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Figure 1: Examples alternatives to texture mapping: (a) volume-encoded uv-maps [Tar16], (b) octree textures [LHN05], (c) Ptex [BL08]
( c©Walt Disney Animation Studios), (d) brickmaps [CB04], (e) polycube-maps [THCM04], (f) gigavoxels [CNLE09], (g) invisible
seams [RNLL10], (h) perfect spatial hashing [LH06], (i) mesh colors [YKH10], and (j) tiletrees [LD07].

Abstract
The intrinsic problems of texture mapping, regarding its difficulties in content creation and the visual artifacts it causes in
rendering, are well-known, but often considered unavoidable. In this state of the art report, we discuss various radically different
ways to rethink texture mapping that have been proposed over the decades, each offering different advantages and trade-offs.
We provide a brief description of each alternative texturing method along with an evaluation of its strengths and weaknesses in
terms of applicability, usability, filtering quality, performance, and potential implementation related challenges.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Image manipulation—Texturing
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1. Introduction

In computer graphics, texture mapping is the fundamental means
by which high-frequency signals, such as diffuse colors, normals,
displacement, and other shading parameters, are defined over 3D
surfaces. The principle is to store the signal in 2D high-resolution
texture images, and then define a mapping from the 3D surface to
the 2D image, by assigning a uv coordinate to each mesh vertex.
This approach is ubiquitously adopted by virtually all computer
graphics applications and implemented on all available graphics
hardware, from high-end to smartphone GPUs.

However, traditional texture mapping has a number of funda-
mental issues. Creating uv-maps is time consuming and involves
extensive manual effort in practice. As a consequence, texture map-
ping continues to occupy a substantial portion of artist time, which
dominates the cost of AAA video game production. The result is
tailored for a specific mesh and connectivity and it does not nec-
essarily work through different resolution versions of the mesh,
used for level of detail (LoD). Distortions and seams introduced by
the mapping complicate texture authoring, filtering, and procedural
synthesis. Seams cause visual artifacts with signal interpolation,
and cracks on the surface with displacement mapping. Represent-
ing the mapping requires vertex duplications, which can complicate
data structures and procedural texturing operations. Any change to
the geometry or the connectivity implies updating the mapping and
the texture image. Furthermore, texturing other surface representa-
tions than polygonal meshes (e.g. implicit surfaces, point clouds)
requires a conversion to a mesh format.

Since the early days of texturing, there has been a constant re-
search effort to alleviate the issues and/or bypass the limitations of
traditional texture mapping (Figure 1). Unfortunately, the ubiqui-
tous adoption of texture mapping implies that it is seldom ques-
tioned as the method of choice, and both authoring pipelines and
rendering engines have been engineered around its intrinsic limita-
tions, thereby making it harder for alternatives to be adopted. Yet,
the industry recently started to recognize the advantages of alterna-
tive approaches to texture mapping.

This article surveys such alternative approaches, discussing their
advantages and trade-offs regarding versatility, ease of authoring,
storage cost, rendering quality and performance, and implemen-
tation difficulty. Our aim is to provide the knowledge needed for
determining the best candidate for replacing texture mapping for
any application, which we expect to be different based on the con-
straints of the application.

1.1. The Scope of this STAR

We begin by discussing the traditional texture mapping approach
in detail (Section 2), explaining its strengths and its shortcomings.
Then, we present alternative approaches to traditional texture map-
ping, grouped in four categories.

Perfecting the Traditional Texture Mapping (Sec. 3). The meth-
ods in this group address specific shortcomings of the traditional
texture mapping approach by carefully-designed mapping opera-
tions. This group includes:

• Invisible Seams [RNLL10] (Sec. 3.1),

• Seam Erasure [LFJG17] (Sec. 3.1),
• Seamless Toroidal/Cylindrical Textures [Tar12] (Sec. 3.2),
• Seamless Texture Atlases [PCK04] (Sec. 3.3).

Connectivity-based Representations (Sec. 4). These methods
rely on the inherent parameterization of each separate element of
the 3D model, without explicitly defining a separate mapping of
the surface. This group includes:

• Ptex [BL08] (Sec. 4.1),
• Mesh Colors [YKH10] (Sec. 4.2),
• Mesh Color Textures [Yuk16] (Sec. 4.3).

Sparse Volumetric Textures (Sec. 5). These methods store the
texture data in sparse volumetric structures embedding the surface,
rather than 2D images mapped onto the model surface. Thus, map-
ping is implicitly defined by the 3D positions on the surface. This
group includes:

• Adaptive Texture Maps [KE02] (Sec. 5.1),
• Octree Textures [BD02, LHN05] (Sec. 5.2),
• Brick Maps [CB04] (Sec. 5.3),
• Perfect Spatial Hashing [LH06, GLHL11] (Sec. 5.4),

Volume-based Parameterizations (Sec. 6). These methods define
the mapping using the 3D position of the surface, either directly or
by using a volumetric intermediate representation. The texture data
is stored as a 2D image, as in traditional texture mapping. This
group includes:

• TileTrees [LD07] (Sec. 6.1),
• PolyCube-Maps [THCM04] (Sec. 6.2),
• Volume-Encoded UV-Maps [Tar16] (Sec. 6.3).

techniques above includes two items, labelled as [OLDER],
which consists in the direct adoption of basic, well established
mechanisms.

1.2. Evaluation Criteria

We evaluate traditional texture mapping and its alternatives based
on various criteria that examine their properties in five groups: ap-
plicability, usability, filtering quality, performance, and implemen-
tation. We provide a separate summary table for the evaluation of
each method. The tables are color-coded to highlight positive traits
using green, negative/problematic traits using red, and mixed or
neutral traits in yellow. While the summary tables and their color-
coding aim to provide a general assessment, the importance of each
trait can be application-dependent.

Applicability. The applicability criteria examine the types of 3D
model representations that can be textured with each method. While
all methods we discuss primarily target polygonal meshes, a few
of them also support other surface representation, such as point
clouds, or implicit surfaces. Some methods impose shape/topology
limits on the models that can be textured. Most methods support
subdivisions of the textured polygonal model, where the original
edges are split, but otherwise maintained. Some methods even pro-
vide tessellation independence, so that, for example, the same tex-
ture can be used with different resolution representations of a model
in an LoD pyramid.
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Usability. The usability criteria examine the impact of the meth-
ods on the 3D production pipeline, mainly from the perspective of
content creation. One important factor is whether a mapping must
be manually constructed for the surface, or if, conversely, an au-
tomated mapping can be used. Mapping customizibility can be im-
portant for tailoring the mapping according to user needs. Using
some methods, model editing after painting the texture data may re-
quire reproducing the texture data fully or partially. The resolution
readjustment property presents whether local resolution changes on
the texture data can be easily handled. Some methods support tex-
ture repetition that allows using the same texture data over multi-
ple parts of a model, which can be used for exploiting symmetries
or tiling, and thereby reduce the texture storage requirements. An-
other important criterion is the ability to store the texture data as a
2D image representation in a way that would allow using existing
2D image editing and painting tools. While any texture data can
be converted into a 2D image, this criterion examines whether the
resulting 2D image is suitable for manual painting operations.

Filtering Quality. The filtering quality criteria examine the abil-
ities of the method for producing effective texture filtering. We
consider this for three forms of filtering operations: magnifica-
tion filtering, which is necessary when the signal is up-sampled
on screen pixels and typically consists of on-the-fly bilinear in-
terpolation; minification filtering, which occurs when the signal is
down-sampled on screen pixel and is typically handled using pre-
computed textures for different filter sizes using mipmapping; and
anisotropic filtering, which allows skewed filter shapes along a di-
rection and is particularly important when the textured surface is
viewed at an angle.

