
Alpha Distribution for Alpha Testing
Cem Yuksel

University of Utah
cem@cemyuksel.com

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference

Figure 1: Comparison of alpha testing using different methods. Insets highlight one region of the images where traditional alpha testing leads to
geometry loss. Scaling the alpha values [Castaño 2010] cannot fix this problem. Hashed alpha testing [Wyman and McGuire 2017a,b] solves
geometry disappearance, but introduces substantial amount of noise as well as shader complexity. Our alpha distribution approach with either
error diffusion or alpha pyramid algorithms provides a close match to the reference image with low noise.

ABSTRACT
Alpha testing is widely used for rendering surfaces with trans-
parency. While it works well when transparency is a binary func-
tion, semi-transparent regions cause problems, as they are clas-
sified as either fully transparent or opaque. Unfortunately, semi-
transparent texture regions often appear in coarser mipmap levels,
causing surfaces to disappear with distance. We introduce the al-
pha distribution approach for pre-processing the alpha values of
a texture such that alpha testing produces expected results with
semi-transparency without any modification to render-time opera-
tions. We describe two separate algorithms for alpha distribution
with similar qualitative behavior. Our results show that alpha dis-
tribution can produce high-quality results with low noise. We also
explain how alpha distribution can be extended for high-quality
rendering with alpha-to-coverage.

CCS CONCEPTS
• Computing methodologies→ Visibility;

KEYWORDS
alpha test, alpha map, error diffusion
ACM Reference Format:
Cem Yuksel. 2018. Alpha Distribution for Alpha Testing. In Proceedings of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D’18).
ACM, New York, NY, USA, Article 1, 7 pages. https://doi.org/10.1145/3203185

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
I3D’18, May 2018, Montreal, Quebec, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 2577-6193/2018/5-ART1. . . $15.00
https://doi.org/10.1145/3203185

1 INTRODUCTION
Alpha testing is a simple method for handling a binary transparency
function. During rendering, fragments that have alpha values below
a user-specified threshold ατ are discarded (i.e. considered fully
transparent) and other fragments are taken as fully opaque. This
provides a simple and efficient mechanism for handling binary visi-
bility. Therefore, alpha testing is widely used for rendering objects
like fences, hair and grass blades, leaves, and various forms of veg-
etation with low-poly representations. Thus, it allows avoiding the
geometric complexity needed for modeling the detailed shapes of
such objects.

On the other hand, alpha testing is not designed for handling
semi-transparent surfaces. Yet, when combined with mipmapping,
even if the original texture has a binary transparency function, the
filtered alpha values at coarse levels often form semi-transparent
regions. It is not uncommon that the alpha values at coarser mipmap
levels collectively fall on one side of the threshold ατ , causing
the well-known problem of geometry disappearing beyond certain
distances. Unfortunately, the common simple fix of adjusting ατ
per mipmap level cannot always prevent geometry disappearance
with distance [Castaño 2010].

Recently, Wyman andMcGuire [2017a; 2017b] introduced hashed
alpha testing that cleverly solves the problems of alpha testing by
using a stochastic alpha thresholdwith a stable hash function.While
certainly effective, this approach leads to a substantial amount of
noise in the final image. Furthermore, though the hash value per
fragment can be computed efficiently, it introduces fair amount of
additional complexity to fragment shaders.

In this paper we introduce alpha distribution, an extremely sim-
ple approach for solving the problems of traditional alpha testing
and extending it to handle semi-transparent surfaces. Alpha dis-
tribution works as a pre-process that alters the alpha values of a
given texture, including all mipmap levels, such that a desirable
subset of texels would pass the alpha test. The render-time process

https://doi.org/10.1145/3203185
https://doi.org/10.1145/3203185

I3D’18, May 2018, Montreal, Quebec, Canada Cem Yuksel

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference/Model

A
lp
ha

Te
st

A
lp
ha

-t
o-
C
ov

er
ag

e

Figure 2: Comparison of different methods for (top row) alpha testing and (bottom row) alpha-to-coverage with semi-transparent hair and beard
textures. Insets show the same model rendered from a far view. Notice that traditional alpha testing entirely misses the beard in far view and
produces incorrect visibility for both hair and beard with alpha-to-coverage even in close-up view. Scaling the alpha values [Castaño 2010] cannot
fix these problems. Our alpha distribution approach and hashed alpha testing [Wyman and McGuire 2017a,b] produce the expected results, as
compared to the reference. Alpha distribution results with alpha-to-coverage are generated using precomputed sample mask textures.

