large amount of memory at run-time to store the output of the precomputa-

tion. As the memory requirements for storing the precomputed data get larger, these

methods become less desirable in practice as they reduce the available memory for

other parts of the application that must work concurrently.

The implementation of the wave particles method described in Chapter V does not

require any significant precomputation. Almost all components of the simulation are

computed at run time.
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7.1.7. Art-Directability

One important disadvantage of most fluid simulations is that they present various

difficulties when it comes to art-direction. Even though there is a considerable amount

of research in computer graphics about controlling fluids, modifying the result of a

particular simulation to meet the requirements of art direction is still a challenging

task for most simulation systems.

The main difficulty for traditional water simulations come from the fact that the

connection between the data used for simulation and the shape of the final water

surface is highly non-trivial. In the case of velocity fields, it is difficult to predict how

the field should be modified to get the minor changes requested as a part of the art

direction, while keeping the rest of the solution intact. Similar problems exist when

using volumetric particles for simulation water, since any individual particle provides

little information about the shape of the water surface around it.

Wave particles, however, directly define the deviations on the water surface. There-

fore, it is almost trivial to predict what the outcome would be if a wave particle is

modified. Furthermore, using wave superposition, one can modify the output of the

wave particle simulation by generating new waves only and leaving all existing wave

particles intact. This opens up new possibilities for art-directability. One possible

related future direction that comes out of this property of wave particles is a wave

choreography system that we discuss in Section 7.3.3.
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7.2. Limitations

The wave particles method also has various limitations, which constrain the solution

domain of the wave particles method as well as the physical accuracy of the simulation.

As a matter of fact, most of the performance benefits discussed above are tightly

connected to a limitation in the capabilities of the wave particles method. In this

section we discuss these limitations and possible future directions for resolving these

limitations.

7.2.1. Wave Simulation Only

One obvious limitation of the wave particles method is that it can only simulate

wave behavior. Rather than formulating an ultimate technique to handle all fluid

phenomena, the wave particles method concentrates on efficiently simulating surface

waves on a large body of water. Therefore, the wave particles method cannot handle

any other water behavior. Other characteristic behavior, such as splashes, bubbles,

and foam are not an inherent part of the wave particles simulation. The 3D water

motion, which might arise as a result of water-object interaction, is not simulated or

even represented in the wave particle formulation. Furthermore, our formulation of

the wave particles method does not include fluid flow, such as water currents.

On the other hand, surface waves form the majority of the water behavior for large

bodies of water. Splashes, bubbles, and foam can be added on top of a wave particle

simulation as a separate simulation and rendering layer as discussed in Section 7.3.1.

The 3D water motion due to object interaction is not directly simulated, but its effect
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on the water surface is handled by generating waves on the surface directly from the

object motion.

7.2.2. Breaking Waves

In our formulation, when the amplitude of a wave is greater than half of its length,

the final wave shape intersects with itself. A similar behavior is also observed by

Gerstner [1802]. Bascom [1980] reports that waves become unstable and break when

the amplitude is greater than one-seventh of the wave length.

Since the formulation of wave particles is based on the wave equation, breaking waves

are not included in the solution of the wave particles method. Waves break when the

wave motion cannot be sustained by the physical limitations of the water medium.

Therefore, the breaking wave motion is not really a wave motion and it is not included

in the wave equation. For this reason breaking waves cannot be simulated by a wave

simulation that is based strictly on the wave equation.

On the other hand, the wave particle system might be useful in identifying and

emulating the breaking wave motion. Unlike most other water simulation techniques,

the wave particles method directly models the wave motion with particles. This might

be useful in efficiently detecting when and where the waves should break and what

the breaking wave motion should be. We believe that this would be a very useful

future extension of the wave particles method.

When a wave particle with a large amplitude value is generated, it is safe to assume

that the wave that this wave particle represents would not be stable in reality. There-
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fore, this could be used as an indication for secondary effects like splash and foam,

as well as breaking waves. On the other hand, the breaking wave condition may

also be reached as a result of wave superposition. This is somewhat more difficult to

detect, because a single wave particle alone may not indicate that the wave should

begin breaking. Therefore, it might be necessary to analyze the extended height field

generated by the wave particles, rather than testing each wave particle individually

against a wave breaking condition.

7.2.3. Diffraction

Wave particles form an analytical solution to the wave equation, which is uncon-

ditionally stabile as discussed in Section 7.1.3. However, this solution has certain

important limitations when it comes to some complicated wave behavior. Diffrac-

tion is one such wave behavior that the wave particles formulation presented in this

dissertation cannot handle.

The diffraction behavior of waves is observed when part of a wavefront hits a sta-

tionary object and bounces off of it, while the rest of the wavefront continues to

propagate without hitting the object. As a result the wavefront gets separated into

multiple pieces and the parts that do not hit the object bend around the object. This

behavior of waves is known as diffraction.

The diffraction behavior of waves is consistent with the wave equation. Remember

that the wave equation in Equation 3.1 relates the spatial derivative to the time

derivative. When a part of a wavefront gets reflected, this reflection effectively changes

the shape of the water surface around the object as well as the spatial derivative.
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Based on the wave equation, this changes the time derivative and the propagation

direction of the wavefront near the object changes accordingly. In fact, this creates

a chain reaction such that a larger portion of the non-reflected part of the wavefront

gets bent as the wavefront propagates.

For representing a wavefront with wave particles, we place multiple identical wave

particles side by side an equal distance apart. As we explain in Section 3.6, while

discussing the diffraction limitation of wave particles, it is important that each wave

particle on a wavefront has two identical neighbors; otherwise, the end result does not

form a valid solution to the wave equation. Let us assume that we an ideal wavefront

that satisfies the condition that each wave particle has two identical neighbors. This

condition gets broken if the wavefront is somehow separated into two parts (when

half of the wavefront is reflected). In this case, the wave particles on either side of

the split point lose one of their neighbors. According to the wave equation, such wave

particles must not continue their propagation without modification, but must spread

towards the missing neighbor to make up for its absence.

In fact, for reaching a correct solution that includes diffraction, a wave particle must

change its propagation properties not only when one of its neighbors is missing, but

also when one of its neighbors is not identical to the wave particle. Otherwise, the

resulting solution would be incorrect around those wave particles. When a wavefront

gets split into two parts (via wave reflection or any other event), the wave particles

right next to the split point must be modified due to the absence of a neighbor. This

modification of the wave particles will cause their existing neighbors to change as

well, since those neighbors will no longer have two identical neighbors. This change

would propagate to all wave particles on the wavefront.
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To be able to incorporate the diffraction behavior into the wave particles method,

one needs to

• determine when a wavefront is split, and

• modify wave particles near the split point accordingly.

