
Noname manuscript No.
(will be inserted by the editor)

Fast Real-time Caustics from Height Fields

Cem Yuksel · John Keyser

Texas A&M University

Received: date / Accepted: date

Abstract Caustics are crucial in water rendering, yet

they are often neglected in real-time applications due

to the demanding computational requirements of the

general purpose caustics computation methods. In this

paper we present a two-pass algorithm for caustics com-

putation that is extremely fast and produces high qual-

ity results. Our algorithm is targeted for commonly

used height field representations of water and a pla-

nar caustic-receiving surface. The underlying theory of

our approach is presented along with implementation

details and pseudo codes.

Keywords Caustics · Real-time water rendering ·
GPU algorithms · height fields

1 Introduction

In water rendering, caustics are not only interesting vi-

sual elements that enhance the quality and realism of

generated images, but also extremely important in pro-

viding necessary cues to perceive the shape of the ren-

dered water surface. Despite their importance, the caus-

tics component of light behavior is often neglected in

real-time applications due to performance limitations.

Most existing real-time caustics computation techniques

are efficient enough for tech demos with relatively sim-

ple scenes on recent graphics hardware. However, in the

presence of other visual elements that build up the com-

plicated virtual environments of today’s real-time ap-

plications, the full power of the graphics hardware can-

not be devoted to a single visual element. Therefore,

C. Yuksel
E-mail: cem@cemyuksel.com

J. Keyser
E-mail: keyser@cs.tamu.edu

caustics are often totally neglected or replaced by fixed

animated textures that do not reflect the shape of the

water surface.

We present a new real-time caustics computation

technique that works well on both current and earlier

graphics hardware. In this method, rather than provid-

ing a solution for all possible cases of caustics compu-

tation, we target the common case of the water surface

being a height field and a flat ground surface under-

neath receiving caustics. This setting allows significant

simplifications in the caustics computation, which re-

sult in it becoming one of the cheaper visual elements.

In Figure 1 two images of the same water surface

are seen from above with and without caustics. Com-

paring the two images, one can easily see that caustics

are essential in visually defining the shape of the water
surface.

Unlike previous techniques that aim to capture pho-

ton trajectories by rendering point primitives, we com-

pute caustics starting from the receiving surface and

examining the illumination contributions of the neigh-

boring points on the water surface. We perform this op-

eration efficiently with a new two-pass algorithm that

uses multiple render targets and a technique that resem-

bles separable convolution filtering, which minimizes

texture lookups per fragment. The most significant con-

tribution of this paper is this two-pass algorithm that

is introduced in Section 4.

In the next section we overview earlier caustics com-

putation techniques. Section 3 explains the theory of

our method and Section 4 provides the details of our

two-pass algorithm. We present our implementation de-

tails and results in Section 5. Finally, we conclude in

Section 6 with a brief discussion about the limitations

and advantages of our approach.

2

Fig. 1 The image on the left shows a water surface defined by a height field rendered with reflections and refractions. The image on
the right shows the same water surface with caustics computed using our method.

2 Previous Work

Rendering of caustics has been recognized as an im-

portant aspect of creating realistic images for decades

[1–3]. A wide variety of approaches for rendering caus-

tics have been explored over the years, including (like

ours) methods adapted to particular environments or

particular hardware considerations.

Some of the earliest work on generating caustic ef-

fects used Monte Carlo path tracing [1] or analytic ap-

proaches [3]. However, the most common approaches to

project light from a source into the scene, then represent

in some fashion the places where the light “hits” the

surface. An example of this is wavefront propagation,

where the entire light wavefront is propagated through

a scene [4].

Many of the more practical methods are derived

from backward raytracing, first proposed by Arvo [2]. In

this approach, rays are traced from the light source to

create an illumination map, including caustic effects.

Photon mapping extended this idea, tracing photons

from a light source and storing them in a map based on

where they hit [5]. A major push of recent techniques

has been the extension of this idea to create “caustic

maps” [6–9]. Caustic maps are created by tracing pho-

tons into the environment, but instead of storing the

final photons in a photon map, creating from them a

caustic map that can be projected (like a shadow map)

into the final rendered scene.

Other methods have focused particularly on render-

ing caustics in water. Stam presented a method for gen-

erating inaccurate but visually compelling “random”

caustic images, such as those on the base of a pool [10].

Most of the water rendering methods use beam tracing

[11] in order to better capture volumetric scattering ef-

fects under the water. In contrast, our approach does

not attempt to capture such volumetric effects. One of

the earliest such methods was Watt’s approach, which

used beam tracing to trace the path of light through

each triangle on the water’s surface and determine how

that light is projected onto the underwater surface [12].

