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Figure 1: Sample frames captured from our real-time simulation system (approximately 100,000 wave particles)

Abstract

We present a new method for the real-time simulation of fluid sur-
face waves and their interactions with floating objects. The method
is based on the new concept of wave particles, which offers a sim-
ple, fast, and unconditionally stable approach to wave simulation.
We show how graphics hardware can be used to convert wave par-
ticles to a height field surface, which is warped horizontally to
account for local wave-induced flow. The method is appropriate
for most fluid simulation situations that do not involve significant
global flow. It is demonstrated to work well in constrained areas,
including wave reflections off of boundaries, and in unconstrained
areas, such as an ocean surface. Interactions with floating objects
are easily integrated by including wave forces on the objects and
wave generation due to object motion. Theoretical foundations and
implementation details are provided, and experiments demonstrate
that we achieve plausible realism. Timing studies show that the
method is scalable to allow simulation of wave interaction with sev-
eral hundreds of objects at real-time rates.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: wave particles, waves, real-time simulation, fluid-
object interaction, GPU algorithms

1 Introduction

Today’s water simulation techniques are highly realistic but require
extensive offline computation, while achieving a similar realism in
real time remains an open challenge. For real-time graphics we
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must resort to ad hoc methods with predictably low quality results.
Furthermore, simulating interactions between water and floating
objects is essential for achieving realism in a virtual environment,
but physically accurate simulation of solid and fluid interaction is
too expensive even for offline computation. Though a number of
approximate methods are used in offline graphics, they are too com-
plex for real-time graphics use.

We will show that a broad class of visually-complex water phenom-
ena can be modeled by an algorithmic formulation that is conceptu-
ally simple and computationally inexpensive, while being grounded
in physical principle and experimental verification.

In our real-time method, we focus on the surface behavior of large
bodies of incompressible, globally-flowless fluids in interaction
with floating objects. We introduce the concept of wave particles
to track wave motion, and to formulate deformations of the fluid
surface. The fluid surface itself is represented by a height field,
extended by horizontal warps induced by local flow. Using graph-
ics hardware, we convert the wave particles to the extended height
field, which is then used for rendering and computing forces applied
on floating objects. To complete the representation of fluid-object
interaction, the motion of floating objects is used to generate sur-
face waves using wave particles. This method is unconditionally
stable, and can easily support both bounded and unbounded config-
urations.

Figure 1 was created by capturing frames from a real-time simula-
tion designed to demonstrate all aspects of our method. The boat is
a dynamic element in the simulation, being driven under control of
a joystick. Boat’s forward motion and steering are due to interac-
tion forces acting on its spinning propeller and its rudder. Realistic
waves created by the boat’s motion reflect off of the sides of the
water tank, and in turn affect the motion of the boat.

In the next section we give a brief overview of previous work. Sec-
tion 3 describes our wave simulation system, and interactions with
floating objects are explained in Section 4. Implementation details
are given in Section 5. Final sections present our results in Section
6, a discussion in Section 7, and a conclusion in Section 8.

2 Previous Work

In this section we briefly overview some of the previous work
on water simulation and object interaction techniques in computer
graphics. For an overview of rigid body simulations we recommend
[Guendelman et al. 2003].
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Early work on water simulation concentrated on modeling water
as a surface using Fourier synthesis [Mastin et al. 1987] or para-
metric representations [Schachter 1980; Fournier and Reeves 1986;
Peachey 1986; Ts’o and Barsky 1987]. In addition, [Schneider and
Westermann 2001] used graphics hardware for real-time simula-
tion of waves using a noise function [Perlin and Hoffert 1989].
For a summary on the generation of ocean waves we recommend
[Tessendorf 2001]. [Tessendorf 2004] also shows how reflecting
waves can be generated from objects in the water. While these
methods achieve realistic results, they are not applicable for dy-
namic simulations of two-way object-fluid interactions.