When detecting wavefront splits, it is important to be efficient, since we consider the

wave particles method as a water simulation solution for real-time graphics. Detecting

wavefront splits requires that each wave particle be aware of its two neighbors, so

that when one of them gets reflected or modified the wave particle can react to it

accordingly. This enforces a computational dependence between neighboring wave

particles, which is likely to reduce the performance of the wave particle system. Note

that our implementation of the wave particles method described in Chapter V makes

use of the property that each wave particle is independent for highly efficient wave

particle simulation. When this property no longer exists, parts of the wave particle

propagation computation need to be replaced by potentially less efficient algorithms

that do not rely on the independence of wave particles.

Another issue to be careful of is that when a neighbor of a wave particle reflects off of

a boundary, this does not mean that the wavefront is split and that the wave particle

must be modified immediately. Consider a wavefront hitting a linear boundary with

some angle. In this case, wave particles get reflected one by one and no modification

is needed to get a correct solution except for the reflection itself. However, if the

neighbor of a wave particle gets reflected, but the wave particle does not get reflected

soon afterwards, then the wave particle (and its neighbor) needs to be modified to

properly handle diffraction. Therefore, for deciding whether or not a wave particle
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should be modified due to diffraction (detecting whether a wavefront split occurred),

it is probably more useful to track the distance between two neighbors on a wavefront

than to analyze all wave particle reflections.

Modifying the wave particles near the split point to handle a detected diffraction event

has its own difficulties. When a wave particle gets modified due to diffraction, we can

no longer expect that the neighboring wave particle on the wavefront has two identical

neighbors. Therefore, the neighboring wave particle needs to be modified as well,

either immediately or later on as the wavefront propagates. As we mentioned above,

this creates a chain reaction and multiple (perhaps eventually all) wave particles on

the wavefront should be modified as their neighbors are modified.

Furthermore, it is not trivial to modify the dispersion angle of wave particles or their

center positions due to a diffraction event. Handling wave particle modifications

due to diffraction seems simple enough when one considers the classical diffraction

example of a wavefront going through a narrow slit. However, in a more general case

when a part of a wavefront gets reflected off of a curved boundary and the rest of the

wavefront propagates without hitting the boundary, it is not as simple to find out

how the wave particles of the wavefront should be modified.

A solution to most of these problems that arise with diffraction would constitute

a complete reformulation of the wave particle system. Instead of thinking of wave

particles as independent pieces of a wavefront, all wave particles of a wavefront could

be stored in the same structure and modified together when the wavefront needs more

resolution (i.e. more wave particles). While this approach might provide a solution

to the diffraction related problems explained above, it would make the wave particle
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system more complicated and its computation less efficient than what is presented in

this dissertation.

7.2.4. Dispersion

Frequency dispersion of water waves refers to the dependency of the wave velocity

on the wavelength of the wave. Water waves with larger wavelength propagate with

larger speed than waves with smaller wavelength. Let h denote the depth of the water

and λ be the wavelength. The wave speed υ can be written as

υ =

√
gλ

2π
tanh

(
2π
h

λ

)
, (7.1)

where g is the gravitational acceleration [Dean and Dalrymple 1984]. In this equa-

tion, the relationship between the water depth h and wavelength λ is important in

determining the wavelength dependence of the wave speed. Figure 7.1 shows the

y = tanh(x) curve, which we use for simplifying the equation above. In shallow

waters, where d� λ, tanh(x) approaches x and the wave speed can be written as

υshallow ≈
√
gd . (7.2)

Therefore, in shallow waters the wave speed can be considered independent from the

wavelength and it only depends on the depth of the water, so dispersion can be safely

ignored in shallow waters. On the other hand, in deep waters, where d� λ, tanh(x)

approaches 1 and the wave speed becomes

υdeep ≈
√
gλ

2π
. (7.3)
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This simplified equation shows that in deep waters the wave speed depends on the

wavelength and the effect of water depth can be ignored.

Figure 7.1. The behavior of y = tanh(x) (solid curve) as compared to y = x (dashed

line). Note that tanh(x) quickly approaches 1 as x > 2, and approaches

to y = x as x < 0.5.

Throughout this dissertation we assumed that the wave speed υ is constant for all

wave particles and that all all waves propagate with the same speed. However, this

is not really a restriction on the wave particle formulation and each wave particle

can be assigned a different propagation speed without having to modify the wave

particle formulation or even the implementation. For example, we could simulate

wave particles with different wave speeds, by simply applying a scale factor to a wave

particle’s direction vector.

However, deciding on what the speed of a wave particle should be is not as trivial.

As we discussed in Section 4.1.4.3 as a part of wave size heuristics, the size of a

generated wave particle is not necessarily the same as the wavelength of the wave

that the wave particle is used for representing. Our wave generation system, discussed

in Chapter IV, does not try to compute the wavelength of generated waves, so this
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information does not exist and we cannot tell what the speed of a generated wave

particle should be.

Therefore, the fact that wave dispersion is not included in the wave particle solution

is mainly a limitation of the wave generation system rather than the wave particle

formulation or implementation. A more sophisticated wave generation model that

could compute the wavelength of the generated wave particles could easily include

dispersion in the wave particles method.

7.2.5. Varying Depth and Wave Refraction

As we mentioned while discussing the dispersion behavior above, the depth of the

water does not affect the wave speed in deep water, but it significantly affects the

wave speed in shallow water. By making the wave speed υ constant for all wave parti-

cles, in shallow water we inherently assume that water depth is constant everywhere.

However, if the water depth is not constant for a shallow water simulation, the wave

speed should be modified accordingly, as the waves propagate.

As simple as this varying wave speed problem sounds at first glance, it poses various

problems in implementation as well as the theory of wave particles. First of all, our

efficient implementation of wave particles relies on the fact that when the wave speed

is constant we can easily calculate the current position of a wave particle using a

known previous position and its propagation direction. However, if the wave speed is

not constant everywhere in the water medium, we cannot use this simplification and

the position of each wave particle must be computed with numerical integration.
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Furthermore, the propagation direction is affected by changing water depth as well.

Consider a pool with two sections separated by a straight line. Assume that both of

these sections have constant water depth, but the depths of these two sections are

different from each other. We know that when a wavefront that is generated on one

section moves into the other section the propagation speed of the wavefront must be

modified according to the depth change. If the wavefront generated on one section

arrives at the line that separates the two sections at an angle, then not only must

the speed of the wavefront change, but also its direction needs to be modified, due to

refraction.