Later work continued the beam tracing approach [13]

including extending it to use graphics hardware [14] and

achieve interactive results [15].

The method proposed by Guardado and Sanchez-

Crespo [16] computes caustics starting from the receiv-

ing surface as in our approach. However, unlike ours,

this method computes caustics on each receiving point

from a single point on the water surface. Therefore, this

method is highly inaccurate and can only roughly ap-

proximate caustics for sun light coming from directly

above the water surface. On the other hand, in our

method we use a two-pass algorithm to capture caus-

tics from an area on the water surface efficiently and

accurately for arbitrary lighting directions.

3 Caustics Computation

In our caustics computations we follow light paths start-

ing from the caustic-receiving surface instead of the

light source. To simplify the computation, we assume

that the caustic-receiving surface is a flat finite plane.

The final result of our caustics computation is a caus-

tics map that is mapped onto this plane. Figure 2 shows

the caustics map of the frame in Figure 1 computed us-

ing our method. The grayscale value of each caustics

map pixel represents the incoming light intensity of the

corresponding pixel area on the caustic-receiving plane.

To produce this caustics map, we consider the re-

fracted radiance from the height field water surface to-

wards the caustic-receiving plane. For each pixel of the

3

Fig. 2 The final result of our caustics computation is this caus-

tics map that includes bright and dark areas corresponding to
caustics. This is the caustics map of the frame in Figure 1.

caustics map, we sum the refracted radiances towards

the pixel from all points within a rectangular region

R on the water surface. We refer to the center of this

rectangular region as the illumination center.

Let z = 0 be the ground plane underneath the water

surface and PG be a point on this plane (Figure 3). The

rest state1 of the height field is represented by the plane

z = h, where h is the rest depth that corresponds to

the distance between the ground plane and the water

surface. The illumination center PC that corresponds

to the ground point PG can be found by

PC = PG + hL′ , (1)

where L′ is the refracted light direction L from the rest

surface with normal ẑ in positive z-direction.

The size of the rectangular region R limits the part

of the height field surface region from which we can

capture the illumination contribution to PG. In other

words, our computation is accurate as long as the in-

coming radiance towards PG through the water surface

is confined within this rectangular region. The required

size of R to capture 100% of the illumination is a com-

plicated function of L, h, and maximum surface normal

deviation. When the height field water surface has high

frequency deformations with large magnitudes, this size

can be arbitrarily large and even cover the whole height

field surface. However, real-time water simulations us-

ing height fields often yield smooth surfaces with low

frequency deformations. Therefore, even a very small

rectangular region can cover a significant portion of the

incoming light, regardless of the magnitudes of the de-

formations.

1 In the rest state, the water surface is flat and all the values

of the height field are equal to a constant value.

Fig. 3 The illumination on point PG comes from the refractions

trough the rectangular area on the water surface.

Let AG denote the area of a caustics map pixel on

the caustic-receiving plane. Assuming that the rectan-

gular region R is sufficiently large, the average light

intensity IG over the area AG can be written as

IG = Ir(AR, AG)
AR

AG
, (2)

where Ir(AR, AG) is the reflected light intensity though

the rectangular region R towards AG, and AR is the

area of R. This equation can be written as an area in-

tegral over R,

IG =

∫
R

Ir(Aw, AG) dAw

AG
, (3)

where Aw is an infinitesimal area on the water surface

within R. To compute this integral we discretize this

equation as

IG =
∑
i

Ir(Ai, AG)
Ai

AG
, (4)

where Ai is the ith sample area within R.

We approximate the reflected intensity Ir for the ith

sample by assuming that the surface normal is constant

within the area Ai. Thus, Ir(Ai, AG) ≈ αIr(Ai), where

Ir(Ai) is the average refracted light intensity through

Ai and α is the fraction of the refracted area of Ai that

intersects with AG.

In the next section we introduce a two-pass algo-

rithm to perform these operations efficiently.

4 The Two-Pass Algorithm

To generate the caustics map efficiently we use a two-

pass approach that minimizes the number of texture

lookups (Figure 4). In the first pass we read the height

field texture at multiple points along one direction (x-

axis) storing the illumination contributions of these points

in multiple textures. In the second pass we read the tex-

tures generated in the first pass along the perpendicular

direction (y-axis) yielding the final caustics map.

4

Fig. 4 The two-pass algorithm: the first pass reads the height
field texture and generates multiple outputs; the second pass

reads the result of the first pass and produces the final caustics

map.