is identical to traditional alpha testing, so no modification is needed
to the fragment shader code. We describe two different algorithms
for alpha distribution, both of which can handle semi-transparent
surfaces with low noise, while attempting to preserve the details
of the original texture. Our results show that alpha distribution
leads to improved rendering quality, as compared to prior alpha
testing methods (Figure 1). We also describe how alpha distribu-
tion can be extended to handle alpha-to-coverage that converts the
alpha values to sub-pixel MSAA coverage samples for high-quality
rendering with anti-aliasing and semi-transparency.

2 RELATEDWORK
Alpha testing is widely used and the problem of geometry disap-
pearance with distance is well-known, but it received limited atten-
tion in the computer graphics research community. Unfortunately,
simple solutions to the disappearance problem are undesirable for
different reasons. Castaño [Castaño 2010] suggests scaling the al-
pha values by first finding a desirable alpha threshold per mipmap
level, such that the same percentage of texels would pass the al-
pha test as the highest resolution level. This simple fix can help in
some cases, but it does not always improve the results. Another
solution is disabling mipmap filtering, which would mean either
no mipmap filtering for the color channels or a secondary texture
fetch for the alpha values. Also, neither one of these solutions can
handle semi-transparency. Screen-door transparency [Mulder et al.
1998], however, can handle semi-transparent objects by masking
the visibility for a subset of pixels. Our alpha testing solution with

alpha distribution is closely related to screen-door transparency,
but we do not consider a screen-space sampling pattern.

Hashed alpha testing [Wyman and McGuire 2017a,b] is an ele-
gant solution that was recently introduced. It eliminates the disap-
pearance problem by picking a stochastic threshold valueατ ∈ (0, 1]
per fragment. This provides a form of stochastic transparency [En-
derton et al. 2010]. On the other hand, it introduces substantial
amount of noise to the final image and a fair amount of additional
complexity to fragment shaders.

Handling transparency accurately requires ordered alpha com-
positing [Porter and Duff 1984]. This can be accomplished using
depth peeling [Everitt 2001] or more recent methods like order-
independent transparency [Wyman 2016]. However, the computa-
tion cost of these techniques make them undesirable in practice.

3 ALPHA DISTRIBUTION
Alpha distribution works on the alpha channel of a texture and its
mipmap levels. The goal is to adjust the alpha values such that a
desirable subset of texels would pass the alpha test at render time.

Since the render time computation is identical to traditional alpha
testing, alpha distribution does not impact performance or shader
complexity. The quality of alpha distribution, however, depends
on how the alpha values are precomputed. Below we describe two
simple algorithms for alpha distribution. It is certainly possible to
imagine other alternative methods for alpha distribution than the
ones described in this section.

Alpha Distribution for Alpha Testing I3D’18, May 2018, Montreal, Quebec, Canada

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference/Model

A
lp
ha

Te
st

A
lp
ha

-t
o-
C
ov

er
ag

e

Figure 3: Comparison of different methods for (top row) alpha testing and (bottom row) alpha-to-coverage using a leaf texture with binary
transparency. Insets show the same model rendered from a far view. Notice that geometry disappears with traditional alpha testing in far view.
When using alpha-to-coverage with traditional alpha testing, visibility loss starts even at relatively close distances and worsens in far view. Scaling
the alpha values [Castaño 2010] produces similar results. Our alpha distribution approach and hashed alpha testing [Wyman and McGuire
2017a,b] closely match the reference, including the far views. The complexity of this model hides the noise introduced by hashed alpha testing.
Alpha distribution results with alpha-to-coverage are generated using precomputed sample mask textures. Tree model created by Xfrog.