Modifying the wave direction due to refraction is quite simple, but computing the

post-refraction dispersion angle is not as trivial. Moreover, the change in wave prop-

agation speed, combined with refraction, changes the distribution of wave particles

on a wavefront. Since, each wave particle requires two identical wave particles on

either side of it to form a valid solution to the wave equation, if the modifications

to a wave particle are different than its neighbors, the resulting simulation will no

longer be a valid solution to the wave equation. For handling varying wave depths

properly, the wave particle simulation should be able to handle the diffraction effect

defined in Section 3.6. Therefore, simulating varying water depth and wave refraction

becomes an easier task, if one can find a way to efficiently simulate diffraction using

wave particles.
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7.2.6. Physical Wave Generation

Having a good wave generation system is very important for the wave particles

method. In the end, the wave particles method merely simulates the propagation

of the generated waves. Therefore, if the wave generation system cannot produce

plausible waves, the wave particles method cannot produce a plausible wave simula-

tion.

As we discussed in Chapter IV, the wave generation method presented in this disserta-

tion has various limitations. Even though the wave generation system in Chapter IV

can produce plausible waves, it falls short when the results are compared to reality.

We discuss the limitations of the wave generation system extensively in Section 4.1.6.

Unfortunately, building a physically accurate wave generation system is very com-

plicated. First of all, as we discuss in Chapter IV, if physical accuracy is needed,

waves should not be generated directly from water-object interaction. In general,

water-object interaction induces a 3D fluid flow around the object, which eventually

evolves into a wave motion. However, at the time that the water motion is induced

by the object, the water motion does not correspond to a wave motion. If physical

accuracy is important, this 3D motion of water around the object should be properly

simulated using a 3D fluid simulation system.

Once the 3D motion of water induced by the object is properly simulated, the difficulty

is to extract a wave motion from this 3D simulation. Unfortunately, to our knowledge

there is no technique in computer graphics that can extract a wave motion from the

solution of a 3D fluid simulation system. We discuss this in more detail as a part of a



174

future extension of the wave particles method that would integrate it with a 3D fluid

simulation system in Section 7.3.4.

Furthermore, even if one can find a solution for integrating the wave particles method

with a full 3D fluid simulation system to generate physically realistic waves, it is

important that this physical wave generation system can be implemented efficiently

and can be executed as a part of a real-time application. Otherwise, while trying to

introduce physical wave generation into the wave particles method, we end up losing

one of the most important properties of the wave particles method, its computational

efficiency. This not only places additional computational restrictions on the 3D fluid

simulation, but also means that the extraction of the wave information from the full

3D fluid simulation result should be implemented in a very efficient way.

Therefore, for building a real-time wave simulation system, assuming that waves

are generated immediately from the object motion seems like the only acceptable

practical solution. That said, the wave generation system we describe in Chapter IV

has various other inaccuracies that can be improved:

• The current wave generation method is based on the volume conservation prin-

ciple. This provides little information about how the volume of waves should

be distributed around the object. The wave placement heuristics we use can be

improved.

• The wave direction heuristics provide a simple methodology for determining the

directions of the generated waves, which can be improved.

• The current wave generation system generates wave particles with the same

size. This leads to limitations such as incorrect dispersion as discussed in Sec-



175

tion 7.2.4. A more sophisticated way of determining wave sizes based on the

object motion might significantly improve the results of the wave generation

system.

We used various real world experiments for developing the principles of the current

wave generation system described in Chapter IV. More experimental analysis, in-

cluding experiments with 3D fluid solvers, might be useful for improving the wave

generation system.

7.2.7. Physical Forces on Objects

For handling water to object coupling, we apply buoyancy, drag, and lift forces on

the interacting object. While the buoyancy force can be computed rather accurately

and efficiently, the accuracy of drag and lift forces on an arbitrarily shaped object

is questionable. This is mainly because we compute drag and lift forces completely

independently on each face of the interacting object, while in reality different faces

of the object might significantly affect the drag and lift forces on each other.

In fact, even a minor change in the shape of a certain face on the object can signif-

icantly affect the drag and lift forces on many faces along the surface of the object.

Consider the wings of an airplane. In this case, the fluid medium is the air. The

overall drag and lift forces acting on a wing of an airplane significantly depend on the

shape of the wing.

On the other hand, for finding the total drag and lift force acting on an airplane,

one might compute these forces independently for the wings and the body of the
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airplane. While this may not be as accurate as computing the drag and lift forces

considering the airplane as a whole, it might be significantly easier to compute these

forces separately for different parts of the plane and the sum of the forces can be an

accurate enough estimation to the total force acting on the airplane.

In our computation of drag and lift forces, we take this approach to its extreme by

computing forces separately on each face. Therefore, we cannot expect that the drag

and lift forces we compute are physically accurate. As we explain in Section 4.2.2,

certain object shapes that have cavities or that are highly concave might be especially

prone to this inaccuracy.

Computing physically accurate drag and lift forces is highly complicated. These

forces are the direct result of the fluid flow around the object. Therefore, for physical

accuracy, not only these forces need to be computed all at once for the whole object,

but also the 3D fluid flow around the object should be taken into account. This

requires a full blown 3D fluid simulation with moving boundaries at the object surface.

In this case, the forces acting on the object surface can be computed from the fluid

pressure around the object, and this would also include the buoyancy force in addition

to the drag and lift forces. Such computations are very expensive even for offline

graphics purposes.

That said, we believe that the accuracy of the drag and lift force computation we

present in Section 4.2.2 can be improved. In our formulation, we assign drag and lift

constants to the faces of the object that determine the magnitudes of these forces. In

our implementation we use the same drag and lift constants for all faces of an object

and they are considered to be user defined parameters. If one can find a physically
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based way of computing these constants separately for each face of an object consider-

ing the whole shape of the object, the accuracy of the drag and lift force computation

can be improved. Furthermore, it might be even more accurate to use different drag

and lift constants based on the motion direction of a face. Unfortunately, we do not

currently have a suggestion as to how these constants can be computed or how much

they would improve the accuracy of the computed drag and lift forces. Also, it is

questionable whether a more physically accurate computation of drag and lift forces

would improve the plausibility of the resulting object motion.

7.3. Future Extensions

In the previous section, while discussing the limitations of the wave particles method,

we outlined possible future extensions that could diminish these limitations or po-

tentially eliminate them. In this section, we discuss other possible extensions of the

wave particles method that are not necessarily tied to a limitation of the current

formulation of wave particles. All these would be significant extensions of the wave

particles method, and are worthy of future research.