Performance. The performance criteria indicate the computation
time and memory storage requirements of each method. Vertex data
duplication is a typical performance overhead that leads to stor-
ing and processing multiple copies of some mesh vertices. Storage
overhead reports the extra memory cost in addition to the texture
data storage. If sampling the texture data requires indirect accesses,
they are reported as a part of the access overhead property. Com-
putational overhead reports the additional computations required
by the method for sampling the texture data. The hardware filter-
ing property presents if the method can utilize the texture filtering
hardware available on GPUs. This is particularly important for real-
time rendering applications, since hardware texture filtering can be
an order of magnitude faster than software implementations.

Implementation. Replacing traditional texture mapping with an
alternative method may require implementing custom tools and al-
gorithms. We report separate estimates for the asset production
phase, including algorithms and tools to create and edit textures
and required mappings, and the rendering phase, considering the
custom algorithms required for texture filtering operations.

2. Traditional 2D Texture Mapping

Before we survey alternatives, we examine the traditional approach
to texture mapping, which is the current status quo of computer
graphics applications. Graphics APIs, GPU hardware, 3D models
production pipelines, game engines, standard file formats for 3D

Table 1: Traditional 2D Texture Mapping

Applicability
Polygonal Meshes Yes

Point Clouds Single color per point
Implicit Surfaces With implicit mapping

Shape/Topology Limits None
Subdivisions Yes

Tessellation Independence If seams are preserved
Usability

Automated Mapping Often requires manual intervention
Mapping Customizability Yes

Model Editing after Painting Problematic
Resolution Readjustment Problematic

Texture Repetition Yes
2D Image Representation Yes

Filtering Quality
Magnification Filtering Yes, with seam artifacts

Minification Filtering Yes, with seam artifacts
Anisotropic Filtering Yes, with seam artifacts

Performance
Vertex Data Duplication Yes

Storage Overhead 2D mapping and wasted texture space
Access Overhead None

Computation Overhead None
Hardware Filtering Yes

Implementation
Asset Production Numerous existing tools

Rendering Full GPU support

models, and almost all modeling software are all designed around
this approach. This section serves as the background for our dis-
cussions of alternative methods, and the “baseline” against which
to compare them.

Though the texture data can be stored as 1D, 2D, or 3D texel ar-
rays, in this survey we exclusively concentrate on 2D textures that
are used for defining colors on 3D surfaces. The texture values on
the surface are determined using a mapping from the surface to the
2D texture image. This mapping is defined by assigning uv coordi-
nates to mesh vertices that indicate their image-space locations. In
effect, mapping planarizes the 3D model and in almost all typical
cases it must include seams. Seams are defined as the set of edges
that the two faces they connect map to different locations on the 2D
image. Thus, the seam edges map to two separate places.

Texture mapping can be used with any polygonal mesh. Point
clouds can be represented by carefully assigning uv coordinates to
each point, such that each uv pair corresponds to a texel of the tex-
ture image. Implicit surface representations require implicit map-
ping functions, which can be challenging to define, depending on
the complexity of the implicit model. Texture mapping does not
impose any shape or topology limits on the 3D mesh and it can
easily handle arbitrary subdivisions of a mesh. Traditional texture
mapping does not offer tessellation independence, so a complete
remeshing of the surface can be difficult to handle. More specif-
ically, unless remeshing preserves the edges along seams, simply
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defining a new mapping would not be sufficient and the texture im-
age may need to be regenerated for the new mesh topology and the
new mapping. This limitation is particularly important for generat-
ing different resolution versions of a mesh for LoD optimizations.

Some of the most important drawbacks of texture mapping are
related to its usability. First and foremost, texture mapping requires
defining a mapping and texture data on a given 3D model cannot be
generated before defining the mapping. While it is possible to de-
fine a mapping automatically, in practice mapping cannot be fully
automated. This is partially because the process of defining a desir-
able mapping must also involve the knowledge of how the texture
data would be generated and used. Therefore, even when an auto-
mated method is used, manual customization of mapping is often
needed, which can be a tedious process. Once the mapping is de-
fined and the texture data is generated, editing the 3D model can
be problematic. This is because geometrical or topological modi-
fications may require completely or partially altering the mapping,
which typically needs to be done manually. This may in turn inval-
idate the existing texture data stored in the 2D image. Local mod-
ifications to the 3D model do not always have local effect on the
mapping. Furthermore, locally changing the texture resolution on
a part of the model requires altering the mapping and the related
texture data, which makes this process problematic as well. Chang-
ing the entire texture resolution is much easier, but it can lead to
substantial inefficiencies, such as unnecessarily increasing the res-
olution unnecessarily on other parts of the model. Similarly, editing
or processing the texture image itself in 2D is made problematic
by presence of seams and mapping distortion, thus requires either
careful editing or to drop traditional 2D painters tool in favour of
specialized 3D painter.

Traditional texture mapping also has some advantages in terms
of usability, which are not supported by all alternative methods. In
particular texture repetitions on a surface can be handled easily and
efficiently. Though most applications require an injective mapping,
traditional texture mapping supports non-injective mapping as well,
so the same texture data can be repeated on multiple parts of a
model. Furthermore, when the mapping is designed accordingly,
the resulting 2D image that stores the texture data can be a good
representation of the 3D model surface. Thus, existing 2D image
editing tools can be used for texture authoring.

Another set of important drawbacks of traditional texture map-
ping is its limitations on rendering-time filtering quality. Seams in
mapping lead to discontinuities in texture filtering. These disconti-
nuities lead to inconsistencies in texture filtering on either side of
the seams, which can reveal the seams in rendered images. When
used with displacement mapping, seams lead to cracks on the sur-
face, hindering the widespread use of displacement mapping in
practice. Seams also cause inconsistencies in anisotropic filtering.
Therefore, seams must be carefully placed while defining the uv
mapping, so that the inconsistencies in filtering operations that re-
veal the seams would have a minimal impact on the final rendered
image quality.

Since traditional texture mapping has been the standard for han-
dling surface textures, graphics hardware and APIs are designed
to optimize the texture mapping performance. Nonetheless, texture
mapping has some performance-related drawbacks as well. Since

vertices along seams are mapped to multiple locations on the 2D
image, vertex data duplication is often unavoidable. Also, mapping
often involves wasted space on the texture image, either as unused
texels (due to imperfect packing) or unnecessarily high resolution
texture data for some parts of the model (due to distortions in map-
ping). Furthermore, the mapping information must be stored and
passed through the rendering pipeline, such as a pair of uv coordi-
nate values per vertex.

There are numerous tools for asset production with traditional
texture mapping and the existing rendering pipelines are designed
to support it. Therefore, we assert that no additional implementa-
tion is required for using texture mapping, when existing tools and
algorithms can be utilized.

3. Perfecting Traditional Texture Mapping

Several methods have been proposed to use the traditional texture
mapping approach in specific, restricted ways so that a few of its
shortcomings are avoided or mitigated with at most minimal mod-
ifications.

A range of methods strives to automatize the effort required
to workaround the limitations of texture mapping. For example,
image filtering algorithms have been recently highly specialized
[PKCH18] to work in presence of texture seams and texture dis-
tortions. In a similar spirit, algorithms have been proposed to au-
tomatize the adaptations of the uv map that is necessary after 3D
shape modifications [DGM18] (for limited deformations). As an-
other example, a specific solutions addressing the poor interoper-
ability of LoD-pyramids and atlas-based textures exists [SSGH01]
(for a specific type of LoD-pyramids: progressive meshes). These
methods can be useful in specific situations, but their adoption im-
pacts significantly the asset-production pipelines.