3.1 Error Diffusion
Our realization is that the problem of generating a binary visibility
function from alpha values is very similar to halftoning. Therefore,
one simple way of modifying the alpha values would be following
an error diffusion approach that is designed for dithering. In our
tests we use the traditional error diffusion technique of Floyd and
Steinberg [1976], though more recent alternatives [Ostromoukhov
2001; Zhou and Fang 2003] can also be used for this task.

Just like halftoning, error diffusion for alpha distribution sequen-
tially visits each texel i at position (x ,y) in scanline order and com-
putes a quantized alpha value α̂i ∈ {0, 1} by comparing its alpha
value αi to the threshold ατ . The quantization error ϵi = αi − α̂i is
distributed to the neighboring texels that are not already visited.
Using the Floyd and Steinberg [1976] pattern, the portions 7/16,
3/16, 5/16, and 1/16 of the quantization error ϵi are added to the
alpha values of the neighboring texels at (x + 1,y), (x − 1,y + 1),
(x ,y + 1), and (x + 1,y + 1), respectively. First, all mipmap levels
are generated; then, each mipmap level of the original texture is
independently modified using error diffusion.

Error diffusion prevents large portions of the texture from col-
lectively falling one side of ατ by distributing the quantization
error. The modified alpha values produce a dithering pattern that
approximates the appearance of the original alpha values with bi-
nary visibility. As a result, it solves the disappearance problem and
allows representing semi-transparent regions using dithering.

3.2 Alpha Pyramid
Error diffusion works well, but the dithering pattern it produces
might be undesirable. Therefore, we introduce an alternative
method for alpha distribution that we call alpha pyramid.

The goal of the alpha pyramidmethod is to determine the number
of visible texels that should pass the alpha test for each mipmap
level and then modify the alpha values to achieve this. Like error
diffusion, it processes each mipmap level completely independently.
Nonetheless, due to the nature of the alpha pyramid algorithm, the
resulting mipmap levels preserve some correlation, especially when
the texture resolution is a power of 2.

Starting with a given input image (i.e. the original texture or a
mipmap level), the alpha pyramid method begins by computing the
average alpha value ᾱ . The number of visible texels n to pass the
alpha test is determined by

n =

⌈
ᾱN

2ατ

⌉
, (1)

where N is the total number of texels. Note that when ατ = 1/2,
the average opacity of the surface resulted by having n texels pass
the alpha test corresponds to ᾱ . Thus, the alpha pyramid method is
designed for ατ = 1/2. When using a different threshold value, it
might be favorable to simply scale the alpha values as a preprocess
and keep ατ = 1/2.

To determine which specific texels should pass the alpha test,
we first build a pyramid of successively lower resolutions of the
input image, similar to mipmap levels, as shown in Figure 5. If the
resolution of the input image is a power of 2, the construction of
the pyramid is identical to mipmaps. If the resolution of a pyramid
level is not divisible by 2, however, texels near the boundary are
grouped with the nearest 2× 2 texel regions. Thus, unlike mipmaps,
each texel of a pyramid level corresponds to 4, 6, or 9 unique texels
of the level below it. Each texel at each pyramid level corresponds
to a distinct region of the input image. At each texel i of a pyramid
level ℓ we store α ℓ

i , the sum of the alpha values for the input image

I3D’18, May 2018, Montreal, Quebec, Canada Cem Yuksel

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference

Figure 4: The same model as in Figure 1, using leaf textures with two different nonzero alpha values: (top) slightly below στ and (bottom) 1.
Notice that semi-transparent regions are invisible with traditional alpha testing. Hashed alpha testing [Wyman and McGuire 2017a,b] works well
in both cases, but leads to apparent noise. Our alpha distribution methods produce good results with diminished noise in both cases.

level 2

level 1

level 0

Figure 5: Levels of the alpha pyramid for a 7 × 9 texture. Each texel
of a level corresponds to 4, 6, or 9 unique texels of the lower level.

texels it represents. In this notation α0
i = αi .

