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Gradient Space Projection
Projections onto the Hemisphere

Abstract In this paper we present a simple method for
handling projections on the hemisphere. The proposed
method defines a coordinate system on the hemisphere
surface that effectively converts the hemisphere to an in-
finite plane tangent to the top of the hemisphere, which is
called the gradient space. Using this coordinate system,
projections onto the hemisphere are replaced by simple
perspective projections onto the gradient space. This ap-
proach totally eliminates the non-linearities caused by
the spherical surface and permits exact hemisphere pro-
jection computations using only a single projection op-
eration. We present different sampling techniques on the
gradient space and provide qualitative comparisons.
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1 Introduction

Projecting polygons onto the hemisphere is a fundamen-
tal operation performed by many graphics algorithms
such as visibility computations and radiosity. Different
approaches have been proposed to make this operation
accurate or efficient both by directly using the hemi-
sphere or approximating its shape by simpler structures.

In this paper we present a different approach to han-
dle projections onto the hemisphere by effectively con-
verting it to an infinite plane (gradient space). The main
difference of our approach is the use of an infinite plane
as opposed to a finite plane that represents the full hemi-
sphere or a part of it. Using projections onto this infinite
plane instead of the hemisphere, the linearity of poly-
gons are preserved avoiding non-linearities caused by the
spherical shape of the hemisphere. Furthermore, the en-
tire hemisphere surface can be addressed without divid-
ing it into pieces and handling them separately. Thus,
a single perspective projection operation is enough to
cover the full hemisphere.
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Because of this infinite plane, we cannot use a simple
grid based sampling method. Therefore, we also propose
an efficient sampling scheme that works on the infinite
plane. Our results show that our method is efficient and
produces less noise.

In the next section we briefly overview the previous
work. Section 3 explains our method in detail and Sec-
tion 4 discusses sampling on the infinite plane. We pro-
vide our results in Section 5 and conclude in Section 6.

2 Previous Work

The most common way of computing projections onto
the hemisphere is using a hemicube (half cube) struc-
ture [1]. Even though the shape of the hemicube can
only roughly approximate the shape of the hemisphere,
in practice good results can be achieved by comput-
ing appropriate weights for each sample position on the
hemicube. On the other hand, a separate projection op-
eration is required for each face of the hemicube.

Sillion and Puech [11] used a single finite plane that
is larger than the top of the hemicube to compute form
factors for radiosity computation. They reported that
the single plane produced better results with higher per-
formance. However, their finite plane cannot address the
full hemisphere and the illumination from near horizon-
tal directions is totally ignored. Single pass projections
are also used to compute environment maps [5] and ra-
diosity [2] on graphics hardware.

Spencer [12] proposed a method for directly using the
hemisphere surface, which is accelerated by Doi and Itoh
[3]. Strzlinger [13] used exact projections directly on the
hemisphere surface.

3 Gradient Space Projection

When lines of polygons are projected onto the hemi-
sphere surface, they form circular arcs. To simplify this
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Fig. 1 α-β coordinates (left), gradient space (right).

and use simple linear equations instead, we define a co-
ordinate system on the hemisphere surface that converts
all these arcs back to line segments.

We start by picking an arbitrary cartesian coordinate
system such that z-axis is aligned with the surface nor-
mal. We represent the coordinate of a point p on the
hemisphere that is aligned with the z-axis (surface nor-
mal) using two angles α and β as shown in Figure 1.
Here, α is the angle between the z-axis and the plane
that contains the point p and the y-axis, and β is the
angle between the z-axis and the plane that contains the
point p and the x-axis. Using α-β coordinates we can
uniquely represent all points on the hemisphere surface.

Then we define a u-v coordinate system such that
u = tan(α) and v = tan(β). This u-v coordinate sys-
tem corresponds to the projection of the hemisphere on
the infinite plane tangent to the top of the hemisphere.
This infinite plane is called the gradient space of the
hemisphere [6].

Using this coordinate system, projections onto the
hemisphere becom simple perspective projections onto
the infinite gradient space (Figure 1), where the center
of projection is the center of the hemisphere. This simple
perspective projection allows us to use low-complexity
z-buffer projection algorithms like [4,8,14,10,16] for re-
ducing the number of target polygons to be projected.

In practice, it is not possible to use an infinite plane
on a computer system, and the size of this plane is bounded
by the limits of the floating point representation. How-
ever, using the exponential representation of floating point
numbers of IEEE standard 754 that is used in most com-
puters today, we can address the part of the hemisphere
down to the horizontal angles of 10−37 degrees with sin-
gle precision (32-bit). Using double precision (64-bit),
this limit falls below 10−307 degrees. Therefore, for any
practical purpose, we can safely assume that the full
hemisphere is addressed.

On the other hand, in this exponent form, as we get
closer to the limits of the floating point representation,
the accuracy of the numbers drops significantly. How-
ever, this does not affect the accuracy of our computa-
tion, which is defined by the accuracy on the hemisphere,
not on the gradient space. Even when the difference be-
tween two consecutive floating point numbers becomes
large towards the limits of the gradient space, the corre-
sponding difference on the hemisphere is still very small.

4 Sampling

Since we are using an infinite plane, we cannot sample it
using a simple grid that distributes the sampling points
evenly over the plane, as the number of sampling points
would be infinite regardless of the resolution.