7.3.1. Splashes, Bubbles, and Foam

Wave particles are designed for simulating larger bodies of water and they can only

account for the wave behavior. Other common phenomena for large bodies of water

are splashes, bubbles, and foam. We consider these as secondary effects that can be

added on top of a wave particle simulation. In this section, we discuss how these
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secondary effects can be handled and the challenges of handling them at real-time

frame rates.

7.3.1.1. Splashes

Splashes are often produced with object interaction, especially when an interacting

object is moving fast near the surface of the water, such as the splashes in front of

a boat when it is moving, or scattered splashes when an object is thrown into the

water that hits the water surface. Splashes can also be formed due to wind especially

around wave crests on open ocean or when the waves break. In fact, a significant

portion of breaking wave behavior can be simulated in the form of splashes.

To be able to include splashes in a real-time water simulation system, we need to

handle the following operations:

• Generating splashes,

• Simulating the motion of splash droplets in the air,

• Rendering splashes, and

• Collisions of splashes with objects and the water body.

Physically based splash generation can be a rather complicated process. We first

need to determine the positions where splashes should be generated, and then we

need to assign initial velocities for each generated splash droplet. When splashes are

generated, generally the properties of each individual droplet are rather unpredictable,

but the overall behavior of a group of splashes can be more predictable. Therefore, a
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reasonable splash generation approach would compute a general splash direction and

some random variation for each individual droplet.

When splashes are generated as a result of water-object interaction, it would be good

to incorporate splash generation with wave generation, such that the energy or the

volume of water that is used for splashes is not used for wave generation. In that

spirit, we experimented with embedding the splash generation into wave generation,

such that when the wave volume for generating wave particles at any point was above

a certain threshold, we used the excessive volume for generating splashes instead of

waves. This approach did not produce high quality splashes for the following reasons:

• First, the resolution of the silhouette we used for wave generation turned out to

be too low for splash generation. While the low resolution silhouette we used

was good enough for waves, when splashes were generated around the inter-

acting object, this low resolution silhouette failed to provide plausible realism.

Unfortunately, increasing the resolution of the silhouette was not acceptable,

since it would significantly increase the computational cost of wave generation

as well as the number of generated wave particles; thereby reducing the perfor-

mance of the whole simulation system.

• Another problem was in determining the directions of the generated splashes.

We tried using the generated wave particle direction for determining the hor-

izontal direction of splashes. The process of assigning a vertical direction was

arbitrary. As a result, the final splash direction was not plausible especially

when the shape and orientation of the object at the time of splash generation

clearly suggested splashes with certain directions.

• For splash velocities, we tried increasing the average splash velocity with the
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total splash volume to be generated. This could provide plausible results, but

required carefully tuning some user defined parameters used for converting the

splash volume to splash velocities.

• Finally, splashes were generated only at certain frames, such as when the object

first hits the water surface. While this sounds reasonable, the end result was not

plausible. Instead of using a strict threshold for splash generation, converting

a portion of the wave volume to splashes even when the wave volume is not

that high might provide better results. Alternatively, we could generate new

droplets from existing droplets as they move in the air. This is a common trick

that is used for simulating splashes in offline graphics.

For all these reasons, we believe that generating splashes directly from interacting

object faces can provide a better solution. In this case, while computing the wave

volume for a face at the surface of the water, a portion of this volume can be converted

to splashes. These splashes can be directly generated on the object face near the water

level. As for determining the splash direction, the orientation of the face can be used.

The speed of the generated splashes can be formulated as a function of the total

splash volume and the face velocity. While this is a rather ad hoc approach to splash

generation, we believe that this approach could produce plausible splashes.

Once the splashes are generated, simulating the splash motion in the air can be

straightforward if we ignore the interaction between individual splash droplets. As-

suming that the splash droplets do not interact with each other (ignoring all inter

droplet collisions), the only external force that contributes to the splash motion is

gravity. Therefore, it is possible to derive a closed form formulation for the splash

droplet position at any given time using the motion properties of the splash droplet
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at the time it is generated. In this way, a large number of splash droplets can be

efficiently simulated.

On the other hand, realistic rendering of splashes at real-time frame rates can be

challenging. For realistic results, we would need to render a very large number of

splashes. For high computational efficiency, we might consider simulating only a

portion of the splashes, and use these to introduce new splashes used for rendering

purposes only. A common way of achieving this is using camera facing sprites with

transparent textures. This way, we can render a relatively small number of splash

particles and create the illusion of more particles. For high visual realism, self shadows

of splashes should be computed or approximated, but this might be both difficult to

implement and computationally expensive.

Finally, when the splashes collide with objects, they can be discarded or converted

into drops that stick on the object. When splashes collide with the water surface,

they can be discarded or converted into foam particles or used for generating small

ripples on the water surface.

7.3.1.2. Bubbles

In the case of large bodies of water, bubbles are often generated when an object or

the water motion itself pushes air into the water volume. This happens when a large

object hits the water surface or when splashes hit the water surface.

From a computational standpoint, bubbles are very similar to splashes. Their motion

in water is often more complicated than the motion of splashes and they often continue
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interacting with the object that generated them. In that sense, for high quality

bubble motion, it would be necessary to numerically integrate their motion, rather

than trying to find a closed form solution as we suggested for splashes.

7.3.1.3. Foam

Foam can be treated as a texture on the water surface. It may be generated directly

from object interaction or when the splashes or bubbles collide with the water surface.

We propose two ways to incorporate foam in our water simulation:

The first method of simulating foam would be as a dynamic texture on the water

surface. This could be especially useful when simulating a closed volume of water like

a pool. In this case, a foam texture can be updated as objects, splashes, and bubbles

interact with the water surface. Rendering foam would be as simple as mapping this

texture onto the water surface with a special foam shader. However, this dynamic

texture approach can cause problems when simulating an open ocean, since in this

case the portion of the water surface to be simulated and mapped with this dynamic

texture can be infinitely large.

Another approach of simulating foam could be by representing foam using a particle

system. This particle system could be converted to a texture right before rendering

the water surface. In this way, foam on an open ocean might be handled.
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7.3.2. Level of Detail Approaches

One of the important advantages of the wave particles method is that it can handle

very large bodies of water. In such a system, level of detail approaches might signif-

icantly reduce the cost of the simulation for the parts of the water surface that are

not visible in the current view or are far from the the viewpoint.

When wave particles are generated on an open ocean, they are free to continue moving

along their propagation directions until they die. When a wave particle has a high

enough amplitude and a small dispersion angle, the wave particle can travel a long

distance before it finally dies out. Such a wave particle can easily go out of view

or move too far from the view point to produce a visible deviation on the water

surface. At the same time, such a wave particle is still visited when generating

the extended height field for the water surface. Furthermore, these wave particles

continue to produce new wave particles via subdivision. All these actions add extra

computational cost into the system without any visual benefit.