Then, starting from the top of the pyramid, we assign an integer
visibility value to each texel of each level ℓ ≥ 1. The visibility value
of a texel at pyramid level ℓ determines how many of its corre-
sponding input image texels should be visible. Thus, n is the overall
visibility value for the entire texture. We begin with distributing n
to the texels of the highest pyramid level L, based on their alpha
values. Each texel i is first assigned ñLi =

⌊
αLi /2ατ

⌋
as its initial

visibility value. The remaining visibility value (i.e. n −
∑
i ñ

L
i) is

distributed to texels with the highest remaining alpha values (i.e.
αLi − 2ατ ñLi). Any contention is resolved by randomly picking one
of the competing texels. Note that it is important to employ a ran-
dom selection process for handling contentions to avoid generating
regular patterns. The same process is repeated for all pyramid levels
down to level 1. For each texel i at level ℓ > 1, its visibility value
nℓi is distributed to the corresponding texels at level ℓ − 1 below
it. Note that when ατ ≥ 1/2, it is guaranteed that the resulting
nℓi is smaller than or equal to the number of input image texels
represented by texel i of pyramid level ℓ ≥ 1.

To compute the final alpha values of the input image (i.e. pyramid
level 0), texels of the input image that correspond to texel i of

pyramid level 1 are sorted based on their alpha values. The first
n1
i texels with highest alpha values are marked as visible texels.
Once again, random selection is used for resolving contentions
when ordering. Finally, binary alpha values are assigned based on
whether a texel is marked as visible.

The alpha pyramid method produces similar results to error
diffusion, but it leads to marginally less noise and it better preserves
the high-frequency details of the input texture.

4 ALPHA-TO-COVERAGE
The alpha-to-coverage feature of GPUs automatically converts the
alpha values of fragments to a fixed set of sub-pixel sample coverage
patterns. This provides an easy mechanism for rendering semi-
transparent objects. The problem is that fragments with similar
alpha values correspond to the same coverage pattern and two
fragments on a pixel with the same coverage pattern perfectly
occlude each other, thereby effectively discarding one of the two
fragments. Unfortunately, this case is typical for various models
used with alpha testing and mipmapping, resulting in substantial
visibility loss with alpha-to-coverage.

Hashed alpha testing [Wyman and McGuire 2017a,b] resolves
this issue by extending its stochastic alpha threshold to sub-pixel
coverage samples. Using multiple coverage samples per pixel also
reduces the visible noise produced by hashed alpha testing, but it
introduces further shader complexity.

When using alpha-to-coverage with alpha distribution, we must
first adjust our quantization levels. When modifying the alpha
values, instead of using a single thresholdατ , we simply use asmany
quantization levels as the number of sub-pixel coverage samples
provide. In this case, alpha distribution ensures that large portions of
the texture are not slightly below (or above) the threshold between
different quantization levels.

Alpha Distribution for Alpha Testing I3D’18, May 2018, Montreal, Quebec, Canada

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference

Figure 6: Alpha testing mipmap levels of different textures on a plane using different methods. Insets showing the same textures rendered from a
far view using coarser mipmap levels.

Below we provide two separate solutions for handling alpha-to-
coverage. They produce very similar results, but they have different
trade-offs in terms of performance and shader complexity.

4.1 Sample Mask Texture
Our first solution involves introducing a secondary texture that
stores a sample mask. The bits of this sample mask indicate which
sub-pixel samples should be considered covered. We use the same
resolution sample mask texture as the original texture.