3.1. Invisible Seams

One of the problems of traditional texture mapping is the ren-
dering artifacts due to discontinuities along seams, caused by in-
consistent bilinear filtering performed on either side of the seams
(see Fig. 2a). The invisible seams [RNLL10] approach introduces
some constraints on the way that seams are mapped onto the 2D
texture image to ensure that bilinear filtering operations on either

(a) (b)

Figure 2: Invisible seams: (a) a visible seam with traditional tex-
ture mapping is (b) erased by altering the uv mapping [LFJG17].
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side of the seams would produce consistent results, thereby effec-
tively hiding the seams. Other names have also been used for re-
ferring to similar approaches, such as “seamless cuts” or “erased
seam” [LFJG17]. A parametrization where all seams are invisible
is sometimes called “globally seamless” or “griddable.”

A simple example mapping rule for making seams invisible is
placing both sides of the seams axis-aligned in uv space (either hor-
izontally or vertically) with matching lengths, and assigning texels
values that are exactly replicated along the seam. While not be-
ing the main motivation (or even being mentioned), this is the case
for several texture mapping approaches, such as cylindrical/toroidal
mappings [Tar12] and PolyCubeMaps [THCM04].

This set of constraints can be relaxed in several ways. The invis-
ible seams method [RNLL10] explores two (independent) general-
izations. First, integer resolution jumps across seams are allowed
by only requiring the parametric length (in the 2D texture image
space) of one side of the seam to be n times the other, where n≥ 1
and n ∈ Z. This preserves seam invisibility, as long as the texel val-
ues on the longer side are linear interpolations of the values on the
shorter side. This observation is exploited for generating uv layouts
with motorcycle graphs [SPGT18]. Second, oblique placement of
seams in the 2D texture space is allowed. Here, the two sides of the
seams are constrained to be matching in parametric space up to an
integer translation and rotations by an integer multiple of π/2, re-
sulting in texel grids which are aligned across seams. The invisible
seams method [RNLL10] borrows this setup straight from the con-
texts where parametrizations are constructed for remeshing rather
than for uv maps [BZK09,RLL∗06,JTPSH15], thereby tapping into
a large number of existing automatic potential parametrization con-
struction approaches developed for this purpose.

Making seams invisible solves the magnification filtering prob-
lems of traditional texture mapping. This improvement comes at a
cost of minor usability drawbacks, by making the process of defin-
ing a uv mapping more complicated. Minification pre-filtering (in-
cluding anisotropic) can be dealt with by making the seam invisible
at lower-res MIP-map levels (resulting in an increased cost).

More recently, the concept of invisible seams have been further
generalized [LFJG17]. Here, no constraint is explicitly imposed a
priori on uv assignment. Instead, the space of possible texel assign-
ments (given an existing uv map and texture sheet) are explored
around seams for solutions in which seams become invisible, such
that bilinearly interpolated texture values along the two sides of the
seams match perfectly (Figure 2). Among the solutions that satisfy
this constraint, one is sought that minimizes the discrepancy from
the initial configuration. An exact (i.e. analytic) fulfillment of the
constraint would leave only a very small space of solutions (not
necessarily including usable ones), but a numerical solution can be
found, implicitly tolerating small approximation errors [LFJG17].
The advantage of this is that a much larger space of (almost) in-
visible seams is made available. A simpler strategy is to just re-
duce the signal discontinuities at the seams [Syl15], minimizing it
in the least-square sense, by tweaking surrounding texel values. A
drawback is that both these approaches (as opposed to the origi-
nal invisible seams method [RNLL10]) also imposes limitations on
the texture data (as sampled in the texel values). Though not di-
rectly useful for texture mapping purposes, the concept of seamless

Table 2: Invisible Seams

Applicability
Polygonal Meshes Yes

Point Clouds No
Implicit Surfaces No

Shape/Topology Limits Depends on parameterization
Subdivisions Yes

Tessellation Independence If seams are preserved
Usability

Automated Mapping Limited
Mapping Customizability Constraints need to be preserved

Model Editing after Painting Problematic
Resolution Readjustment Problematic

Texture Repetition Yes
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes (stricter constraints)
Anisotropic Filtering Yes (stricter constraints)

Performance
Vertex Data Duplication Yes

Storage Overhead 2D mapping and wasted texture space
Access Overhead None

Computation Overhead None
Hardware Filtering Yes

Implementation
Asset Production Automated mapping

Rendering Standard pipeline

uv assignment can be generalized to generic 2D affine transforma-
tions [APL15].

These prior schemes attempt to remove the seams as seen
through a standard texture lookup. Other approaches modify the
interpolation to hide seams during rendering [GP09]. Here, the lo-
cal geometry across chart boundaries is stored into the texels as
small triangle lists. This allows to interpolate across charts without
visible discontinuities. The main drawback is an increase in shader
complexity, memory accesses, and storage; however the authoring
pipeline and input uv maps remain unaffected.

As a minor technical note, making seams invisible (with any
method) may require using texture resolutions that are powers of
2. Our experiments on various GPUs revealed that seams can still
be visible when using arbitrary texture resolutions (probably due to
numerical errors introduced by the GPU).

3.2. Seamless Toroidal/Cylindrical Textures

In most cases, the traditional texture mapping approach only al-
lows seams at mesh edges, and requires duplication of vertices
along such edges. This first restriction can be dropped in the special
case of cylindrical and toroidal maps [Tar12], which are useful for
texturing models with approximately cylindrical or toroidal shapes
(Figure 3). In cylindrical maps, a rectangular texture is wrapped
around the side area of a cylinder, and a single seam line runs along
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Table 3: Seamless Toroidal/Cylindrical Textures

Applicability
Polygonal Meshes Yes

Point Clouds No
Implicit Surfaces No

Shape/Topology Limits Toroidal/cylindrical only
Subdivisions Yes

Tessellation Independence Yes
Usability

Automated Mapping Usually easy for applicable shapes
Mapping Customizability Yes

Model Editing after Painting No
Resolution Readjustment Problematic

Texture Repetition Yes
2D Image Representation Yes

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes
Anisotropic Filtering Yes

Performance
Vertex Data Duplication No

Storage Overhead 2D mapping only
Access Overhead None

Computation Overhead Minor
Hardware Filtering Yes

Implementation
Asset Production Simple automated mapping

Rendering Simple UV manipulation

the cylinder. In a toroidal map, there are two orthogonal, closed
seams loop, meeting in a point. The seams are made invisible by
simply wrapping the texture.

This approach also permits avoiding vertex data duplication
along seams. This is achieved by a simple and resource undemand-

Figure 3: Toroidal/Cylindrical Textures: Traditional texture map-
ping (shown on the left side) reveals the seams. Toroidal/cylindrical
mapping [Tar12] (shown on the right) eliminates the seams. Circu-
lar and square insets show close-ups.

ing render-time technique that produces multiple interpolations of
uv coordinates specified on the vertices: one of the directly inter-
polates the uv values, others wrap around the edges of the texture.
This guarantees that that at least one interpolation is the “correct”
one. At a fragment level, the binary choice is driven by a compari-
son of the screen-space derivatives of the alternative interpolations.