This extra cost can be avoided using level of detail approaches. Wave particles that

move out of the view or move far away from the view point can be discarded when

generating the extended height field for the water surface. Furthermore, subdivision

of these wave particles can be suspended. When the view point changes and some

of these wave particles become important again, all the subdivisions of these wave

particles that were previously suspended can be computed all at once. This does not

introduce any inaccuracy, since wave particles provide an analytical solution to the

wave equation and they permit arbitrarily large time steps.
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Furthermore, level of detail approaches can be used with water-object interaction as

well. Objects that are out of the view or far from the view point can be simulated

using lower resolution silhouettes and their wave generation can be suspended.

Figure 7.2 shows a massive simulation scene with over 1600 boats. In this case, we

have not used any level of detail approach to improve the efficiency of the simulation.

Therefore, the boats that are close to the camera are given the same importance as

the boats that are far away from the camera and they all generate wave particles

in exactly the same way. The performance of such a simulation can be significantly

improved using level of detail approaches.

Figure 7.2. Over 1600 boats simulated without level of detail approaches.
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7.3.3. Wave Choreography

Unlike traditional water simulation techniques, wave particles provide a very intu-

itive way of representing the deformation of the water surface. Since each wave

particle directly modifies the water surface, it is very easy to predict the result of any

modification of a wave particle. This opens up new fronts in controlling the water

simulation.

Therefore, the wave particles method would be very useful for creating a wave choreog-

raphy system. Using wave particles, a wave choreography system can easily generate

waves with any desired shape and propagation direction. Also, existing waves can be

easily modified to alter the shapes of the propagating waves as desired.

7.3.4. Integration with a 3D Fluid Solver

Consider an open ocean or a large pool and an object interacting with this water. The

wave particles method can efficiently simulate waves on this large body of water, but

it cannot handle any other water behavior. Moreover, its wave generation approach is

not physically realistic, since this computation requires a full 3D fluid simulation. On

the other hand, a 3D fluid simulation can properly and accurately handle almost all

water behavior around the object, but it cannot efficiently simulate a large body of

water. In that sense, integrating the wave particles method with a 3D fluid solver can

combine the benefits of both methods. The water around the object can be simulated

using the 3D fluid solver with high resolution handling all water phenomena. As the

motion of the water induced by the object interaction turns into waves that propagate
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away from the object, the wave particles method can simulate those waves on the rest

of the water surface. This way, we can get both a high resolution 3D simulation around

the object and simulate a large body of water with water waves. Furthermore, this

approach can potentially overcome all limitations of the wave particles method we

discussed in Section 7.2.

However, integrating a 3D fluid solver with the wave particles method is far from

trivial. This is mainly because the internal simulation data used in traditional water

simulation techniques does not directly tell us anything about the waves on the water

surface. To be able to integrate a 3D fluid solver with the wave particles method, we

need to determine a way to convert the simulation data of a traditional fluid solver

into waves and eventually wave particles.

One possible approach for integrating wave particles with a 3D fluid solver is to

separate the fluid domain into two distinct parts: one part that is fully simulated by

the 3D fluid solver and the rest of the water medium that is simulated by the wave

particles method. For integrating the two solutions, at the boundary of these two

simulation domains we should convert the 3D fluid simulation result to wave particles

so that the water motion induced in the 3D simulation domain can be carried out of

that domain as water waves. Similarly, if dynamic water waves are coming back into

the 3D simulation domain, they need to be converted back into the data structure of

the 3D fluid simulation. Converting the water motion represented by wave particles

can be easily converted to 3D fluid simulation data. However, converting the 3D fluid

simulation data to wave particles is not as easy. First of all, there is no guarantee that

the motion in the 3D fluid simulation domain near the boundary can be represented

by wave motion at all. Even if it is a wave motion, how this motion can be translated



187

into wave particles is questionable.

We do not currently have a specific solution for this problem; however, we believe

that this would be a valuable area for future research.
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CHAPTER VIII

CONCLUSION

We presented wave particles, a method for simulating water surface waves at real-

time frame rates. We showed that a broad class of water surface behavior can be

modeled by this 2D particle system, which has an algorithmic formulation that is

conceptually simple and computationally inexpensive. We developed a 2D particle

system for efficiently simulating wave particles that provides an analytical solution

to the wave equation. We showed how the interactions of objects with water can be

efficiently handled applying fluid forces on the objects as well as by generating waves

due to object motion in water. We provided details of our implementation of the

wave particles method. The results we obtained show that the wave particles method

can produce plausible wave simulation with two way object interaction at real-time

frame rates.

We explained that the advantages of the wave particles method make it a very effective

method for simulating water waves in real-time graphics applications. Along with the

advantages of the wave particles method, we also discusses its limitations and how

some of these limitations might be eliminated with future research. Moreover, we

provided directions for future research on wave particles and our initial findings in

our attempts in pursuing these future directions.

We believe that the wave particles approach makes two significant contributions to
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computer graphics research and the graphics community:

First, the wave particles approach and its implementation explained in this disserta-

tion provides an effective method for simulating water waves in real-time applications.

Most current real-time applications avoid simulating large bodies of water due to their

high computational requirements, which negatively impacts the realism of the virtual

environments in these applications. The wave particles method would be an ideal

solution for many such applications, as it is ready to be implemented in real-time

applications without the need for further research and development. Although our

method is tailored to the requirements of real-time graphics, it can easily be used in

offline simulations to simulate thousands of objects interacting with water.

Also, the wave particles method provides an alternative approach to water simulation

in computer graphics. Most traditional water simulations are based on a few funda-

mental approaches that use some form of numerical integration. The wave particles

approach not only provides an alternative way of handling the wave simulation prob-

lem, but also shows that a seemingly complicated water behavior, like surface waves,

can be modeled analytically, as opposed to numerically, and can be simulated with a

conceptually simple formulation and high computational efficiency.
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APPENDIX A

ERROR DUE TO THE RADIAL DEFINITION OF WAVE PARTICLES

Here we provide the details of our error analysis due to radial definition of wave

particles that is presented in Section 3.7 as follows:

The maximum difference between the height of the wave crest for a linear wavefront

and its representation with evenly spaced radial wave particles is less than 0.8% of

the wave amplitude, and the maximum difference between the shape of the wave and

its wave particle representation is less than 7.1% of the wave amplitude, as long as

the distance between two neighboring wave particles is less than or equal to half of the

wave particle radius.