Later work looked at shallow water equations using height fields.
[Kass and Miller 1990] used finite differences to solve simplified
2D shallow water equations over a dynamic height field. [Chen and
da Vitoria Lobo 1995] used a pressure-defined height field arising
from a 2D solution of the Navier-Stokes equations. They proposed
a way of handling two-way object to fluid coupling; however, their
implementation is limited to one-way coupling only. [O’Brien and
Hodgins 1995] added a particle system to simulate splashing liq-
uids, but the height field simulation was still based on a 2D Navier-
Stokes solution. [Baxter et al. 2004] used height field fluids for in-
teractive watercolor painting. [Layton and van de Panne 2002] used
implicit semi-Lagrangian integration for shallow water equations.

Particle systems [Reeves 1983] have been used in a number of ways
in fluid simulation: a viscous-spring particle representation [Miller
and Pearce 1989], molecular dynamics for melting solids [Ter-
zopoulos et al. 1989], smoothed particle hydrodynamics [Müller
et al. 2003], and the moving particle semi-implicit method [Pre-
moze et al. 2003]. However, these Lagrangian methods are com-
putationally expensive, requiring a large number of interacting par-
ticles for high quality. Interesting hybrid particle-grid approaches
[Selle et al. 2005; Zhu and Bridson 2005] address this issue.

There is a large body of work done on Eulerian grid-based solutions
to Navier-Stokes equations [Foster and Metaxas 1997b; Stam 1999;
Foster and Fedkiw 2001]. Recent efforts to enhance the quality and
reduce the computational time include: octree structures [Losasso
et al. 2004], RLE implementations [Houston et al. 2006], and tetra-
hedral meshes [Feldman et al. 2005; Klingner et al. 2006]. One-way
coupling between objects and fluid is used by many researchers in
the form of boundary conditions [Foster and Metaxas 1996; Fos-
ter and Metaxas 1997a; Fedkiw et al. 2001; Enright et al. 2002;
Fedkiw 2002], and a number of researchers proposed methods for
two-way interactions [Takashi et al. 2002; Peskin 2002; Takashi
et al. 2003; Genevaux et al. 2003; Carlson et al. 2004; Guendelman
et al. 2005; Losasso et al. 2006; Klingner et al. 2006]. Recently
[Irving et al. 2006] presented a technique for simulating large bod-
ies of water with object to fluid coupling using the combination of
a Navier-Stokes based fluid solver and a height field formulation,
and [Losasso et al. 2006] developed a representation of multiple in-
teracting liquids. Although their results are of high quality, all of
these methods are suitable only for offline computation.

There are several interesting recent results in real-time fluid. [Ange-
lidis and Neyret 2005] use a vorticity scheme to simulate and render
turbulent smoke. [Kim et al. 2006] use the GPU to compute buoy-
ant forces on arbitrary models, achieving one-way fluid on object
interactions in real time (16 fps for about 50 objects). The model
reduction approach of [Treuille et al. 2006] is especially successful,
but it has large precomputation requirements and is only suitable
for simulating scenarios previously “trained in”. The closest work
to that described in this paper is by [Jensen and Goliáš 2001]. They
use grid based Eulerian methods to model deep ocean waves, in-
cluding the effect of fluid on objects, but their computation of the
effect of objects on the fluid involves numerical differencing and the
addition of artificial damping, so we expect it to be highly sensitive

to parameter tuning. Our approach can handle both deep ocean and
constrained environments, and has a much simpler computational
framework.

3 Wave Simulation

We begin the explanation of our method with a basic height field
representation, introducing the extended height field and physically
correct wave simulation at the end of this section.

A basic height field is defined as a continuous function of fluid level
z over the horizontal position x = (x,y). External forces and inter-
actions with objects generate deviations on the water surface, which
turn into surface waves that propagate with speed υ , satisfying the
second order wave equation

∂ 2z
∂x2 +

∂ 2z
∂y2 =

1
υ2

∂ 2z
∂ t2 . (1)

We formulate an analytical solution to Equation 1 by first represent-
ing the height field as

z(x, t) = z0 +ηz(x, t) , (2)

the sum of base height z0 and deviation field ηz; then formulating
the deviation field as

ηz(x, t) = ∑
i

Di(x, t) , (3)

the sum of a set of local deviation functions, each traveling with the
wave’s speed υ .