This method only targets to two relatively uncommon classes of
mappings: topologically toroidal or cylindrical maps. These classes
already present natural built-in advantages: seams need not be rep-
resented by mesh edges, and seams are invisible. The adoption of
this algorithm further removes the need for vertex duplications.
This can be particularly helpful to simplify procedural generation
approaches where vertices (and their uv coordinates) are generated
on the fly [MCT16].

3.3. Seamless Texture Atlases

Filtering artifacts of traditional texture mapping along seams can
be easily eliminated, if the mapping produces quadrilateral pieces
on the 2D texture image. The seamless texture atlases method
[PCK04] begins with splitting the 3D model into pieces that can
be flattened onto square-shaped charts that are mapped to different
places on the 2D texture image (Figure 4). The seams (i.e. the edges
of the square charts) are placed axis-aligned and exactly between
texels. The seams are hidden in filtering by adding borders around
charts. The texture data along these border texels are assigned from
the texture data of the neighboring charts (on the 3D model). Thus,
even when neighboring charts are placed separately on the 2D tex-
ture image, bilinear filtering (including the chart borders) produces
the same values on either side of the seams, thereby hiding them.

Figure 4: Seamless Texture Atlases: An example model split into
quadrilateral charts and the corresponding texture in the form of a
flat seamless atlas [PCK04].

Minification filtering using mipmaps is supported by adding a
texel-wide border (i.e. padding) around each mipmap level of each
chart. While conceptually simple, mipmapping becomes slightly
complicated, because the size (i.e. thickness) of the borders must
be maintained at each mipmap level. Therefore, the uv coordinates
used for the highest resolution mipmap level cannot be directly
used for the other mipmap levels. A simple solution is provided
by storing normalized uv coordinates per chart, such that each uv
pair within [0,1]2 corresponds to a position within a chart. The lo-
cations of each chart on the 2D texture image are stored in a lookup
table. The uv coordinates are scaled and shifted differently for each
mipmap level to account for the border texels.
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Table 4: Seamless Texture Atlases

Applicability
Polygonal Meshes Yes

Point Clouds No
Implicit Surfaces No

Shape/Topology Limits None
Subdivisions Yes

Tessellation Independence No
Usability

Automated Mapping Limited
Mapping Customizability Problematic

Model Editing after Painting Problematic
Resolution Readjustment Per patch only

Texture Repetition Per patch only
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes, with custom mipmaps
Anisotropic Filtering Yes, with seams artifacts

Performance
Vertex Data Duplication Yes

Storage Overhead 2D mapping & indirection table
Access Overhead Single indirection

Computation Overhead Indirection
Hardware Filtering Yes

Implementation
Asset Production Quadrangulation, automated map-

ping, 3D painting
Rendering Simple UV manipulation & indirec-

tion

The seamless texture atlases method allows both storing all
mipmap levels together within a single 2D image or storing them as
separate images. Hardware-accelerated bilinear filtering can be uti-
lized, but the mipmap level must be determined in software and the
corresponding uv coordinates for the mipmap level must be com-
puted before they are used for texture lookup operations. This pro-
cess also includes accessing a lookup table that stores the location
of the chart.

4. Connectivity-based Representations

Connectivity-based representations use the inherent parameteriza-
tion of the model, instead of defining a separate parameterization
for mapping. The topology of the mesh model is used directly for
defining the texture data on the model primitives. Therefore, these
approaches completely eliminate the need for specifying a map-
ping. As a result they avoid the difficulties and limitations of the
mapping process. Since the texture data is directly associated with
the model primitives, they permit operations like model editing af-
ter texture painting and local resolution readjustment. All of these
qualities make these approaches especially powerful for authoring.
However, since they define the texture data directly on a 3D model
surface, they require 3D authoring tools, such as 3D painting.

4.1. Ptex

Ptex [BL08] is probably the most commonly known alternative
to texture mapping, used and promoted by Disney Animation and
Pixar studios. The concept of Ptex can be summarized as per-face-
texture, meaning each face of a model is practically assigned a sep-
arate texture of its own (Figure 5). This treatment eliminates the
need for specifying a mapping, since each quad-shaped face can
be trivially mapped onto a rectangular texture. Triangular faces are
handled using textures with triangle-shaped texels.

Figure 5: Ptex: Per-face textures shown on a model and the result-
ing texture [BL08] ( c©Walt Disney Animation Studios).

Ptex can easily handle model editing operations that can mod-
ify the model geometry and topology. Since each face effectively
gets its own texture, it is not affected by geometrical deformations
of the model. Topological operations that remove faces or add new
faces can be trivially handled by adding and removing correspond-
ing face textures. The texture data for the rest of the model remains
unchanged. Subdivision operations that split faces into smaller ones
can be efficiently handled by storing textures per groups of sub-
divided faces that are generated from the same face of the lower-
resolution model version. Therefore, in a sense, Ptex can be defined
on a low-resolution model and the texture data can be directly used
by any subdivision of its faces. However, Ptex does not provide
tessellation independence, so a different remeshing of the model
cannot directly use the original Ptex data.

Having a separate texture per face makes it easy to handle texture
filtering operations within a face. However, near the edges of the
faces, texture filtering requires accessing the colors on the neigh-
boring faces. This is facilitated by introducing an adjacency list
data structure. Ptex stores four face indices per face, indicating the
four neighbors of each quad face. In addition, four edge indices are
stored per face to represent which edge of each neighboring face is
the shared edge. This adjacency data is used during texture filtering
for accessing the texture data on neighboring faces.

One important advantage of Ptex is that the texture resolution
of each face can be adjusted independently. This permits having
higher resolution only where texture data requires. It also allows
setting the texture resolution of a face based on its size. However,
texture filtering near edges becomes difficult when the neighboring
face has a different resolution. More importantly, mismatched res-
olutions between neighboring faces can lead to inconsistencies in
texture filtering on either side of the shared edges, thereby revealing
edges (similar to the seam artifacts of traditional texture mapping,
but along every edge where face resolutions are different).
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Table 5: Ptex

Applicability
Polygonal Meshes Quad-dominant semi-regular meshes

Point Clouds No
Implicit Surfaces No

Shape/Topology Limits Problems with extraordinary vertices
Subdivisions Yes

Tessellation Independence No
Usability

Automated Mapping Yes
Mapping Customizability No

Model Editing after Painting Yes
Resolution Readjustment Yes

Texture Repetition Only identical topology
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes (seams at singularities)

Minification Filtering Yes, up to single color per quad
Anisotropic Filtering Yes, with custom filtering

Performance
Vertex Data Duplication N/A

Storage Overhead Adjacency list & face resolutions
Access Overhead Indirections

Computation Overhead Custom filtering
Hardware Filtering No

Implementation
Asset Production 3D painting

Rendering Custom filtering

When filtering near vertices of a face, the filter kernel is split
into four pieces: the first piece corresponds to the face that is being
processed, the next two correspond to the two neighbors around the
vertex, and the last one corresponds to the face on the opposing side
of the face that is being processed. Accessing this last face involves
finding the neighbor of a neighboring face using the adjacency data.
This operation works well for valance-4 vertices that are shared by
four faces, but extraordinary vertecies that are shared by fewer or
more than four faces (i.e. singularities) lead to filtering discontinu-
ities. Yet, such discontinuities are of little practical concern when
using models with relatively few extraordinary vertices.