For each texel, we determine the number of nonzero sample
mask bits based on its alpha value. Then, we randomly select the
bits that are set as nonzero. Therefore, the same alpha quantization
with the same number of nonzero bits produces different sample
masks for different texels. As a result, unless the textures of two
fragments are perfectly aligned, the correlation of their coverage
sample patterns is avoided and semi-transparent surfaces can be

rendered without apparent visibility loss.
Obviously, introducing a sample mask texture suffers the ad-

ditional cost of storing and sampling a secondary texture during
rendering. The alpha channel of the original texture is no longer
used, since the coverage is entirely determined by the sample mask
texture. Yet, the sample mask data cannot be stored in the alpha
channel of the original texture, since we cannot use bilinear filtering
with the sample mask (we use mipmaps with a nearest filter).

4.2 Hashed Sample Mask
Instead of precomputing a sample mask texture, it is also possible
to compute a sample mask within the fragment shader using the
filtered alpha value. The alpha value identifies the number of bits
s of the sample mask must be set. We simply set the first s bits
and randomly shift the bits with wrap around. This operation is
similar to the alpha-to-coverage strategy used with hashed alpha

I3D’18, May 2018, Montreal, Quebec, Canada Cem Yuksel

Alpha Distribution with
Traditional Scaled Alpha Hashed Alpha Test Error Diffusion Alpha Pyramid Reference

Figure 7: Comparison of different alpha testing method in extreme close-up where bilinear magnification filtering is used. Notice that traditional
alpha testing works well in this case. Hashed alpha testing [Wyman and McGuire 2017a,b] produces substantial amount of noise. Our alpha
distribution leads to texel-size staircase artifacts around edges due to quantization of the alpha values.

testing [Wyman and McGuire 2017a,b]. In fact, we can use the
same hash function for generating a stable random number. Unlike
hashed alpha testing, however, no stochastic decision is used for
determining s . Thus, we only need a single random value.

The result of computing the sample mask within the fragment
shader is qualitatively similar to using a precomputed sample mask
texture. The main trade-off is replacing the additional texture
lookup with additional shader complexity.

5 RESULTS
We provide various comparisons of our alpha distribution meth-
ods to traditional alpha testing with unmodified textures, scaled
alpha values [Castaño 2010], and the recent hashed alpha test-
ing method [Wyman and McGuire 2017a,b]. We use ατ = 1/2 for
all alpha test examples in this paper. We use the recommended
anisotropic hash function with hashed alpha testing for all 3D mod-
els. The reference images are generated with depth peeling [Everitt
2001], using as many passes as needed to include all visible layers.
Obviously, regardless of the method used, neither alpha testing
nor alpha-to-coverage can be expected to perfectly reproduce the
reference images, but they are provided as ground truth references
for the desired appearance.

Figure 1 shows a palm tree with semi-transparent leaves. As
expected, with traditional alpha testing parts of the leaves are fully
opaque and the other parts are invisible. This behavior is observed
in close-up views as well. Scaling the alpha values [Castaño 2010]
does not provide a visible difference. Hashed alpha testing [Wyman
and McGuire 2017a,b] perfectly reproduces the overall visibility
of the reference, but it leads to substantial amount of noise, such
that the details of the leaves are difficult to see. Alpha distribution,
on the other hand, provides a close match to the reference with
low noise. Insets show that the details of the leaves are faithfully
reproduced with both alpha distribution methods, while arguably
the alpha pyramid method leads to slightly lower apparent noise
and better preserved details than error diffusion.

Another example with semi-transparent textures is shown in
Figure 2 (top row). The hair and beard strands are modeled as collec-
tions of textured faces. In this case traditional alpha testing produces
reasonable results for close-up views, but the beard entirely disap-
pears in far view, where scaled alpha values [Castaño 2010] only
barely improve the result. Both hashed alpha testing [Wyman and
McGuire 2017a,b] and our alpha distribution methods produce the

desired result. While hashed alpha testing leads to noisy results for
this example as well, it is not as noticeable due to the nature of the
hair and beard textures.

The bottom row of Figure 2 includes comparisons using alpha-
to-coverage. When using hardware-supported alpha-to-coverage,
due to the fixed coverage pattern determined by the alpha value,
overlapping semi-transparent faces perfectly occlude each other,
resulting in transparent beard and hair with traditional alpha-to-
coverage and scaled alpha values. Hashed alpha testing works well
with alpha-to-coverage and produces results with diminished noise,
as compared to its alpha-test version. Our alpha distribution meth-
ods produce results with similar quality.