Let us consider a linear wavefront represented by a number of wave particles placed

side by side along the x axis with equal distance apart, and let d be the distance

between two neighboring wave particles on this wavefront. The wave particle system

keeps d ≤ 1
2
r, where r is the radius of a wave particle. Therefore, we only need to

look at the possible d values in the range 0 < d < 1
2
r.

Figure A.1 shows the placement of wave particles on the wavefront for different values

of d. Due to symmetry, we only need to examine the shaded region, where 0 ≤ x ≤ d
2

and x = 0 is in the middle of two wave particles. When d = 1
2
r, only four wave

particles affect this region. For d values in the range 2
5
r ≤ d < 1

2
r, five wave particles

affect this region, and when 1
3
r ≤ d < 2

5
r, the shaded region is affected by six wave

particles, as seen in Figure A.1. The number of wave particles n affecting the shaded
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Figure A.1. The placement of wave particles on a wavefront for different values of d in

the range r
3
< d ≤ r

2
.

region is n = d2r
d
e. The total vertical deviation in the shaded region 0 ≤ x ≤ 1

2
d is

Dz =
a

2

d r
d
e∑

i=0

((
cos(X+

i ) + 1
)

Π

(
X+
i

2

)
+
(
cos(X−i ) + 1

)
Π

(
X−i
2

))
, (A.1)

where a is the wave particle amplitude and X+ and X− are

X+
i =

π

r

(
x+

(2i+ 1)d

2

)
, and (A.2)

X−i =
π

r

(
x− (2i+ 1)d

2

)
. (A.3)
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Equation A.1 sums pairs of wave particles in the positive and negative x directions.

To find the local maximum and minimum of this equation, we look at its derivative

with respect to x

D′z = −a
2

d r
d
e∑

i=0

(
sin(X+

i ) Π

(
X+
i

2

)
+ sin(X−i ) Π

(
X−i
2

))
. (A.4)

For the region 0 ≤ x ≤ 1
2
d, the derivative D′z is zero only at x = 0. This means

that the curve Dz in this range has a local minimum or maximum at x = 0, thus the

maximum and minimum values of Dz are at the end points of this region. Therefore,

the maximum absolute difference between Dz and the ideal vertical deviation a r
d

at

x = 0 and x = 1
2
d gives us the maximum error for the given d value. Using this

procedure, we found that

• over the range 2
5
r ≤ d < 1

2
r the error is less than 0.8%,

• over the range 1
3
r ≤ d < 2

5
r the error is less than 0.5%, and

• over the range 2
7
r ≤ d < 1

3
r the error is less than 0.3%

of the wavefront peak amplitude. As one would expect, the error decreases as more

and more wave particle influence the shaded region with decreasing d value. Hence,

the maximum error appears in the region 2
5
r < d < 1

2
r, where at most five wave

particles affect the shaded region. Therefore, we can conclude that the maximum

error on the wave crest is always less than 0.8% of the wave amplitude.

As for the maximum error of the overall wave shape, it appears when d = 1
2
r, i.e.

the largest permitted distance between neighboring wave particles. To find the max-

imum error of the overall wave shape, we should compare the Dz values of the radial

definition of wave particles to the target wave shape for 0 ≤ y ≤ r. In this range for
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y, the target vertical deviation can be written as

Dtarget
z =

a r

2d

(
cos
(πy
r

)
+ 1
)
. (A.5)

On the other hand, the vertical deviation provided by the radial definition of the wave

particles is

Dz =
a

2

d r
d
e∑

i=0

2 (cos(Ri) + 1) Π

(
Ri

2

)
, (A.6)

where

Ri =
π

r

√(
(2i+ 1)d

2

)2

+ y2 . (A.7)

Note that, unlike Equation A.1, Equation A.6 does not have two separate components

for each pair of wave particles, because at x = 0 both wave particles of each pair

evaluate to the same value. For d = 1
2
r, the maximum difference between the value

of Dz in Equation A.6 and Dtarget
z happens at y ≈ 0.55r, and the error at this point

is less that 7.1% of the main amplitude.
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APPENDIX B

FRACTION OF A FACE INSIDE THE WATER

Here we provide a simple GPU shader function for computing the fraction of a face

inside the water. Figure B.2 shows an example triangle that is partially in water.

P0

s

s'

P1

P2

s

Figure B.2. A triangle inside the water.

Without loss of generality, let us assume that the surface normal of this triangle is in

the y-direction. In this figure, s denotes the horizontal line that connects the point

P1 to the edge that connects P0 and P2. The area of this triangle can be written as

A =
1

2
s (z0 − z2) , (B.1)

where z0, z1, and z2 are the z-coordinates of the points P0, P1, and P2 respectively.
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Similarly, the area outside the water is

Aout =
1

2
s′ (z0 − zw) , (B.2)

where zw is the height of the water surface. For simplicity we assume that the wa-

ter height is constant near the face and it is computed at the centroid of the face.

Furthermore,

s′

s
=
z0 − zw
z0− z1

. (B.3)

Combining these three equations, we find the ratio of the triangle area outside the

water as

Aout
A

=
(z0 − zw)2

(z0− z1) (z0 − z2)
. (B.4)

The following GPU shader function computes the fraction of the triangle inside the

water from the vertical positions of the three vertices of a triangular face. The input

to this function is the water height and the vertical coordinates of the three vertices

of the triangle z0, z1, and z2, which are sorted such that z0 is the smallest and z2 is

the largest.

//--------------------------------------------------------------------------------------------------

float FractionInWater( float waterLevel, float z0, float z1, float z2 )

{

float fraction = 1; // assume fully in water

if ( waterlevel < z0 ) ratio = 0; // not in water

else { // in water

float h01 = z0 - z1;

float h02 = z0 - z2;

float h12 = z1 - z2;

if ( waterlevel < z1 ) { // lower part of the triangle

float h0w = z0 - waterlevel;

fraction = ( h0w * h0w ) / ( h01 * h02 );

} else if ( waterlevel < z2 ) { // higher part of the triangle

float hw2 = waterlevel - z2;

fraction = 1 - ( hw2 * hw2 ) / ( h12 * h02 );

} // otherwise, fully in water

}

return fraction;

}

//--------------------------------------------------------------------------------------------------
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APPENDIX C

HEIGHT FIELD GENERATION SHADERS

Here we include the shader source code of our implementation of the height field

generation. It has three passes:

• Rendering wave particle points,

• Filtering in the x direction, and

• Filtering in the y direction.

For more information on these passes, please see Section 5.1.5.