The heart of our method is to associate each local deviation function
with what we call a wave particle, which moves with the wave’s ve-
locity. We can formulate the local deviation function corresponding
to particle i as

Di(x, t) = ai Wi ( x− xi(t) ) , (4)

where ai is the amplitude, Wi a constant waveform function and
xi(t) the particle’s position at time t. Each deviation function is
stationary relative to its wave particle, and the position and propa-
gation direction of the wave particle, along with a number of other
wave particle properties, define the shape and behavior of its local
deviation function. This approach reduces the dynamics of wave
simulation to tracking a system of particles moving on a plane.

3.1 Construction of waves

The construction of waves from wave particles requires finding
waveform functions that give a plausible wave shape and satisfy
Equation 1. It also requires forming the waves into wavefronts that
move in unison across the water surface.

In two dimensions, the natural choice for the waveform function is
sinusoidal, giving a shape similar to the vertical deviation of most
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Figure 2: (a) Shape of waveform function, (b) Continuous waves
constructed from local deviation functions
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water surface waves. We use

Wi(u) =
1
2

(
cos

(
2πu

li

)
+1

)
Π

(
u
li

)
, (5)

where li is the wavelength and Π is a rectangle function1. Besides
shape and the fact that it satisfies Equation 1, this particular wave-
form function is a good choice because:

• It is non-zero over a finite range, with zero first derivative at
the endpoints (Figure 2a).

• It is easy to create continuous waves with fixed wavelength by
the alternate spacing of local deviation functions with positive
and negative amplitudes (Figure 2b).

(a) (b)

Figure 3: (a) Individual wave particles (b) Wavefront formed by
these wave particles

In three dimensions, water surface waves take the form of contin-
uous wavefronts. Instead of formulating our local deviation func-
tions to represent a whole wavefront, we model wavefronts by plac-
ing local deviation functions side by side as shown in Figure 3, and
blending their shapes so that they are non-zero only over a finite
area. Thus, the local deviation function for particle i is

Di(x, t) = ai Wi(u) Bi(v) , (6)

where u = ûi · (x− xi) and v = û⊥i · (x− xi) are in the local coor-
dinates of the particle such that ûi is the propagation direction and
û⊥i is a horizontal direction perpendicular to propagation, and Bi is
a blending function. Note that the choice of blending function is
somewhat arbitrary: any function that has finite support and whose
translates sum to one is acceptable, yielding local deviation func-
tions that are non-zero only over a finite quadrilateral area.

3.2 Wave Particles

Wave particles can be easily implemented using the generalized for-
mulation explained above. However, here we introduce an approx-
imation to Equation 6, using a deviation function with radial sup-
port. This radial formulation allows us to implement wave particles
efficiently on currently available graphics hardware. First, notice
that Equation 5 can be used as the blending function Bi in Equa-
tion 6. Rather than the quadrilateral definition of Di in Equation 6,
we use a radial definition formulating our local deviation functions
as

Di(x, t) =
ai

2

(
cos

(
π|x−xi(t)|

ri

)
+1

)
Π

(
|x−xi(t)|

2 ri

)
, (7)

where ri is the radius of the wave particle. This radial definition
introduces some error in the final wavefront shape, the amount of
which is determined by the distance between two neighboring par-
ticles. We empirically found that by keeping this distance smaller
than one half of the wave particle radius, the maximum deviation
of the waveform shape from ideal is less than 3% of the peak am-
plitude, while the maximum deviation along the wave crest is less
than 0.1%.