In the first pass, for each pixel Pi,j
G of the caustics

map, we find the corresponding illumination center on

the height field and read N samples along the x-axis on

either side of the illumination center. We place these

samples on the height field such that the distance be-

tween two consecutive samples is equal to the width of

a caustics map pixel, such that each sample represents

an area on the height field surface that is equal to the

area of a caustics map pixel. Note that the resolution

or the orientation of the height field does not have to

match the caustics map, since we base our sampling

density and orientation only on the caustics map.

The aim of this first pass is not only to find the

illumination contributions of these N samples on the

pixel Pi,j
G , but also on the neighboring M pixels of the

caustics map along the y-axis, from P
i,j−M/2
G through

P
i,j+M/2
G . Therefore, the output of the first pass needs

M + 1 color channels, each of which correspond to a

different pixel on the caustics map. On modern graph-

ics hardware we can output up to 64 channels using

multiple render targets (8 render targets with RGBA

channels). However, in practice we found that as few

as 8 channels can be sufficient since most of the illu-

mination contribution comes from points close to the

illumination center.

To compute the values of these M + 1 channels,

we calculate the refracted ray directions of each one

of the N samples on the height field and find where

these rays intersect the ground plane. Assuming the

surface normal is constant within each sample area, a

pixel sized square centered on each intersection point

indicates the area illuminated by the refracted light

through that sample. For each one of these square areas,

we find the nearest two pixels between P
i,j−M/2
G and

P
i,j+M/2
G , then we compute the fraction of the square

that overlaps with each one of these two pixels. The

sum of all these ratios yields the total ratio of the re-

fracted refracted intensity through these N samples on

these M + 1 pixels.

In the second pass, for each pixel Pi,j
G , we simply

sum the values from the previous pass that correspond

to this pixel. These values are stored in different output

channels of the first pass at the pixels P
i,j−M/2
G through

P
i,j+M/2
G . The resulting total values yield the fraction

of incoming light at each pixel of the caustics map.

#define N 7
#define N_HALF 3

struct Pass1Out {
float4 color0 : COLOR0;
float4 color1 : COLOR1;

}

void Pass1(out Pass1Out Out
, in float2 P_G : TEXCOORD0
, in float2 P_C : TEXCOORD1
, uniform sampler2D heightField)

{
// initialize output intensities
float intensity[N];
for (int i=0; i<N; i++) intensity[N] = 0;
// initialize caustic-receiving pixel positions
float P_Gy[N];
for (int i=-N_HALF; i<=N_HALF; i++) P_Gy[i] = P_G.y + i;
// for each sample on the height field
for (int i=0; i<N; i++) {

// find the intersection with the ground plane
float3 pN = P_C + (i - N_HALF) * xDirection;
float2 intersection = GetIntersection(heightField, pN);
// ax is the overlapping distance along x-direction
float ax = max(0, 1 - abs(P_G.x - intersection.x));
// for each caustic-receiving pixel position
for (int j=0; j<N; j++) {

// ay is the overlapping distance along y-direction
float ay = max(0, 1 - abs(P_Gy[j] - intersection.y));
// increase the intensity by the overlapping area
intensity[j] += ax*ay;

}
}
// copy the output intensities to the color channels
Out.color0 = float4(intensity[0], intensity[1],

intensity[2], intensity[3]);
Out.color1 = float3(intensity[4], intensity[5],

intensity[6]);
}

Fig. 5 The pixel shader pseudo code for the first pass.

5 Implementation and Results

The two-pass algorithm explained in the previous sec-

tion enables efficient computation of caustics. Most of

the computation is carried out in the first pass and the

second pass merely combines the outputs of the first

pass to produce the final caustics map. The computa-

tions of both of these passes take place in the pixel

shader on the graphics hardware.

void Pass2(out float4 color : COLOR
, in float2 P_G : TEXCOORD0
, uniform sampler2D inColor0
, uniform sampler2D inColor1)

{
float val = 0;
val += tex2D(inColor0, P_G + float2(0, -3)).r;
val += tex2D(inColor0, P_G + float2(0, -2)).g;
val += tex2D(inColor0, P_G + float2(0, -1)).b;
val += tex2D(inColor0, P_G).a;
val += tex2D(inColor1, P_G + float2(0, 1)).r;
val += tex2D(inColor1, P_G + float2(0, 2)).g;
val += tex2D(inColor1, P_G + float2(0, 3)).b;
color = val;

}

Fig. 6 The pixel shader pseudo code for the second pass.

5

Fig. 7 Frames from an animated sequence captured from our real-time water simulation and rendering system.