Both magnification and minification filtering are supported.
Mipmaps can be used up to a single color value per face.
Anisotropic filtering can be implemented as well. Yet, none of these
filtering operations can directly utilize hardware-accelerated filter-
ing on current GPUs, so they must be implemented in software. The
software implementation of texture filtering with Ptex can be rela-
tively complicated. The storage overhead includes the adjacency
list per face and accessing texture data involves one or two indirec-
tions using the adjacency list. Nonetheless, high-quality filtering
can be achieved using custom filtering operations implemented in
software.

An alternative implementation of Ptex can directly use hardware
texture filtering on the GPU with array textures [Tot13]. Using tex-
ture borders, where the alpha values are set to zero, the need for

crossing edges for texture filtering is avoided and the adjacency
list is not used. This, however, prevents having varying face texture
resolutions and introduces discontinuities along edges.

The main advantage of Ptex is that it substantially simplifies the
texture authoring process, as compared to traditional texture map-
ping. Since no mapping is involved, a given model can be painted
directly using a 3D painting interface. Quick GPU-based updates
of the Ptex structure are also possible [SKNS15].

4.2. Mesh Colors

Mesh colors [YKH10] are closely related to Ptex. They were in-
troduced around the same time and similarly have been used in
production [Lam15]. Mesh colors can be considered as an exten-
sion of the concept of vertex colors. Indeed, the lowest-resolution
mesh colors are vertex colors, which store a single texture value per
vertex. In fact, a high-resolution mesh storing millions of vertices
can be textured using vertex colors alone, though vertex colors do
not provide a good mechanism for minification or anisotropic fil-
tering. Higher-resolution mesh colors also include regularly-spaced
colors (or any type of texture data) along the edges and on the faces
of a model as well. These additional colors for higher-resolutions
are called edge colors and face colors. The 3D positions of col-
ors correspond to vertices on a regular tessellation of the faces. In
terms of color placement topologies, Ptex and mesh colors can be
considered dual pairs, since the color locations of mesh colors are
in-between the color locations of Ptex with comparable resolution
(and vice versa), as shown in Figure 6.

Ptex Mesh Colors

Figure 6: Color locations of Ptex and mesh colors on two quad
faces of a 3D model.

Mesh colors (Figure 7) provide the same authoring advantages of
Ptex. Using the inherent parameterization of the model, no mapping
is needed for mesh colors. Model geometry can be freely modified
and altering model topology only impacts the texture data on the
modified faces. The texture resolution of each face can be specified
independently. The resolution of an edge is automatically defined
as the highest resolution of the two faces sharing the edge.

For filtering, however, mesh colors offer advantages over Ptex.
Using colors on vertices and along edges completely eliminates
filtering discontinuities, including extraordinary vertices. The tex-
ture value at any point on a face can be computed using the face,
edge, and vertex colors of the face, without accessing the colors
of neighboring faces. Yet, since edge and vertex colors are shared
between neighboring faces, they are stored separately, which intro-
duces some complexity in filtering operations. This process can be
simplified by duplicating the edge and vertex colors at a cost of ad-
ditional storage. Both magnification and minification filtering are
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Table 6: Mesh Colors

Applicability
Polygonal Meshes Quads & triangles

Point Clouds Single color per point
Implicit Surfaces No

Shape/Topology Limits None
Subdivisions Yes

Tessellation Independence No
Usability

Automated Mapping Yes
Mapping Customizability No

Model Editing after Painting Yes
Resolution Readjustment Yes

Texture Repetition Only identical topology
2D Image Representation No

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes, up to vertex colors
Anisotropic Filtering Yes, with custom filtering

Performance
Vertex Data Duplication N/A

Storage Overhead Edge indices and face resolutions
Access Overhead None

Computation Overhead Custom filtering
Hardware Filtering No

Implementation
Asset Production 3D painting

Rendering Custom filtering

supported and mipmaps can be used up to vertex colors (i.e. the
resolution of mipmaps cannot be below vertex colors).

Defining mesh colors on a mesh requires assigning edge indices
so that colors along edges can be uniquely specified. These indices
are used during texture filtering. Separately accessing face, edge,
and vertex colors requires custom filtering operations, so mesh col-
ors cannot be directly used with hardware texture filtering on cur-
rent GPUs. Filtering operations must be implemented in software.

A variant of this method uses the GPU hardware tessellation pat-
tern [SPM∗13], instead of the linear tessellation pattern of mesh
colors. This prevents the need for performing any filtering opera-
tions when used for displacement mapping with GPU tessellation.

Figure 7: Mesh Colors: An example model textured using mesh
colors [YKH10]. The colors of this particular example are auto-
matically converted from a 2D texture.

Table 7: Mesh Color Textures

Applicability
Polygonal Meshes Quads & triangles

Point Clouds Single color per point
Implicit Surfaces No

Shape/Topology Limits None
Subdivisions Yes

Tessellation Independence No
Usability

Automated Mapping Yes
Mapping Customizability No

Model Editing after Painting Yes
Resolution Readjustment Yes

Texture Repetition Only identical topology
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes
Anisotropic Filtering Yes, with seam artifacts

Performance
Vertex Data Duplication Yes

Storage Overhead 4D mapping & wasted space
Access Overhead None

Computation Overhead UV calculation
Hardware Filtering Yes

Implementation
Asset Production 3D painting

Rendering Simple UV calculation

4.3. Mesh Color Textures

Mesh color textures [Yuk16] provide a GPU-friendly version of
mesh colors. The goal of mesh color textures is to convert mesh
colors into a form that can be used with hardware texture filtering
on current GPUs.

Since both Ptex and mesh colors require custom texture filter-
ing operations, they must be implemented in software. However,
hardware-accelerated texture filtering can be an order of magni-
tude faster than software implementation. Therefore, custom tex-
ture filtering cannot compete with the performance of traditional
2D textures on the GPU. This is particularly important for real-time
rendering applications.

Mesh color textures effectively convert mesh colors into a 2D
textures by carefully copying the mesh color values (Figure 8).
This process duplicates edge and vertex colors and it also uses ex-
tra padding for triangles, so it leads to a minor storage overhead.
Mipmapping is supported by storing each mipmap level on a sepa-
rate texture. The texture coordinates for a mipmap level are easily
computed from a custom 4D texture coordinate representation. As
a result, mesh color textures can achieve the performance of tradi-
tional texture mapping on the GPU.

Therefore, mesh color textures offer the texture authoring ben-
efits of mesh colors to applications that require real-time render-
ing performance. Furthermore, using mesh color textures, as op-
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Figure 8: Mesh Color Textures: An example model and its mesh
color texture, showing all mipmap levels [Yuk16].

posed to traditional texture mapping, eliminates the seam artifacts
in minification filtering with mipmaps. Mesh color textures sup-
port anisotropic filtering as well, but on current GPU hardware
anisotropic filtering leads to seam artifacts, similar to traditional
texture mapping.

5. Sparse Volumetric Representations

A straightforward approach to encode texture data along surface
(colors, normals, etc.) is to store them in a voxel grid covering the
object. Given a surface point the texture data is directly retrieved
from the grid, using 3D coordinates, potentially interpolating in-
between grid nodes. This entirely by-passes the need for optimizing
and storing a planar parameterization, and also permits texturing
various surface representations, such as point clouds and implicit
surfaces. A naïve implementation of this approach would require a
large space, which would be cubic with the resolution of the sam-
pling, making the approach impractical. Several countermeasures
are adopted to avoid this problem, using sparse volumetric data
structures, as illustrated in Figure 9.

Overall, a key advantage of these approaches is their concep-
tual simplicity and ease of implementation. By exploiting a more
complex texture lookup, they entirely remove the need for a planar
parameterization. Most of these structures can be built efficiently,
even on-the-fly, thus allowing dynamic allocation of textures along
evolving surfaces.