Wave particles can do more than track wave position over time.
They can also carry additional properties describing the shape and

1Rectangle function Π(x) is 1 for |x|< 1
2 , 1

2 for |x|= 1
2 , and 0 otherwise.

behavior of their local deviation functions, such as amplitude and
radius. For example, wave amplitude may be decreased with time
to account for energy loss due to viscosity or other damping.

(a) (b)

Figure 4: (a) Expanding wavefront (b) Contracting wavefront

In reality, wavefronts can be expanding or contracting as shown in
Figure 4. Therefore, the distance between neighboring particles in
a wavefront changes over time. To account for this behavior, wave
particles also carry a dispersion angle. Since our wave speed is
constant, we can use this property to track the distance between
neighboring particles, avoiding explicit inter-particle distance com-
putation. To keep the surface representation error within the limits
described above, we convert a wave particle into three new wave
particles when the distance is above half of the wave particle ra-
dius. We call this procedure wave particle subdivision. When a
wave particle goes through subdivision, amplitudes and dispersion
angles of the three child particles become one third of the parent
particle, while the radii of the new particles stay the same as the
parent.

Just like water surface waves, wave particles do not interact with
each other, and their speed is determined by the water medium. The
superposition of all wave particles (i.e. local deviation functions)
gives the total deviation of the water surface.

3.3 Boundaries

Boundaries are the edges of the container that holds the simulated
water. Wave particles bounce back from the boundaries to simu-
late reflecting waves. When the boundary is curved, this reflection
changes the dispersion angle of the wave particle according to the
curvature of the boundary. Note that when the water volume is con-
tained within closed boundaries, once a wave is generated it always
stays within these boundaries. When simulating an ocean surface
we simply remove all the boundaries, and waves become free to
move away and out of the current view. Thus, with our method it is
actually easier to simulate an ocean than a water pool.

3.4 Water Waves and Extended Height Field

The basic height field formulation we have presented up to now ac-
counts only for transverse waves, but water surface waves are actu-
ally a combination of both transverse and longitudinal components
(Figure 5). This is why water moves in circles when a wave travels
on the surface, as shown in Figure 6. This longitudinal component
plays an important role in many parts of the simulation, including
simulating realistic interactions with floating objects, conserving
energy during wave propagation and superposition, and giving a re-
alistic shape to the simulated wavefront. To account for this, we
extend the basic height field definition so that it includes the hori-
zontal surface deviations due to the longitudinal waves.

transverse waves longitudinal waves water waves

Figure 5: Transverse and longitudinal components of water waves
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Figure 6: Isopressure lines showing the circular motion of water
due to surface waves [Gerstner 1802]

The extended height field is in fact a surface deformation field η :
R3 → R3, such that the final position x′ of a point x on the water
surface is

x′(x, t) = x+η(x, t) . (8)

The vertical component of η is ηz from Equation 3. Similarly, the
horizontal component is

ηxy(x, t) = ∑
i

DL
i (x, t) . (9)

DL
i is a longitudinal local deviation function (Figure 7), which can

be formulated as

DL
i (x, t) = Li(ûi · (x−xi)) Di(x, t) (10)

where Li is a vector function describing the longitudinal waveform.
We derive the longitudinal waveform that corresponds to our trans-
verse waveform function (Equation 5) from the circular motion of
continuous waves (Figure 6). A longitudinal waveform that gives a
circular motion when combined with the transverse component is

Li(u) =−sin
(

πu
ri

)
Π

(
u

2ri

)
ûi . (11)

horizontal deviation
Di(x, t)

vertical deviation

DL
i (x, t)

Figure 7: Components of the local deviation function in 2D

In our extended height field, along with the surface deviations, we
also keep surface gradient (to compute surface normals) and 3D sur-
face velocity derived from space and time derivatives of the above
functions. To find the velocity at any point inside the fluid volume,
we exponentially scale down the surface velocity with depth as in
Figure 6 [Gerstner 1802].

4 Fluid Object Interaction

We treat interactions between fluids and objects by separating the
interaction into two separate one-way couplings. Most interactions
use the velocity of the individual object face relative to the velocity
of the fluid at the face.

