Implementing Wave Particles for Real-time Water Waves with Object Interaction

Cem Yuksel Donald H. House John Keyser
Texas A&M University
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
Wave Particles

- Fluid surface
Wave Particles

- Wave particle
Wave Particles

- Bump
Wave Particles

- Dent
Wave Particles

- Wavefront
Wave Particles

- Wave particles
Wave Particles

- Bumps
Wave Particles

- Wavefront
Wave Particles

- Expanding wavefront
Wave Particles

- Subdivision
Wave Particles

- Subdivision
Wave Particles

- Subdivision
Boundaries

- **Boundary collision**
 - Waves reflect
 - Wave particles bounce back

- **No boundaries**
 - Infinite ocean!
 - Wave particles continue on
Wave Particles

- Wave particles
 - Collectively represent wavefronts
 - DO NOT interact
 - Move independently
 - Reflect independently
 - Subdivide independently
 - into smaller wave particles
 - Die when too small
Water Waves

transverse waves

longitudinal waves

water waves
Wave Particles

- Vertical deviation
 - cosine based
Wave Particles

- Horizontal deviation
 - sine based
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
Wave Particle Iteration

- Wave Particle Properties
 - 2D position
 - 2D direction (not velocity)
 - Amplitude
 - Dispersion angle
 - Age
Wave Particle Iteration

- **Iteration**
 - Wave Particle Properties
 - 2D position
 - 2D direction
 - Amplitude
 - Dispersion angle
 - Age

- **Reflection**

- **Subdivision**

Iteration: numerical integration on CPU / GPU / **Neither!**
Wave Particle Iteration

Neither?

position x_0 @ time t_0
direction u

constant wave speed v

$\mathbf{x}_1 = \mathbf{x}_0 + u (t_1 - t_0) v$

position \mathbf{x}_1 @ time t_1
Wave Particle Iteration

- Wave Particle Properties
 - 2D position
 - 2D birth position
 - 2D direction
 - Amplitude
 - Dispersion angle
 - Age Birth time

- Iteration
- Reflection
- Subdivision
Wave Particle Iteration

- Reflection

boundary

birth position

new birth position
Wave Particle Iteration

- Subdivision

birth position

dispersion angle
Wave Particle Iteration

- Time table of events

<table>
<thead>
<tr>
<th>subdivision</th>
<th>wave particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>particle1</td>
</tr>
<tr>
<td>t2</td>
<td>particle2</td>
</tr>
<tr>
<td>t3</td>
<td>particle3</td>
</tr>
<tr>
<td>t4</td>
<td></td>
</tr>
<tr>
<td>t5</td>
<td></td>
</tr>
<tr>
<td>t6</td>
<td></td>
</tr>
<tr>
<td>t7</td>
<td></td>
</tr>
<tr>
<td>t8</td>
<td>particle6</td>
</tr>
<tr>
<td>t9</td>
<td>particle8</td>
</tr>
<tr>
<td>...</td>
<td>particle9</td>
</tr>
</tbody>
</table>

x marks an event at that time.
Wave Particle Iteration

- **Time table of events**

| | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- **Reflection**
 - t3: particle4
 - t7: particle5
 - t8: particle7

- **Wave particles**
Wave Particle Iteration

- Time table of events

<table>
<thead>
<tr>
<th>subdivision</th>
<th>wave particles</th>
<th>reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>particle1</td>
<td>t1</td>
</tr>
<tr>
<td>t2</td>
<td>particle2</td>
<td>t2</td>
</tr>
<tr>
<td>t3</td>
<td>particle3</td>
<td>t3</td>
</tr>
<tr>
<td>t4</td>
<td>particle4</td>
<td>t4</td>
</tr>
<tr>
<td>t5</td>
<td>particle5</td>
<td>t5</td>
</tr>
<tr>
<td>t6</td>
<td>particle6</td>
<td>t6</td>
</tr>
<tr>
<td>t7</td>
<td>particle7</td>
<td>t7</td>
</tr>
<tr>
<td>t8</td>
<td>particle8</td>
<td>t8</td>
</tr>
<tr>
<td>t9</td>
<td>particle9</td>
<td>t9</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Wave Particle Iteration