Using volume textures to store color information, however,
presents a number of drawbacks. A first issue is that thin surfaces
get the same color on both sides. This can be alleviated by stor-
ing normals alongside colors [BD02], at the expense of a further
increase in storage and lookup cost. Another drawback relates to
the cost of trilinear interpolation. If implemented in shaders, trilin-
ear interpolation requires up to eight full lookups through the data
structure. This cost is somewhat mitigated by hardware caches, but
this is generally at least an order of magnitude slower than a direct
texture lookup. This drawback is reduced when storing bricks (i.e.
dense blocks of voxels) instead of individual voxels, in which case
the hardware trilinear interpolation can be directly used when sam-
pling within a brick. This can, however, significantly increase the
memory requirements, especially when using larger bricks and re-
quiring duplicate samples along brick boundaries. Anisotropic fil-
tering can be difficult with these approaches. Since the texture data

Figure 9: Octree Textures: A hierarchical data-structure storing
colors around an object surface [LHN05].

is stored in 3D, these approaches typically require 3D painting, like
the connectivity-based approaches discussed in the previous sec-
tion. Animated (i.e. deforming) models can be easily handled by
simply storing the rest positions of the vertices, which is analogous
to storing 3D texture coordinates. Note that when the animation
method already stores the rest shape (such as blend shapes), no ex-
tra storage is needed for accessing the texture data. The methods
in this category are excellent choices when the overheads in com-
putation and memory are acceptable. They are versatile, simple to
implement, and robust. Yet, more elaborate methods in this cate-
gory can provide improved efficiency in storage and texture access.

We discussed these methods in the context of surface textur-
ing. Yet, similar approaches can be used for volume rendering
[CNLE09], exploiting the fact that density fields are often sparse,
with varying quantities of details.

5.1. Adaptive Texture Maps

Adaptive texture maps [KE02] are one of the earliest form of alter-
native texture mapping directly running on the GPUs. At the time
it was published it showed how GPU functionalities, which were
quite limited by then, could be used in novel ways to create data
structures for encoding textures more efficiently.

The motivation for adaptive texture maps is that the texture con-
tent can have uneven frequency: some parts can have constant col-
ors, while others contain detailed patterns. With traditional texture
mapping, the entire texture is encoded using the same resolution,
thus wasting memory where the content has low frequency. Simi-
larly, in the case of volumetric representations for surface textures,
only a small percentage of voxels contain data.

To address this problem, adaptive texture maps divide the 2D
traditional texture in square tiles. The adaptive map is represented
in memory by two separate textures (Figure 10). The first one is
the index grid, which is a low resolution texture covering the orig-
inal texture image by storing one entry per tile. Each entry is an
index into the second texture, the tile map. The tile map holds the
actual texture data. This representation is similar to the vector quan-
tization scheme [BAC96], which was introduced much earlier for
texture compression. This allows entirely skipping the storage cost
of empty tiles, replacing them with a background color. It is also
possible to repeat some tiles by indexing them multiple times and
to store tiles at different resolutions, in which case the index grid
stores an additional scaling factor.

In 2D, adaptive texture maps are mostly used as traditional
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Table 8: Adaptive Texture Maps

Applicability
Polygonal Meshes Yes

Point Clouds No
Implicit Surfaces No

Shape/Topology Limits None
Subdivisions Yes

Tessellation Independence If seams are preserved
Usability

Automated Mapping Limited
Mapping Customizability Yes

Model Editing after Painting Problematic
Resolution Readjustment Yes (local resolution changes)

Texture Repetition Yes (with instancing)
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes, up to tile size
Anisotropic Filtering Yes, with seam artifacts

Performance
Vertex Data Duplication Yes

Storage Overhead 2D mapping & indirection map
Access Overhead Single indirection

Computation Overhead Indirection
Hardware Filtering Within tiles, not across boundaries

Implementation
Asset Production Automated tile construction

Rendering Indirection

texture maps, with the ability to skip empty space and instan-
tiate content. Ultimately they can be used to implement a pag-
ing system, where only tiles required for rendering are stored in
the tile map, while the index grid serves as a virtual address ta-
ble [LDN04,OvWS12]. In 3D, it allows volume textures to become
practical for encoding surface properties. The rendering cost is rel-
atively low, with a single indirection. However, special care must
be taken to exploit native hardware interpolation, which is typi-
cally achieved by duplicating texture data around the tile bound-
aries. Mipmapping can be challenging. It works properly only for
a limited number of levels and becomes discontinuous beyond a
certain level. Yet, this problem can be addressed at the expense of
additional texture lookups [Lef08].

(a) Original Texture (b) Index Grid (c) Tile Map

Figure 10: Adaptive Texture Maps: (a) the texture is divided in
square tiles and (c) non-empty tiles are stored in a compact tile
map, while (b) an index grid covers the initial texture area and
points into the tile map. Repeated tiles are stored only once.

Table 9: Octrees, N3-trees, and Brickmaps

Applicability
Polygonal Meshes Yes

Point Clouds Yes
Implicit Surfaces Yes

Shape/Topology Limits Thin parts get same color
Subdivisions Yes, with varying spatial resolution

Tessellation Independence Yes, if shape is preserved
Usability

Automated Mapping Yes
Mapping Customizability No

Model Editing after Painting Yes (fast local reconstruction)
Resolution Readjustment Yes (local subdivision)

Texture Repetition No
2D Image Representation No

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes
Anisotropic Filtering No

Performance
Vertex Data Duplication No

Storage Overhead Hierarchy & rest-pose
Access Overhead Hierarchy & indirections

Computation Overhead Hierarchy & indirection
Hardware Filtering No

Implementation
Asset Production 3D painting

Rendering Custom access & filtering

5.2. Octree Textures

Octree textures [BD02, DGPR02, LHN05, KLS∗05] generalize the
approach of adaptive texture maps to a full hierarchy. The hierarchy
is encoded into a texture divided in small blocks of size 2×2×2
for an octree (Figure 9). Each entry of each block stores either the
texture data or encodes a pointer towards a child block.

Octree textures are used for encoding a volumetric texture
around the object surface; thus, applying a texture without having to
pre-compute a global planar parameterization. Thanks to the hier-
archy, the structure remains compact in memory. The lookup, how-
ever, is more expensive by the nested dependent texture accesses.
The trade-off between memory compactness and lookup cost can
be alleviated by using higher resolution internal nodes (instead of
2×2×2). This generalization is referred to as N3-trees [LHN05],
where the value of N may also vary at each level of the hierarchy.

Filtering becomes more complicated due to the hierarchical na-
ture of the data structure. The hierarchy naturally encodes colors
at all resolutions, storing the average color of subtrees within each
parent node. However, trilinear interpolation requires multiple hi-
erarchical lookups that have to be performed in software with a
specialized shader code. Additional samples also have to be stored
around the surface to properly define the interpolation of voxels.
Regarding this point, it is interesting to note that primal trees af-
ford for a more efficient interpolation, with fewer lookups [LH07].
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5.3. Brick Maps

Brick maps [CB04] were developed for storing precomputed global
illumination in arbitrary scenes. They also rely on an octree hierar-
chy, but each node stores a brick: a block of K3 voxels. The child
nodes also store bricks of size K3; thus, they multiply the resolu-
tion by two at each octree level (Figure 11). This is different from
N3-trees where the subdivision along each axis is N at each step,
with N3 child nodes, thus offering a different trade-off.