The implementation presented here outputs three separate textures: 3D surface de-

viation, 2D gradient, and 3D water surface velocity. In our original implementation,

we output two textures only by packing these three outputs into eight channels of

two textures. We use the separable filter approximation to compute these values.

The separable filters for vertical and horizontal deviations are provided in equa-

tions 5.6 through 5.11. The filter equations for surface gradients are

gXx (x) = −1

2
sin
(πx
r

) (π
r

)
, (C.1)

gYx (y) =
1

2

(
cos
(πy
r

)
+ 1
)
, (C.2)

gXy (x) =
1

2

(
cos
(πx
r

)
+ 1
)
, and (C.3)

gYy (y) = −1

2
sin
(πy
r

) (π
r

)
, (C.4)



205

where gx and gy are the x and y components of the surface gradient. Note that

functions gXx and gYy correspond to the spatial derivative of the vertical deviation

function (equations 5.6 and 5.7). Since they are derived from the vertical deviation

function, these filters approximate the surface gradient in the absence of horizontal

deviation.

To include the effect of the horizontal deviation on the surface gradient, we need

to divide these gradient values by one plus the spatial derivative of the horizontal

deviation. We approximate the spatial derivative of the horizontal deviation using

the filter functions

hXx (x) = −1

2

(
cos

(
2πx

r

)
+ cos

(πx
r

)) (π
r

)
, (C.5)

hYx (y) =
1

4

(
cos
(πy
r

)
+ 1
)2

, (C.6)

hXy (x) =
1

4

(
cos
(πx
r

)
+ 1
)2

, and (C.7)

hYy (y) = −1

2

(
cos

(
2πy

r

)
+ cos

(πy
r

)) (π
r

)
. (C.8)

In this form, the gradient in the x direction is calculated as gx/(1+hx) and, similarly,

the gradient in the y direction is gy/(1+hy). This way, we take the horizontal deviation

into account while computing the surface gradient. Notice that the functions hXx and

hYy are the spatial derivatives of the horizontal deviation functions (equations 5.8 and

5.11).

The horizontal velocity is computed similarly using the filter functions that correspond

to the time derivative of the horizontal deviation functions (equations 5.8 and 5.11),
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such that

vXx (x) = −1

2

(
cos

(
2πx

r

)
+ cos

(πx
r

)) (πυ
r

)
, (C.9)

vYx (y) =
1

4

(
cos
(πy
r

)
+ 1
)2

, (C.10)

vXy (x) =
1

4

(
cos
(πx
r

)
+ 1
)2

, and (C.11)

vYy (y) = −1

2

(
cos

(
2πy

r

)
+ cos

(πy
r

)) (πυ
r

)
, (C.12)

where υ is the wave speed. For computing the vertical velocity, we first find the

average wave propagation direction. Then, we calculate the surface gradient in this

average wave propagation direction by taking a dot product of it with the computed

surface gradient. Multiplying this value with the wave speed υ gives us the vertical

component of the water surface velocity.

Looking at all the filter functions we use, one can see that there are only five types

of filter functions, such that

f1(v) =
1

2

(
cos
(πv
r

)
+ 1
)
, (C.13)

f2(v) = −1

2
sin
(πv
r

)
, (C.14)

f3(v) = −1

2

(
cos

(
2πv

r

)
+ cos

(πv
r

))
, (C.15)

f4(v) = 2 f1(v) f2(v) , and (C.16)

f5(v) = [f1(v)]2 . (C.17)

In the code below we use the GetFilter function to compute the values of the first

three functions. In our implementation we precompute these values and use a small

1D texture to pass them to the shader.

The implementation presented here is for a pool simulation. In an open ocean simu-
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lation with projected height field, extra lines should be added to adjust the filter size

at each fragment of the filtering passes.

//--------------------------------------------------------------------------------------------------

// The vertex program for rendering wave particles as point

// primitives on the extended height field texture.

void HF_Points_VP ( in float3 posTime : POSITION // x:posx y:posy z:time

, in float3 velAmp : NORMAL // x:velx y:vely z:amplitude

, out float4 clipPos : POSITION // output position

, out float3 waveInfo1 : TEXCOORD0 // x:screenPosX y:screenPosY z:amplitude

, out float2 waveInfo2 : TEXCOORD1 // x:velX y:velY z:posX w:posY

, uniform float time // current time

)

{

if ( velAmp.z == 0 ) { // if wave amplitude is zero

clipPos = float4(2,2,2,1); // move the point outside the view

} else {

// set position

float2 pos = posTime.xy + (time-posTime.z) * velAmp.xy;

float2 spos = WAVE_TEXCOORD(pos.xy);

waveInfo1.x = spos.x * WAVE_TEXTURE_WIDTH;

waveInfo1.y = spos.y * WAVE_TEXTURE_HEIGHT;

clipPos = float4( spos * 2.0f - 1.0f, 0, 1 );

// set amplitude

waveInfo1.z = velAmp.z * exp( (posTime.z-time) * WAVE_DAMPING );

// set velocity

waveInfo2.xy = velAmp.xy;

}

}

//--------------------------------------------------------------------------------------------------

// The fragment program for rendering wave particles as point

// primitives on the extended height field texture.

void HF_Points_FP ( in float3 waveInfo : TEXCOORD0 // x:posX y:posY z:amplitude

, in float2 waveVel : TEXCOORD1 // wave velocity

, in float2 wpos : WPOS // fragment position

, out float4 velAmp : COLOR // x:velX y:velY z:amplitude

)

{

// pool edges

waveInfo.x = (waveInfo.x < 0.5) ? 0.5 :

( waveInfo.x > (WAVE_TEXTURE_WIDTH -0.5) ) ? (WAVE_TEXTURE_WIDTH -0.5) : waveInfo.x;

waveInfo.y = (waveInfo.y < 0.5) ? 0.5 :

( waveInfo.y > (WAVE_TEXTURE_HEIGHT-0.5) ) ? (WAVE_TEXTURE_HEIGHT-0.5) : waveInfo.y;

// antialiasing

float ax = 1.0f - abs(waveInfo.x - wpos.x);

float ay = 1.0f - abs(waveInfo.y - wpos.y);

float a = ax * ay;

velAmp.xy = waveInfo.z * a * waveVel.xy; // wave particle velocity

velAmp.z = waveInfo.z * a; // wave particle amplitude

velAmp.a = 1.0f; // full alpha, not used

}
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//--------------------------------------------------------------------------------------------------

// returns filters f_1, f_2, and f_3

float3 GetFilter( in float v )