4.1 Object to Fluid Coupling

When an object is fully or partially submerged, it affects existing
waves on the fluid surface and also introduces new waves due to its
relative motion. The height field deviation then becomes the sum-
mation of the affected existing waves and the new waves created by

Figure 8: Cases of wave generation, (a-b) object is on the surface,
(c-d) object is inside the fluid volume.

the submerged object. Instead of actually modifying a wave particle
interacting with an object, a new particle is generated that accounts
for the modification. For example, a negative wave created on top
of an existing wave would effectively delete it. Therefore, existing
waves propagate without any modification, and we can simulate the
object to fluid coupling simply by generating new waves.

Instead of using wave particles directly for object to fluid coupling,
we use the extended height field formulation generated from the
wave particles. Thus, we eliminate collision detection between
wave particles and objects, yet still achieve plausible results. This
is done by generating new wave particles (including those to reflect
and/or cancel waves) directly from the motion of the object relative
to the fluid motion in the extended height field.

Our wave generation approach is based on volume conservation.
Note that here we do not enforce energy conservation, since during
wave generation a portion of the energy is lost to heat and turbu-
lence. Thus, the energy of the waves does not correspond to the
whole energy transfer, whereas volume is always conserved.

For wave generation, we consider the water body around the in-
teracting object as being organized into vertical cells similar to a
height field fluid approach (Figure 8). Here, the amplitude of a
wave corresponds to the volume change in the cells, and the wave
direction is set according to the expected pressure difference be-
tween neighboring cells caused by the object motion. Basically, we
generate a positive amplitude wave where the object is pushing the
fluid, and a negative amplitude wave where the object is pulling the
fluid around it. The generated waves move away from the object
unless the object is fully submerged. Since the object shape and
motion can be much more complicated than the ones shown in Fig-
ure 8, we handle each face of the object separately. Even though
this is a highly simplified wave generation approach, it achieves
plausible realism in our test scenes.

We start by computing the volume of fluid displaced by the relative
motion of each face. This is given by

V = A f ace(U ·N)∆t, (12)

where A f ace is the face area, U is the relative velocity at the face
center, N is the face normal, and ∆t is the time step. Note that
V is positive if the fluid is pushed by the face, and negative if the
fluid is pulled. Since we do not have a 3D fluid simulation, we also
exponentially scale down V as the depth into the fluid increases,
such that the object motions deep inside the fluid have less effect
on the surface.

The next step is to use this displaced volume for generating waves
on the surface. If the face is on the top side of the object as in
Figure 9a, we generate a ripple on the surface (a wave particle with
2π dispersion angle), which corresponds to the volume displaced
by the face. Otherwise, as in Figure 9b, we distribute its displaced
volume to the nearest points that have a direct connection to the
fluid surface, and then generate waves from these points.
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(a)

(b)

Figure 9: (a) faces that have direct access to the surface, (b) faces
that do not have direct access to the surface

4.2 Fluid to Object Coupling

To allow for realistic motion of objects in the water, we incorporate
fluid to object coupling by applying static and dynamic forces on
the floating objects. Here we present the formulations we use to
compute these forces. We recommend that the interested reader
refer to [Munson et al. 2006] for detailed explanations.

The static component of the force is buoyancy

Fbuoyancy =−g ρ Vdisplaced , (13)

where g is the gravitational acceleration, ρ is the density of the
fluid, and Vdisplaced is the volume of the object inside the fluid. Af-
ter computing the buoyant force, it is applied to the centroid of the
part of the object inside the fluid.