The data structure is geared towards caching irradiance data
along surfaces, allowing to render extremely large scenes by load-
ing and unloading voxel bricks as required. An implementation is
included in the RenderMan software.

Similarly to N3-trees, the shallowness of the hierarchy reduces
texture access cost, but increases the total memory consumption.

Figure 11: Brick Maps: Different levels of brick maps representing
the colors on an example model surface [CB04].

5.4. Perfect Spatial Hashing

Perfect spatial hashing [LH06] encodes the texture data in a sparse
voxel grid around the surface. However, instead of using a hierar-
chy, this method is based on spatial hashing (Figure 12). A hash
function H(x,y,z) directly computes the position where the data of
a voxel at a given 3D position (x,y,z). The hahs function itself is

Figure 12: Perfect Spatial Hashing: An example model with its
hash table that contains the color data and its offset table [LH06].

Table 10: Perfect Spatial Hashing

Applicability
Polygonal Meshes Yes

Point Clouds Yes
Implicit Surfaces Yes

Shape/Topology Limits Thin parts get same color
Subdivisions Yes, with varying spatial resolution

Tessellation Independence Yes, if shape is preserved
Usability

Automated Mapping Yes, but slow
Mapping Customizability No

Model Editing after Painting No
Resolution Readjustment No

Texture Repetition No
2D Image Representation No

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes
Anisotropic Filtering No

Performance
Vertex Data Duplication No

Storage Overhead ∼4-bits per entry, borders (with
blocking), & rest-pose

Access Overhead Single indirection
Computation Overhead Hash precomputation, indirection

Hardware Filtering No
Implementation

Asset Production 3D painting
Rendering Indirection & custom filtering (with

blocking)

stored in a compact hash table. The hash function H is precom-
puted to exhibit two important properties. First, no collision oc-
curs (i.e. perfect hash), that is H(p1) = H(p2)⇒ p1 = p2, where
p1 and p2 are positions on the 3D model. This exploits the fact
that, in the context of texturing, only voxels containing texture data
are accessed and stored. Second, the hash table is minimal and it is
just large enough to contain the voxel data. The construction of the
hash function is time consuming, but it is automatic, though later
approaches have explored fast construction [ASA∗09, GLHL11].
The spatial overhead is due to the encoding of H, and requires on
average 4 bits per voxel.

This results in a very efficient method where the sparse data is
accessed through only two texture lookups (a single indirection).
However, the loss of cache coherency, due to the randomization of
the access by the hash, penalizes access performance.

6. Volume-based Parametrizations

Volume-based parameterizations define a mapping from the surface
to the 2D texture space as a function of the volume embedding
the object. These approaches encode the texture as a traditional 2D
texture map: a global planar mapping is defined exactly as with the
standard texture mapping approach. The difference, however, lies
in how the mapping is defined, which is usually performed from
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the surface point coordinates (and possibly their normal [LD07]),
often by accessing auxiliary volume data-structures.

These methods can be considered as splitting the texture compu-
tation into two components: the first one computes the uv coordi-
nates by providing a mapping from the original model to an inter-
mediate shape, and the second one maps the intermediate shape to
a 2D texture that stores the texture data. The first component pro-
vides a continuous mapping and cuts are introduced as a part of the
second component.

The properties of volume-based parameterizations have some
similarities to sparse volumetric representations (Sec. 5). There is
no need to store uv coordinates and these methods apply to other ge-
ometric representations (implicit surfaces, point clouds, etc.). This
independence from the underlying mesh topology allows the same
texture to be reused across mesh resolutions for LoD, because the
necessary cuts do not have to be along the edges of the mesh. Ani-
mated (deforming) models require storing the rest positions, which
may already be available with some animation methods (such as
blend shapes). The data structures are also generally more compact
than sparse volumetric representations, as they encode the mapping
(which is usually smooth except for cuts) rather the texture data it-
self. Combined with hardware acceleration in the final 2D texture
lookups, these approaches generally result in significantly lighter
per-fragment processing and more compact structures, compared
to sparse volumetric representations.

The core difficulty, however, lies in how to encode the mapping
efficiently and how to precompute it robustly. Also, thin geomet-
ric features pose a potential threat, as opposite parts of the surface
must be mapped to different texture positions, in spite of their ge-
ometric proximity in 3D. Each method in this category addresses
these challenges differently.

6.1. TileTrees

A tiletree [LD07] stores 2D square texture tiles on the faces of the
cubic nodes of an octree (Figure 13). Conceptually, the square tiles
are positioned in front of the corresponding surface pieces. By stor-
ing 2D tiles alongside the surface, the tiletree strongly reduces the
depth of the volume data structure, as compared to octree textures
(Sec. 5.2). The texture tiles are accessed using the surface point
coordinates and normals. The tiletree is specially constructed for a
given surface, determining the required set of tiles to achieve a full,
injective coverage. After the hierarchy is built, the tiles are packed
in a 2D texture. The entire process is automatic, robust, and fast.

Tiletrees offer many of the advantages of volume mappings,
while providing a simple and automatic construction process, that

Figure 13: TileTrees: An example model and its tiletree [LD07].

Table 11: TileTrees

Applicability
Polygonal Meshes Yes

Point Clouds Yes (if normal available)
Implicit Surfaces Yes

Shape/Topology Limits Limited local complexity
Subdivisions Yes

Tessellation Independence Yes, if shape is preserved
Usability

Automated Mapping Yes
Mapping Customizability No

Model Editing after Painting No
Resolution Readjustment Yes (per tile)

Texture Repetition No
2D Image Representation Poor

Filtering Quality
Magnification Filtering Yes

Minification Filtering Yes (up to tile size)
Anisotropic Filtering No

Performance
Vertex Data Duplication No

Storage Overhead Shallow tree & rest-pose
Access Overhead Few indirections

Computation Overhead Indirections
Hardware Filtering No

Implementation
Asset Production 3D painting

Rendering Custom access & filtering

does not require a global mapping optimization. The use of normals
in the lookup helps disambiguating thin features (i.e. two sides of
a thin sheet project to two different tiles). However, tiletrees have
several limitations. The per-fragment access cost is relatively high,
compared to other volume-based parameterizations; this is due to
the traversal of the tree hierarchy and the explicit interpolation that
requires multiple lookups. Tiletrees suffer from the same distor-
tions as cube-maps. The mapping incurs a large number of seams.
While the seams are not visible, they prevent using the 2D tex-
ture map directly as a painting canvas. Similarly, the seams limit
mipmapping capabilities and cause overhead due to texel replica-
tion to ensure correct texture data interpolation. The reliance of nor-
mals can prevent reusing the same texture for different tessellations,
if the normals differ significantly.

6.2. PolyCube-Maps

Polycube-maps can be considered an extension of cube-maps
[Gre86]. Cube-maps are traditionally employed for directional tex-
turing only, such as computing reflections (environment maps).
However, they may also be used to texture approximately cubic
or spherical objects. In this case, the mesh vertices are assigned 3D
texture coordinates, that refer to points on the surface of the cube.
The assignment can be precomputed and stored at vertices or, for
more spherical objects, be procedural and left entirely to the ver-
tex shader: the trivial gnomonic function can be employed for this
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Table 12: PolyCube-Maps

Applicability
Polygonal Meshes Yes

Point Clouds Single color per point
Implicit Surfaces No

Shape/Topology Limits Topology must be reproduced with
low-resolution polycube

Subdivisions Yes
Tessellation Independence Yes

Usability
Automated Mapping Polycube construction needed

Mapping Customizability Yes
Model Editing after Painting No

Resolution Readjustment Possible by adding cubes
Texture Repetition Possible by using Wang tiles

2D Image Representation Poor
Filtering Quality

Magnification Filtering Yes
Minification Filtering Yes (up to cube size)
Anisotropic Filtering No

Performance
Vertex Data Duplication No

Storage Overhead 3D texture coordinates
Access Overhead Single indirection

Computation Overhead Indirections & 5 cases
Hardware Filtering Yes

Implementation
Asset Production 3D painting & polycube generation

Rendering Custom access

purpose, but other less distorted closed-form alternatives have been
proposed [WWL07].

