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Introduction

This document includes some implementation related details that
are omitted in the paper and practical considerations. While the
implementation details presented here can be deduced from the in-
formation provided in the paper, we include them here for comple-
teness and aiding an implementation oriented reader.

Lighting Grid Hierarchy

For building the lighting grid hierarchy, we distribute the intensity
I0,j of each light in S0 to the vertices of the corresponding grid cell
using trilinear weights wij of grid vertices i of level `. The trilinear
weights can be written as

wij = max (0,min (1, 〈1− |p0,j − q`,i| /h`〉 )) , (1)

where q`,i is the position of the grid vertex i at level `, the operation
|·| denotes the absolute values of the vector components, and the
operation 〈·〉 provides the product of the vector components.

During lighting estimation we use blending functions to combine
the contributions from each level of the hierarchy. Let r` = αh`

be the influence radius of level `, determined by a user-defined pa-
rameter α. We define the blending functions as
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This blending function linearly increases from zero at r`
2

to 1 at r`,
and linearly decreases back to zero at 2r`. The two exceptions are
the blending functions for the first level
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and the last level
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This way, the influence region of the last level does not diminish for
distances beyond r`max .

Shadow Maps for Lighting Grids

For efficiently approximating the filtered density values at any
point, we can pre-filter the density field. Let ρ0 be the input density
field from the simulation data. We generate the filtered density field
ρ` (with the same resolution as ρ0) using a pyramidal convolution
filter of size h`. Note that ρ` can be efficiently computed by rea-
ding 27 values directly from ρ`−1 on a 3× 3× 3 lattice with h`−1

separation, such that the density value of ρ` at coordinates [x, y, z]
can be computed as

ρ`(x, y, z) =
∑
i,j,k ∈{−h`−1,0,h`−1}

λ`(i, j, k) ρ`−1(x+ i, y + j, z + k) , (5)

where the pyramidal filter function is
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Using the pre-filtered density fields, the filtered density value at a
point x with filter size δ can be approximated as

ρ(x, δ) ≈
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(
2− δ

h`−1

)
ρ`−1(x) , (7)

which is a linear interpolation of the pre-filtered samples ρ`(x) for
h`−1 ≤ δ ≤ h`.

Note that the choice of a pyramidal convolution filter is not arbi-
trary. The weights of the pyramidal filter coincide with the trilinear
weights used while building the lighting grid hierarchy.

Practical Considerations

Explosion simulations are often computed at a high resolution for
achieving high visual detail. On the other hand, self-illumination
of the explosion may not require the same resolution for producing
visually similar results. In practice, it is possible to completely
eliminate the first few lighting levels by defining the minimum lig-
hting resolution `min > 0. In that case, the high-frequency details
of the lighting from lower (finer) levels of the hierarchy are lost,
but the overall lighting can still be approximated using the remai-
ning levels. Considering the fact that the lower (finer) levels of the
hierarchy include a lot more lights, merely eliminating level 0 can
provide a substantial saving in computation cost. The examples we
present in this paper, however, include all levels (i.e. `min = 0)
and they do not take advantage of this simplification.

Eliminating first few levels of the hierarchy is particularly effective
for multiple scattering computation. Since multiple scattering typi-
cally produces more smooth illumination changes as compared to
single scattering, the lower (finer) levels of the hierarchy are not as
necessary for estimating light that goes through multiple scattering.
By defining a larger `min for multiple scattering, the precomputa-
tion time can be reduced considerably. If a greater `min parameter
is used for multiple scattering as compared to single scattering, we
cannot simply merge the lights. In this case, we must store a se-
parate set of lights for level `min of multiple scattering and use
Equation 3 as its blending function (replacing r0 with r`min ). Hig-
her (coarser) levels of the hierarchy, however, can be merged by
generating them from both single and multiple scattered light sets.
The examples in this paper do not include this simplification either.

It is also tempting to remove very dim light sources from S0 for
reducing the computation cost. However, this can lead to visible
flickering in the final results. This is because even if an individual
light has insignificant intensity, multiple such lights can collecti-
vely represent strong enough illumination to be visible. Therefore,
removing such weak lights may end up removing a substantial por-
tion of the illumination. Nonetheless, it is possible to remove such
weak lights only from the lower (finer) levels of the lighting hierar-
chy without introducing visible errors in the final results. This way,
the cumulative illumination of multiple weak light sources can be
preserved at higher (coarser) levels for relatively distant illumina-
tion, and the insignificant individual contributions of these lights
can be eliminated from the lighting computation of lower (finer)
levels.