{

float s, c;

sincos( PI*v, s, c );

return float3(

0.5f * (c + 1.0f), // 0.5 ( cos(v) + 1 )

-0.5f * s, // -0.5 sin(v)

-0.25f * (c*c - s*s + c) // cos(2v) + cos(v)

);

}

//--------------------------------------------------------------------------------------------------

// f_1: 0.5 * ( cos(v) + 1 )

// f_2: -0.5 * sin(v)

// f_3: -0.25 * ( cos(2v) + cos(v) )

// f_4: -0.5 * sin(v) * ( cos(v) + 1 )

// f_5: 0.25 * ( cos(v) + 1 )^2

// The fragment program for filtering the height field texture

// in the horizontal direction.

void HF_HFilter_FP ( in float2 texcoord : TEXCOORD0 // texture coordinate

, out float4 f123 : COLOR0 // x:f_1 y:f_2 z:f_3 (times amplitude)

, out float4 f45v : COLOR1 // x:f_4 y:f_5 z:velX w:velY

, uniform sampler2D texture : TEXUNIT0 // x:velX y:velY z:amplitude

)

{

// current pixel

float3 velAmp = tex2D( texture, texcoord ).xyz; // x:velX y:velY z:amplitude

f123 = float4( velAmp.z, 0, 0.5f*velAmp.z, 1 ); // x:f_1 y:f_2 z:f_3 (times amplitude)

f45v = float4( 0, velAmp.z, sign(velAmp.z)*velAmp.xy ); // x:f_4 y:f_5 z:velX w:velY

float texOffset = 0; // loop variable

// neighboring pixels

for ( float i=WAVE_TEXEL_WIDTH_IN_WORLD; i<WAVE_PARTICLE_RADIUS; i+=WAVE_TEXEL_WIDTH_IN_WORLD )

{

texOffset += TEXEL_WIDTH;

float3 velAmpL = tex2D( texture, float2( texcoord.x + texOffset, texcoord.y ) ).xyz; // right

float3 velAmpR = tex2D( texture, float2( texcoord.x - texOffset, texcoord.y ) ).xyz; // left

float ampSum = velAmpL.z + velAmpR.z;

float ampDif = velAmpL.z - velAmpR.z;

float3 f = GetFilter( i/float(WAVE_PARTICLE_RADIUS) );

f123.x += ampSum * f.x; // f_1

f123.y += ampDif * f.y; // f_2

f123.z += ampSum * f.z; // f_3

f45v.x += ampDif * f.x*f.y; // f_4

f45v.x += ampSum * f.x*f.x; // f_5

// average velocity

f45v.z += ( sign(velAmpL.z)*velAmpL.x + sign(velAmpR.z)*velAmpR.x ) * f.x;

f45v.w += ( sign(velAmpL.z)*velAmpL.y + sign(velAmpR.z)*velAmpR.y ) * f.x;

}

}
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//--------------------------------------------------------------------------------------------------

// The fragment program for filtering the height field texture in the vertical direction.

void HF_VFilter_FP ( in float2 texcoord : TEXCOORD0 // texture coordinate

, out float4 deviation : COLOR0 // x:devX y:devY z:devZ

, out float4 gradient : COLOR1 // x:gradX y:gradY

, out float4 velocity : COLOR2 // x:velX y:velY z:velZ

, uniform sampler2D texX0 : TEXUNIT0 // x:f_1 y:f_2 z:f_3 (times amplitude)

, uniform sampler2D texX1 : TEXUNIT1 // x:f_4 y:f_5 z:velX w:velY

)

{

// current pixel

float3 f123 = tex2D( texX0, texcoord ).xyz; // x:f_1 y:f_2 z:f_3 (times amplitude)

float4 f45v = tex2D( texX1, texcoord ).xyzw; // x:f_4 y:f_5 z:velX w:velY

deviation = float4( f45v.x, 0, f123.x, 1 ); // initialize deviation at this pixel

gradient = float4( f123.y, 0, 0, 1 ); // initialize gradient at this pixel

velocity = float4( f123.z, -0.5f*f45.y, 0, 1 ); // initialize velocity at this pixel

float3 gradCorr = float2( f123.z, f45v.y ); // initialize gradient correction

float2 dir = val1.zw; // average direction

float texOffset = 0; // loop variable

// neighboring pixels

for ( float i=WAVE_TEXEL_WIDTH_IN_WORLD; i<WAVE_PARTICLE_RADIUS; i+=WAVE_TEXEL_WIDTH_IN_WORLD )

{

texOffset += TEXEL_HEIGHT;

float3 f123B = tex2D( texX0, float2( texcoord.x, texcoord.y + texOffset ) ).xyz; // bottom

float4 f45vB = tex2D( texX1, float2( texcoord.x, texcoord.y + texOffset ) ).xyzw; // bottom

float3 f123T = tex2D( texX0, float2( texcoord.x, texcoord.y - texOffset ) ).xyz; // top

float4 f45vT = tex2D( texX1, float2( texcoord.x, texcoord.y - texOffset ) ).xyzw; // top

float3 f = GetFilter( i/float(WAVE_PARTICLE_RADIUS) );

deviation.x += (f45vB.x + f45vT.x) * f.x*f.x; // deviation X

deviation.y += (f45vB.y - f45vT.y) * 2*f.x*f.y; // deviation Y

deviation.z += (f123B.x + f123T.x) * f.x; // deviation Z

gradient.x += (f123B.y + f123T.y) * f.x; // gradient X

gradient.y += (f123B.x - f123T.x) * f.y; // gradient Y

gradCorr.x += (f123B.z + f123T.z) * f.x*f.x; // gradient X horizontal deviation

gradCorr.y += (f45vB.y + f45vT.y) * f.z; // gradient Y horizontal deviation

velocity.x += (f123B.z + f123T.z) * f.x*f.x; // velocity X

velocity.y += (f45vB.y + f45vT.y) * f.z; // velocity Y

dir += ( f45vB.zw + f45vT.zw ) * f.x; // average direction

}

// fix gradient considering horizontal deviation

gradCorr *= PI / WAVE_PARTICLE_RADIUS;

gradient.xy *= ( PI / WAVE_PARTICLE_RADIUS ) / (1 + gradCorr);

velocity.xy *= PI * WAVE_SPEED / WAVE_PARTICLE_RADIUS; // fix velocity magnitude

dir = normalize(dir); // average propagation direction

velocity.z = dot( dir, gradient.xy ) * WAVE_SPEED; // vertical velocity

AddAmbientWaves( deviation, gradient, velocity ); // precomputed ambient waves

}

//--------------------------------------------------------------------------------------------------
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