- When creating
 - Find subdivision time
 - Find reflection time
 - If (reflection time < subdivision time)
 - Place in reflection list at the reflection time
 - Else
 - Place in subdivision list at the subdivision time

- After subdivision or reflection
 - Place in the next list
Wave Particle Iteration

- Killing wave particles
 - Right before subdivision
 - Check amplitude
 - If below threshold, KILL
 - Otherwise, subdivide

- Damping
 - Optional
 - Keep birth amplitude
 - \[\text{amplitude} = \text{amplitude}_{\text{birth}} \exp(\text{damping}(\text{time} - \text{time}_{\text{birth}})) \]
Wave Particle Iteration

- **Summary**
 - No numerical integration
 - Event handling only
 - Visits for subdivision or reflection
 - On CPU
 - Can be on a separate thread
 - Use pre-allocated arrays

Note: Early subdivision is OK
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
Rendering the Height Field

- Render to height field texture

Wave Particles → Height Field
Height Field

- Surface attached to camera
Rendering the Height Field

- Point rendering method
 - Approximate
 - FAST
Rendering the Height Field

- Draw wave particles as points
Rendering the Height Field

- Antialiased points
 (Hardware antialiasing can be SLOW!)
Rendering the Height Field

- X-Filter
Rendering the Height Field

- Y-Filter
Rendering the Height Field

- Horizontal deviation
 - Render points
 - Write direction x amplitude
 - X-Filter
 - Compute x-deviation from x-direction
 - Filter y-direction
 - Y-Filter
 - Compute y-deviation from y-direction
 - Filter x-deviation
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
Wave Generation

- Each time step
 - Compute object motion
 - Generate waves
Wave Generation

- For each face
 - Find the velocity of the face
 - Find the area inside the fluid
 - Find the volume of fluid moved by the face (*wave effect*)
 - Pushed
 - Pulled

face velocity
Wave Generation
Wave Generation

- Steps
 1. Render low-resolution silhouette (in water)
Wave Generation

Steps

2. Render object faces as points
 - Write wave effect (direct/indirect)
Wave Generation

Steps

3. Find silhouette boundaries
Wave Generation

Steps

4. Distribute indirect wave effects to silhouette boundaries
Steps

5. Generate waves
 (a) direct waves
 (b) indirect waves
Wave Generation

- How to distribute wave effects
- How to find wave direction
- How to find dispersion angle
Wave Generation

- Silhouette Pyramid
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
Forces on Objects

- Static forces
 - Buoyant force

- Dynamic forces
 - Drag force
 - Lift force
Forces on Objects

- Buoyant force

Procedure:
- Render object from top view with additive blending
- For each fragment
 - Write + depth if backface
 - Write − depth if frontface
Forces on Objects

- Drag and lift forces on each face
 - Can be on GPU
 - Render each face as a point
 - Distribute the computation between
 - Vertex shader
 - Fragment shader

- While computing forces
 - Compute wave effect!
Outline

- Introduction to Wave Particles
- Wave Particle Iteration
- Rendering the Height Field
- Wave Generation
- Forces on Objects
- The Overall System
The Overall System

The main thread

- **Simulation**
 - Advance time
 - Render force texture
 - Apply forces
 - Render wave generation texture
 - Generate waves
 - Render height field

- **Frame Render**

Rigid body thread

- Rigid body simulation

Wave particle thread

- Create waves
- Wave particle iteration
 - Subdivision
 - Reflection

New wave buffer
Thank you!

- **Acknowledgements**

- **Wave particles web-page:**

- **“Wave Particles” paper presentation**
 - Fluids paper session, Thursday ~11:20 am