Figure 3 shows comparisons using a complex model with a tex-
ture map containing binary transparency. Yet, the geometry dis-
appearance is evident in far view with traditional alpha testing.
Alpha-to-coverage, on the other hand, does not work well even
with relatively close views. Scaling the alpha values [Castaño 2010]
does not help in this case either. Hashed alpha testing [Wyman and
McGuire 2017a,b] and our alpha distribution methods provide simi-
lar visibility as compared to the reference with both alpha testing
and alpha-to-coverage, including far views.

The quality of alpha testing depends on the transparency func-
tion. Figure 4 shows the same model in Figure 1, but using textures
with different alpha values. When the majority of alpha values are
(slightly) below the threshold, traditional alpha testing simply does
not work, but it performs well when the majority of alpha values are
close to 1. Hashed alpha testing [Wyman and McGuire 2017a,b] pro-
duces noisy results in either case. Our alpha distribution methods
work well in both cases.

Figure 6 shows different textures on a camera-facing quad, ren-
dered using different methods. In all examples, when using coarser
mipmap levels in far view, traditional alpha testing either loses visi-
bility or leads to toomuch opacity. Scaling the alpha values [Castaño
2010] makes little to no difference in these examples. The noise
with hashed alpha testing [Wyman and McGuire 2017a,b] is quite
apparent. Our alpha distribution methods introduce limited noise
and produce the expected visibility. Notice that the alpha pyramid
method arguably preserves the high-frequency details marginally
better than error diffusion.

All of these results show that alpha distribution indeed solves
the problems of traditional alpha testing. As compared to hashed
alpha testing [Wyman and McGuire 2017a,b], alpha distribution
produces substantially less noise with alpha testing, but it provides

Alpha Distribution for Alpha Testing I3D’18, May 2018, Montreal, Quebec, Canada
Er
ro
rD

iff
us
io
n

Re
gu

la
r

Jit
te
re
d

A
lp
ha

Py
ra
m
id

Re
gu

la
r

Jit
te
re
d

Figure 8: Alpha distribution with error diffusion and alpha pyramid
on a camera-facing quad with each column showing a slightly differ-
ent camera distance. Visible pattern is formed with regular sampling
and eliminated using jittering texture lookups.

no apparent qualitative improvement in alpha-to-coverage. Yet, in
both alpha testing and alpha-to-coverage, alpha distribution leads
to simpler fragment shaders.

6 LIMITATIONS
One obvious limitation of alpha distribution is that when the thresh-
old ατ is changed, the alpha values need to be recomputed.

Also, since we precompute the alpha values, when a texture is
tiled, the same visibility pattern is repeated on each tile. This is not
the case for hashed alpha testing [Wyman and McGuire 2017a,b],
as the hash value is computed per fragment.

One important drawback of alpha distribution is that it does
not work well in extreme close-ups, where magnification filtering
is used, as shown in Figure 7. Because of the quantization of the
alpha values, texel-size staircase artifacts appear near all edges.
On the other hand, traditional alpha testing using the unmodified
alpha values can produce relatively smooth edges using bilinear
interpolation of the original alpha values. Therefore, if the original
texture does not have semi-transparent regions, this issue can be
avoided by simply keeping the original alpha values for level 0. In
this case hashed alpha testing [Wyman and McGuire 2017a,b] leads
to a different kind of undesirable result in the form of excessive
noise, so it must be faded out in close-ups.

Another drawback of alpha distribution is that in some special
cases the precomputed alpha pattern can align with regular pixel
samples, leading to some form of Moiré pattern, as shown in Fig-
ure 8. This pattern is more apparent with error diffusion, but it
is visible with alpha pyramid as well. It is possible to ignore this
artifact, since it becomes apparent only at certain distances and
view angles. To eliminate this artifact, we must break the regular
sampling pattern. We can do so by jittering the texture coordinate

slightly (using a hash function). This solution introduces some mi-
nor noise, but eliminates the visible pattern. We have not used this
solution in any example in this paper, except for Figure 8.