With a little further analysis one can easily see that

a large portion of the computation in the first pass is

repeated by multiple neighboring pixels. The compu-

tation of the refracted ray directions and their inter-

sections with the ground plane are repeated multiple

times. In our implementation we introduce an addi-

tional pass before the first pass to compute the inter-

section positions of the refracted light rays with the

ground plane. The first pass reads the output of this

additional pass, rather than the height field itself to

reduce its computation load.

We provide the pseudo codes of the pixel shaders of

the first and second passes in figures 5 and 6 respec-

tively for the case of N = 7.

Figure 7 shows sample frames captured from our

real-time water simulation and rendering system. The

caustics map size in these frames is 400x300, N = 7,

and M = 6. On a GeForce 9600 GT graphics card,

the caustics computation per frame takes about 1.04

milliseconds, which corresponds to 960 fps. When the

caustics resolution is 800x600 as in Figure 1, the com-

putation time becomes 3.3 milliseconds, which is 303

fps.

6 Discussion and Conclusion

We present a two-pass algorithm for computing caustics

from a height field water surface onto a flat plane. The

efficiency of the algorithm comes from the fact that it

does not require a high resolution water surface or a

large number of point primitives to be rendered. The

whole computation takes place in the pixel shader. It

has a sequential texture access pattern, which highly

utilizes the texture cache on the graphics hardware.

Our backwards caustics computation gives physically-

based results as long as the caustics receiving surface is

a flat finite plane. Therefore, using our method caustics

on non-flat surfaces can only be approximated. Yet, this

is a much better approximation than neglecting caustics

or using constant animating textures, which are the two

most common methods used in the current real-time

applications.

The obvious limitation of this approach is that it

can only handle height field surfaces and planar caustic-

receivers. A useful future direction would be to extend

this approach to accurately handle non-planar caustic-

receivers.

References

1. Kajiya, J.T.: The rendering equation. SIGGRAPH Comput.
Graph. 20(4), 143–150 (1986)

2. Arvo, J.: Backward ray tracing. In: In ACM SIGGRAPH 86

Course Notes - Developments in Ray Tracing (1986)
3. Inakage, M.: Reflection and refraction model for ray tracing.

In: In ACM SIGGRAPH 86 Course Notes - Developments in

Ray Tracing (1986)
4. Mitchell, D., Hanrahan, P.: Illumination from curved reflec-

tors. In: Proceedings of SIGGRAPH ’92, pp. 283–291 (1992)
5. Jensen, H.W.: Realistic image synthesis using photon map-

ping. A. K. Peters, Ltd., Natick, MA, USA (2001)

6. Szirmay-Kalos, L., Aszdi, B., Laznyi, I., Premecz, M.: Ap-
proximate ray-tracing on the gpu with distance impostors.

Computer Graphics Forum 24(3), 695–704 (2005)

7. Wyman, C., Davis, S.: Interactive image-space techniques for
approximating caustics. In: Proceedings of I3D ’06, pp. 153–

160 (2006)

8. Shah, M.A., Konttinen, J., Pattanaik, S.: Caustics mapping:
An image-space technique for real-time caustics. IEEE Trans.
on Vis. and Computer Graphics 13(2), 272–280 (2007)

9. Wyman, C.: Hierarchical caustic maps. In: Proceedings of
SI3D ’08, pp. 163–171 (2008)

10. Stam, J.: Random caustics: natural textures and wave theory

revisited. In: Proceedings of SIGGRAPH ’96, p. 150 (1996)
11. Heckbert, P.S., Hanrahan, P.: Beam tracing polygonal ob-

jects. In: Proceedings of SIGGRAPH ’84, pp. 119–127 (1984)
12. Watt, M.: Light-water interaction using backward beam trac-

ing. In: Proceedings of SIGGRAPH ’90, pp. 377–385 (1990)
13. Nishita, T., Nakamae, E.: Method of displaying optical effects

within water using accumulation buffer. In: Proceedings of

SIGGRAPH ’94, pp. 373–379 (1994)

14. Iwasaki, K., Nishita, T., Dobashi, Y.: Efficient rendering of
optical effects within water using graphics hardware. In: Pro-

ceedings of Pacific Graphics ’01, p. 374 (2001)
15. Ernst, M., Akenine-Möller, T., Jensen, H.W.: Interactive ren-

dering of caustics using interpolated warped volumes. In: GI

’05: Proceedings of Graphics Interface 2005, pp. 87–96 (2005)

16. Guardado, J., Sanchez-Crespo, D.: Rendering water caustics.
In: R. Fernando (ed.) GPU Gems: Programming Techniques,

Tips and Tricks for Real-Time Graphics. Pearson Higher Ed-
ucation (2004). Chapter 2