Polycube-maps [THCM04] generalize the concept of cube-maps
by substituting the cube the with an arbitrary polycube (a geometric
shape defined as assemblage of cubes attached face to face) as the
intermediate volumetric representation (Figure 14). A set of square
tiles are assigned to the faces of the polycube and the tiles are then
packed on a 2D texture sheet. The uv map of a mesh is then defined
by explicitly assigning to each vertex of the mesh a 3D parametric
position (u,v,s) on the surface of the polycube. Texture lookup first
accesses a tiny volumetric structure representing the polycube and
the packing of the tiles, then the texture data is sampled from the
2D texture sheet, analogous to a cube-map.

The task of automatically or semi-automatically construct-
ing a polycube-map received considerable attention [LJFW08,
WJH∗08, HWFQ09, WYZ∗11, YZWL14, HJS∗14, HZ16]. These
methods aim to optimize different (and potentially conflicting met-
rics), such as limiting the number of cubes, limiting the num-
ber of irregular (non-valency 4) vertices, matching the topol-
ogy of the input surface, and maximizing shape similarity be-
tween the two shapes. Polycube-map based surface parametriza-
tions have also been used for problems other than texture map-
ping, such as construction of higher-order surface representations
[WHL∗08, LJFW08], reverse subdivision [XGH∗11, GXH∗13],

Figure 14: PolyCube-Maps: An example model, its polycube-map
parameterization, and the corresponding polycube [THCM04].

volumetric modelling of thin shells [HXH10], shape analysis and
design [XGH∗11, GXH∗13], cross-parametrization and morphing
[FJFS05, WYZ∗11] and, especially, semiregular hexahedral vol-
ume remeshing [GSZ11, FXBH16, YZWL14, HZ16] intended for
physical simulations.

Polycube-maps share the advantages of tiletrees (Sec. 6.1), but
they incur a much smaller texture access overhead. This is because
polycube-maps do not require a hierarchical data structure and the
texture data can be accessed using a single indirection. They also
produce fewer seams than tiletrees, all of which are invisible (i.e.
free from interpolation artifacts). Texture repetition can be achieved
using Wang tiles [FL05, CL∗10].

As compared to traditional texture mapping, they replace the
problem of defining a uv mapping with the problem of construct-
ing a polycube. Furthermore, polycube-maps are not as general as
traditional texture mapping, because small features of the model
(such as small handles or tunnels) may lead to excessively complex
polycubes. Also, polycube-maps require storing the parameteriza-
tion as a 3D mapping (as opposed to 2D), but do not require vertex
duplications for handling seams.

6.3. Volume-Encoded UV-Maps

Volume-encoded uv-maps generate uv coordinates for points on the
model surface based on their positions using a volumetric function
defined in the bounding box of the model. This volumetric func-
tion is represented using a low-resolution 3D lattice and stored as
a standard 3D texture. The texture data is stored as a standard 2D
texture (Figure 15). The seams are defined by the volumetric func-
tion and they do not necessarily align with the model edges. In fact,
the topology of the model is not used for uv mapping; therefore,
this approach provides complete tessellation independence and it
can handle any surface representation.

Accessing the texture data requires first computing the uv coordi-
nates, which is achieved by sampling the 3D texture that stores the
volumetric function. Then, the uv coordinates are used for reading
the texture data. Hardware accelerated trilinear filtering can be used
for sampling both textures, resulting in low computational overhead
with a single indirection. Anisotropic filtering is not supported.

c© 2019 The Author(s)
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Table 13: Volume-Encoded UV-Maps

Applicability
Polygonal Meshes Quads & triangles

Point Clouds Yes
Implicit Surfaces Yes

Shape/Topology Limits Thin parts get the same color
Subdivisions Yes

Tessellation Independence Yes
Usability

Automated Mapping Limited
Mapping Customizability Yes

Model Editing after Painting No
Resolution Readjustment Problematic

Texture Repetition Yes
2D Image Representation Yes

Filtering Quality
Magnification Filtering Yes, with seam artifacts

Minification Filtering Yes, with seam artifacts
Anisotropic Filtering No

Performance
Vertex Data Duplication No

Storage Overhead Can be much better or much worse
Access Overhead Single indirection

Computation Overhead Indirection
Hardware Filtering Yes

Implementation
Asset Production Most existing tools can be used

Rendering Simple indirection

As compared to standard 2D textures, volume-encoded uv-maps
replace the problem of defining a uv mapping with the problem of
defining a volume-encoded parameterization. This task consists of
selecting a proper lattice resolution, selecting the block size (which
controls the density of potential cuts), and assigning uv coordinates
to lattice vertices. The volumetric function needs to be optimized
to achieve a parameterization with low distortion, fewer cuts, de-
sirable cut positions, and an efficient usage of the 2D texture lay-
out. Constraining the volumetric function to be locally as constant
as possible along the surface normal direction, allows sharing the
same function with geometrically similar model, making this ap-
proach highly suitable for LoD representations.

For many models, this technique is capable of expressing a uv
mapping that is qualitatively similar to (and as customizable as)
traditional texture mapping. For example, it can represent an atlas-
based mapping (where the surface is divided into islands, each is-
land mapped to a 2D chart, and each chart is efficiently packed
in the final 2D texture); different cuts can be designated to open
the surface and cuts can be added to reduce mapping distortions;
texture symmetries can be exploited by mapping different parts of
the models to the same part of the texture; and cut positions can
be tailored according to user needs (for avoiding cuts in semanti-
cally important areas). On the other hand, given that the volumetric
resolution is constant, this technique can fail to produce injective
mappings in the presence of small geometric features.

Figure 15: Volume-Encoded UV-Maps: An example model, its pa-
rameterization, and the corresponding 2D texture [Tar16].

The computational overhead at render time is much smaller than
other alternatives in this category (except simple cube-maps) and it
is also less expensive in terms of memory consumption. Since a hi-
erarchical structure (such as an octree) is not used, texture accesses
include only a single indirection. This approach is compatible with
tangent-space normal mapping.

7. Conclusions

We have provided an overview of various techniques that rethink
the concept and the process of texture mapping that is used ubiq-
uitously in computer graphics applications to enrich surfaces with
high-frequency signals. Since virtually all existing graphics tools
and hardware have been designed around traditional texture map-
ping, the adaptation of its alternatives has been slow in the graphics
community. As the intrinsic problems of traditional texture map-
ping continues to hinder the efficiency of content creation process
and the quality of the rendered images, the graphics community
now appears to be open to rethinking texture mapping.

All methods we discussed above have various advantages and
limitations. Therefore, we believe that the most beneficial way of
rethinking texture mapping depends on the properties of the given
application, and we hope that the detailed evaluations provided
above can be helpful in identifying the desirable alternatives. We
also hope that the discussions and evaluations above indicate the
open problems in this domain for stimulating future research.
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