7 CONCLUSION
We have introduced the alpha distribution approach as simple mech-
anism for solving the visibility problems with alpha testing and
extending it to semi-transparent surfaces. One contribution of this
paper is the recognition of the similarity between halftoning and
alpha testing. Thus, we have shown that error diffusion [Floyd and
Steinberg 1976], a method that is commonly used for halftoning,
can be applied to alpha distribution as well. We have also described
the alpha pyramid method as an alternative algorithm for alpha
distribution. Finally, we have discussed how alpha distribution can
be applied to alpha-to-coverage.

One interesting future work would be experimenting with differ-
ent error-diffusion techniques and comparing their results in alpha
testing and alpha-to-coverage.

One important advantage of alpha distribution is that it requires
no modification to fragment shader code for alpha testing. There-
fore, we have not included any performance tests in this paper. On
the other hand, supporting alpha-to-coverage with alpha distribu-
tion requires some relatively minor changes to fragment shaders.
We expect that the performance implications of these changes
would highly depend on which one of the two alternative alpha-
to-coverage methods we have described is used, as well as the
utilization of the GPU resources for handling other rendering tasks.

ACKNOWLEDGMENTS
Special thanks to Chris Wyman for insightful discussions and com-
ments on our preliminary results. We also thank Pete Shirley and
Konstantin Shkurko for their comments and Morgan McGuire for
his graphics repository that includes the tree model in Figure 3.
This work was supported in part by NSF grant #1409129.

REFERENCES
Ignacio Castaño. 2010. Computing Alpha Mipmaps. http://the-witness.net/news/2010/

09/computing-alpha-mipmaps/.
Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. 2010. Stochastic Trans-

parency. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. 157–164.

Cass Everitt. 2001. Interactive Order-Independent Transparency. while paper. NVIDIA.
Robert W. Floyd and Louis Steinberg. 1976. An Adaptive Algorithm for Spatial

Greyscale. Proceedings of the Society for Information Display 17, 2 (1976), 75–77.
Jurriaan D. Mulder, Frans C. A. Groen, and Jarke J. van Wijk. 1998. Pixel Masks for

Screen-door Transparency. In Proceedings of the Conference on Visualization ’98
(VIS ’98). IEEE Computer Society Press, Los Alamitos, CA, USA, 351–358.

Victor Ostromoukhov. 2001. A Simple and Efficient Error-diffusion Algorithm. In
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 567–572.

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. SIGGRAPH Comput.
Graph. 18, 3 (Jan. 1984), 253–259.

Chris Wyman. 2016. Exploring and Expanding the Continuum of OIT Algorithms.
In Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics, Ulf
Assarsson and Warren Hunt (Eds.).

Chris Wyman and Morgan McGuire. 2017a. Hashed Alpha Testing. In Proceedings of
the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D
’17). ACM, New York, NY, USA, Article 7, 9 pages.

Chris Wyman and Morgan McGuire. 2017b. Improved Alpha Testing Using Hashed
Sampling. IEEE Trans. on Visualization and Computer Graphics PP, 99 (2017), 1–12.

Bingfeng Zhou and Xifeng Fang. 2003. Improving Mid-tone Quality of Variable-
coefficient Error Diffusion Using Threshold Modulation. ACM Trans. Graph. (Pro-
ceedings of SIGGRAPH’03) 22, 3 (July 2003), 437–444.

http://the-witness.net/news/2010/09/computing-alpha-mipmaps/
http://the-witness.net/news/2010/09/computing-alpha-mipmaps/

	Abstract
	1 Introduction
	2 Related Work
	3 Alpha Distribution
	3.1 Error Diffusion
	3.2 Alpha Pyramid

	4 Alpha-to-Coverage
	4.1 Sample Mask Texture
	4.2 Hashed Sample Mask

	5 Results
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