The dynamic forces are computed over the interface of fluid and ob-
ject and they are based on the relative motion of the object surface
to the fluid. The component of the dynamic force in the opposite
direction of relative motion is drag force and the component per-
pendicular to the relative motion is lift force (Figure 10). While
computing these dynamic forces, we assume that the total force
acting on the object is the sum of the forces acting on each face,
applied at the face centroids. Even though this ignores the inter-
actions between faces, generally it is a reasonable approximation.
The drag and lift forces acting on each face are

Fdrag = −1
2

ρ CD |A| |U| U , (14)

Fli f t = −1
2

ρ CL A |U|
(

U× (N×U)

|(N×U)|

)
, (15)

where CD and CL are the drag and lift coefficients, U is the relative
velocity, and A is the effective area of the face. The values of CD
and CL as well as the formulation of A depend on the shape of the
object and properties of the fluid medium, and they are typically
obtained from experiments or advanced analysis. Here we leave
CD and CL as user defined parameters so that objects with different
aerodynamic properties can be simulated. The effective area of a

Figure 10: Directions of drag and lift forces on an object face mov-
ing with velocity U relative to the fluid’s local velocity.

surface is complicated to define, and depends on the overall struc-
ture of the object, however it always ranges between the projected
area in the direction of motion, and the total area of the surface.
Thus we formulate it as

A =

(
N ·U
|U|

α +(1−α)

)
A f ace , (16)

where A f ace is the area of the face inside the fluid and 0 ≤ α ≤ 1
is a user defined parameter used to adjust for effective area. In our
experiments we set alpha to one. Smaller values can be used to
dampen object motion.

5 Implementation Details

Here we give an overview of our wave simulation and object inter-
action implementation, providing details about nontrivial steps and
some optimization techniques. Most of our operations use graphics
hardware only for rendering simple primitives and filtering, there-
fore they can be implemented on any GPU with floating point sup-
port. The main structure of a time step looks like

TimeStep ( )
IterateWaveParticles ( )
ComputeObjectForces ( )
IterateObjects ( )
GenerateWaveParticles ( )
RenderHeightFields ( )

IterateWaveParticles moves the wave particles to their new
positions and handles subdivision and reflection events that occur
within the time step. The wave particles can be easily iterated on
the GPU, but even this iteration can be eliminated and the position
of a wave particle can be found using its velocity and its known po-
sition at any time. However, wave particles subdivide and reflect
from stationary boundaries, so IterateWaveParticles should
still handle these events (note that we do not compute wave particle
collisions with dynamic objects as explained in Section 4.1). For-
tunately, this can be done using a time table of events, since when a
wave particle is generated, its exact subdivision or reflection times
can be found. Using this approach, IterateWaveParticles vis-
its only those particles that should subdivide or reflect within the
current time step. Therefore, iteration time is related to the number
of events, but not directly related to the total number of wave par-
ticles in the system. This allows the iteration of millions of wave
particles with minimal cost. Before subdividing a wave particle, we
check its amplitude, and if the amplitude is below a user defined
threshold, kill the wave particle instead of subdividing.

ComputeObjectForces computes static and dynamic forces on
the GPU and applies them to objects. To find Vdisplaced in Equa-
tion 13, we render the object in top view with additive blending. In
the fragment shader, for backfacing fragments we assign the depth
of the fragment as the color value, and for frontfacing fragments we
assign negative depth value, while discarding the fragments that are
outside the fluid volume. Multiplying the final pixel values by the
pixel area yields Vdisplaced . We compute the dynamic forces using
equations 14, 15 and 16 onto a floating point texture, where each
pixel corresponds to an object face. Then we copy these textures
to main memory and use them to determine applied forces on the
objects.

IterateObjects handles the rigid body simulation. Deformable
objects can also be simulated here. Although our implementation of
IterateObjects runs on the CPU, a GPU implementation would
better suit our system, since it would eliminate texture reads to main
memory.
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GenerateWaveParticles creates new wave particles due to the
computed object motion. For efficiency reasons, while computing
the dynamic forces we also calculate the volume of fluid pushed or
pulled by each face using Equation 12. Here we render a low reso-
lution silhouette of the part of the object inside the fluid from a top
view and identify the boundary pixels of the silhouette. If the face
is on top of the object, we generate a wave particle at the position
of the face, otherwise we distribute the displaced volume by the
face to the nearest boundary pixels. After all the displaced volumes
are distributed, we generate waves from the boundary pixels. The
directions of the generated waves are outwards from the boundary
pixels unless the part of the object on the boundary is fully inside
the fluid volume (Figure 8), and the dispersion angle is determined
by examining the directions of neighboring pixels.