A simple alternative is to place sampling points ran-
domly or using a quasi-random sequence; thus, the result
of the sampling corresponds to Monte Carlo ray tracing.
In this case, sample positions are first computed on the
hemisphere and then projected onto the gradient space.
Even though random sample distributions are known to
produce good results without aliasing artifacts, an or-
dered distribution of sampling points is preferred for pro-
jection based methods, since this order can be used to
compute intersections of a projected polygon with mul-
tiple sampling points at once.

Fig. 2 Sampling points of Sillion and Puech on the hemi-
sphere, and on the gradient space as intersections of lines.

One way to achieve ordered sample point distribution
is to extend the finite plane sampling scheme introduced
by Sillion and Puech [11] to an infinite plane. Sillion and
Puech used the intersections of horizontal and vertical
lines as shown in Figure 2. Lines are placed such that
ui = tan(i∆α) and vj = tan(j∆β), where ui and vj are
the positions of ith horizontal and jth vertical lines re-
spectively, and ∆α and ∆β are constants. Even though
the sample positions on the gradient space are well or-
dered in this scheme, sample positions on the hemisphere
form over-sampled and under-sampled areas towards the
horizontal plane as can be seen in Figure 2.

Fig. 3 Sampling points of a geodesic dome on the hemi-
sphere, and on the gradient space.

We propose a different sampling scheme, which is
used in ray tracing for uniform sampling of the hemi-
sphere. We use the nodes of a geodesic dome as our sam-
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pling points, so that we make sure the sampling points
are almost evenly distributed over the hemisphere sur-
face and our sampling is unbiased. We used a geodesic
dome that is produced by subdividing a square pyramid,
because it forms an ordered distribution of samples on
the gradient space (Figure 3). Note that nodes that are
on the horizon of the hemisphere are discarded.

To determine the sampling points underlying a pro-
jected polygon efficiently, we separate the sampling points
into two groups: points that are on horizontal lines and
points that are on vertical lines as shown in Figure 4.
While sampling a projected polygon, we first determine
the lines that the polygon intersects. Then, we find the
two intersection points of each line with the polygon
edges. All sampling points on the line within the two
intersection points intersect with the polygon.

Fig. 4 Samples on horizontal (left) and vertical (right) lines.

5 Results

We implemented our gradient space projection method
for gathering illumination from polygonal meshes. We
project each polygon onto the gradient space and find
intersections with predefined sampling points. Occlusion
test is handled by comparing the distance of the poly-
gon to the previously stored value on the sampling point
similar to a z-buffer algorithm. Once all the target poly-
gons are projected and sampled (their intersections with
the sampling points are computed), we gather the in-
coming radiance from all the sampling point directions.
Note that for all sampling methods we use an infinite
plane (gradient space). To avoid aliasing artifacts, we
apply a random rotation to the hemisphere along the
surface normal prior to the projection operation as in
[15] and [9].

Figure 5 shows a simple Cornell box scene for a vi-
sual comparison of different sampling methods. For ran-
dom samples we used a Poisson disc distribution, for it
is known to produce the best sampling distribution. As
can be seen from these images, noise decreases with the
increasing number of sampling points for all methods.
However, noise on the objects does not decrease much
for the sampling scheme of Sillion and Puech, because
the sampling points are not evenly distributed on the
surface of the hemisphere. Here, the quality of geodesic

361 samples Poisson Disc 2116 samples

361 samples Sillion & Puech 2116 samples

365 samples Geodesic Dome 2113 samples

Fig. 5 Cornell box scene comparing sampling techniques.

dome sampling is similar to poisson disc sampling. Note
that replacing the projection operation with ray tracing
using the same samples as ray directions would produce
exactly the same results.

Fig. 6 A simple scene for testing sampling accuracy.

To quantify the differences, we prepared the scene
in Figure 6, in which the two planes on either side of
the horizontal plane are assigned a constant illumina-
tion. The camera is placed such that the frame line is
the red rectangle in the middle of the horizontal plane.
Table 1 shows the standard deviation of intensities in
the rendered images. These results show that Poisson
disc and geodesic dome sampling produce less noise.

Table 1 Standard deviation of intensities

145 365 1301 2113 samples
Random 22.4 14.2 7.4 5.9

Poisson Disc 13.8 8.3 4.2 3.3
Sillion & Puech 34.3 25.1 25.9 25.5
Geodesic Dome 9.8 6.0 4.9 4.0
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Table 2 Sampling times in milliseconds

145 685 1301 2113 samples
Poisson Disc 0.16 0.95 1.82 3.26

Sillion & Puech 0.09 0.10 0.11 0.27
Geodesic Dome 0.10 0.11 0.13 0.25

The average sampling times for the scene in Figure 5
are shown in Table 2. Here we can see that well-ordered
sampling point distribution in geodesic dome and Sillion
and Puech sampling methods helps reduce the sampling
time significantly. These results show that we can get fast
results with low noise using geodesic dome sampling.

Fig. 7 Gradient space projection with photon mapping.

Figure 7 shows another Cornell box scene rendered
using photon mapping [7] and gradient space projection
with geodesic dome sampling for final gathering. Figure 8
shows a room scene illuminated by a single light source
and indirect illumination with single bounce using the
same method without photon mapping.

Fig. 8 A room scene illuminated by a single light source.

6 Conclusion

We introduced the gradient space projection method for
handling projections onto the hemisphere. Using this ap-
proach exact projections can be computed with a single
perspective projection operation that preserves the lin-
earity of polygons. We also show sampling techniques on
the infinite gradient space and provide qualitative and
performance comparisons. As future work, we would like
to explore possible GPU-based implementations (note
that the geodesic dome sampling may not be suitable
for such applications).
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