RenderHeightFields converts the wave particle representation to
an extended height field. Our implementation of the wave particle
system uses the same radius value for all particles. Because of this,
RenderHeightFields can be implemented efficiently by drawing
wave particles as point primitives on the height field texture, which
significantly reduces the number of fragments to be blended. Then
we filter this image using Equation 7 as a kernel. This filtering can
be further optimized by approximating this kernel by a horizontal
followed by a vertical filtering with a 1D version of the kernel given
by Equation 5.

For most of the fluid object interactions, we need to find the fluid
height and velocity at the surface right above a point inside the fluid
volume. However, the values that we read from the extended height
field on a surface point also have horizontal displacement, so this
surface point is often not right above the point of interest. Finding
the correct location on the extended height field requires the inverse
transformation of the final horizontal displacement field. To elim-
inate this complicated procedure, we convert the extended height
field to a basic height field by rendering the fluid surface using the
extended height field onto the basic height field texture. This over-
head can be minimized by using a low resolution version of the
surface for this conversion.

6 Results

To provide enhanced visualizations of our approach, we use the
GPU based techniques described in [Johanson 2004] for water ren-
dering, with real-time caustics as in [Shah et al. 2007] (Figure 13).
For scenes involving ocean surfaces, we couple the water surface
grid to the camera as in [Johanson 2004], and we generate ambient
waves using the method of [Tessendorf 2001].

Figure 11: Circular motion due to waves moving from left to right.
(top) real video capture, (bottom) simulated using our method.

In order to evaluate our method, we video taped a number of exper-
iments in a wave tank and compared them with our wave simula-
tions. In the simulations, wave particles are generated at one side of

the tank to emulate the tank’s wave generator. Figure 11 shows one
such comparison. The larger images show that the overall wave
shape is effectively mimicked. The sequences of smaller frames
demonstrate that the circular motion induced by the waves is repro-
duced in our simulation, successfully capturing both transverse and
longitudinal wave action.

Figure 12: Exaggerated effect of extended height field.

Although we are using a height field approach, the height field is
extended to allow for a significant longitudinal component affecting
the wave shape. The effect of this component is demonstrated in
exaggerated form by the wave shown in Figure 12.

pool boat and boxes

boat armada massive boxes

Figure 13: Pool and ocean test scenes with boats and boxes.

To demonstrate the speed and scalability of our approach, we sim-
ulated a number of scenes on a standard PC with a 2.13GHz Core2
Duo processor and GeForce 7900 graphics card, recording perfor-
mance data for each run. This data is shown in Table 1. Our boat in
tank scene from Figure 1 has a height field resolution of 512×128,
and includes a single propeller and rudder as user controllable ele-
ments. We allowed the simulation to use up to 100,000 active wave
particles by keeping the amplitude threshold for killing wave par-
ticles very low. Nearly identical results can be achieved using far
fewer (less than 10.000) wave particles. Our boat & boxes scene,
shown in Figure 13, used 600,000 active wave particles, a height
field resolution of 256× 512, and included an active boat driving
through water populated with 125 boxes with a total of 6176 faces.
We achieved real-time performance in both of these scenes. To

Table 1: Time results in milliseconds
boat in boat & boat massive
tank boxes armada boxes

IterateWaveParticles 0.28 1.28 57.54 85.95
ComputeObjectForces 0.29 1.74 36.95 129.23
IterateObjects 0.04 0.49 75.51 1061.60
GenerateWaveParticles 1.15 2.59 142.50 115.15
RenderHeightFields 4.97 20.40 132.93 159.12

Total Simulation Time 5.87 24.49 206.78 1073.38
Simulation Frames Per Second 170 fps 40.8 fps 4.84 fps 0.93 fps
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stretch our method, we constructed two massive scenes shown in
Figure 13 using the same boat and box models and height field res-
olution, but extending to 8,000,000 active wave particles and many
more rigid body elements. The first, boat armada, had 1681 active
boats with 295,856 faces, and runs at several frames per second.
The second, massive boxes, had 9261 falling and floating boxes
with 444,528 faces, and runs at nearly one frame per second. Here
the rigid body simulation becomes the bottle-neck, due to interac-
tions between boxes.

The computation times for each step of the simulation
have different scene complexity dependencies. The cost of
IterateWaveParticles is linearly dependent on the number
of wave events within a time step, which reflects the number
of object faces in the scene interacting with the fluid and the
shape of generated waves. On the other hand, the times of
ComputeObjectForces and GenerateWaveParticles depend
only on the number of object faces, while IterateObjects is
related to the number of objects and collisions between objects.
While RenderHeightFields has a constant cost due to the fil-
tering operation that is related to the height field resolution and
the wave particle radius, its computation time also depends on the
number of active wave particles. However, this dependence is quite
weak, as long as the number of active wave particles is not too high
(less than 100,000 on our test hardware).

7 Discussion

The method presented here concentrates on efficiently simulating
a subset of fluid behavior with object interactions, rather than for-
mulating an ultimate technique to handle all fluid phenomena. We
restrict ourselves to surface waves, therefore our approach is only
applicable when the 3D flow is unimportant.

Within this solution domain, our method has some important ad-
vantages over a full fluid simulation. Perhaps the most important
are its speed and scalability. Wave particles offer a fast and un-
conditionally stable wave simulation, and their generalized form is
sufficient to represent all possible surface deformations with correct
wave behavior. Damping in our system is not a result of numerical
simplification [Stam 1999], and can be added or eliminated without
affecting the stability.

In our formulation, when the amplitude of a wave is greater than
half of its length, the final wave shape intersects with itself as ob-
served by [Gerstner 1802]. [Bascom 1980] reports that waves be-
come unstable and break when the amplitude is greater than one-
seventh of the wave length. Therefore, when a wave particle with
high amplitude is introduced, it could be used as an indication for
secondary effects like splash and foam.

Using graphics hardware, we can efficiently convert wave particles
to an extended height field, which can be directly used for rendering
without an additional cost of surface generation. The decoupling
of height field representation and wave simulation allows biased
sampling of the final surface to concentrate the detail in important
areas (near the camera) for simulating a large surface like the ocean.

Our fluid-to-object coupling technique is based on the assumptions
and simplifications typically used in fluid mechanics. Therefore,
we can generate realistic object motion from interactions with the
fluid. The scalability of our method allows the simulation of several
thousand interacting objects in a fraction of a second.

The true physical process for water wave generation can be very
complex, involving turbulent flow that we do not attempt to model.
We have introduced a simplified wave generation approach based
on volume conservation. The direction of initial wave movement is

based on a simple model of pressure induced by object movement.
More experimental work is needed here, to perfect this approach.

8 Conclusion

We have introduced the concept of wave particles for the fast and
stable simulation of surface deformations, and shown how to use
these wave particles for simulating surface waves with floating ob-
ject interaction. Our method is fast, is highly scalable, and can
produce plausible realism for fluid and floating object interactions
in real time. Therefore, it is ready to be used in interactive appli-
cations. Although our method is tailored to the requirements of
real-time graphics, it can easily be used in offline simulations.

Future extensions of our approach include improved wave gener-
ation with splash, simulating breaking waves with wave particles,
diffraction of waves, and coupling wave particle simulation with a
3D fluid solver to extend the solution domain of our method, while
minimizing the computational overhead and improving the scala-
bility of the fluid solver. Since animators highly value the ability to
observe motion in real time, our method could be used to form the
heart of a wave choreography system.
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