
Hardware Accelerated Mesh Colors

Cem Yuksel
University of Utah

c0 c1
c2 c3

Le
ve

l 0

Le
ve

l 1

Le
ve

l 2

Mipmap
Levels

Figure 1: 2D texture layout of mesh colors, and mesh colors applied on lower-resolution tessellation of a high-resolution model.

Concepts: •Computing methodologies→ Texturing;

Texture mapping arbitrary polygonal meshes has been an important
problem in computer graphics. In particular, when one-to-one map-
ping is desired, such that the same texture pattern is not repeated
over a surface, seams are unavoidable. The process of hiding fil-
tering artifacts due to these seams involves additional manual effort
onto already labor intensive process of specifying texture coordi-
nates. Furthermore, these seams also substantially limit the number
of mipmap levels that can be used without visible filtering artifacts.

Mesh colors [Yuksel et al. 2010] was developed for completely
eliminating the fundamental problems of texture mapping. Using
the existing topology of a polygonal mesh, mesh colors allow gener-
ating detailed textures on arbitrary polygonal meshes without hav-
ing to specify mapping coordinates. Also, mesh colors totally avoid
filtering artifacts of seams by placing color samples exactly on the
vertices and the edges of the polygonal mesh. Moreover, mipmap
levels generated from mesh colors are guaranteed to be correct and
they allow pre-filtering all the way down to vertex colors.

On the other hand, the existing texture filtering hardware we have
on commercial GPUs are not designed to perform texture filtering
operations of mesh colors. While it is possible to implement mesh
color filtering using GPU shaders, this introduces additional code
complexity. More importantly, it is known that software texture
filtering operations can be up to an order of magnitude slower than
hardware implementations.

In this work we use the existing texture filtering hardware available
on commercial GPUs for performing a portion of the filtering op-
erations needed for mesh colors. We also identify a few relatively
minor modifications on texture filtering hardware that would allow
fully hardware accelerated mesh color filtering.

Since the existing texture filtering hardware is designed for 2D (as
well as 1D and 3D) textures, we need to convert the mesh color data
into a 2D texture. This is extremely easy to do by defining texture
coordinates such that vertices are mapped to the centers of some
texels, as shown in Figure 1. This way, we can achieve bilinear tex-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D 2016 Posters, February 27–28 2016, Redmond, WA, USA
ISBN: 978-1-4503-4043-4/16/02
DOI: http://dx.doi.org/10.1145/2856400.2876017

ture filtering on hardware by copying mesh colors onto a 2D texture,
where vertex and edge colors are duplicated as needed. The number
of duplicated colors can be minimized by defining mesh colors us-
ing a lower-resolution version of the mesh than the tessellated mesh
used for rendering, as explained in Yuksel et al. [2010].

The difficulty, however, is trilinear filtering using mipmap levels. A
naı̈ve mapping, as explained above, would require specifying dif-
ferent texture coordinates for each mipmap level, which is infea-
sible. We solve this problem by splitting non-normalized texture
coordinates u ∈ [0, S0,1]

2, where S0 and S1 are the texture reso-
lutions (number of pixels) in each dimension, into two components
as u = u0 + uδ . Let ` be the mipmap level, such that ` = 0 is the
lowest resolution mipmap level. The texture coordinate for level `
is computed as u` = 2`u0 + uδ . This way, we only need to store a
4D texture coordinate (u0 and uδ) per vertex. For trilinear filtering,
we perform two hardware accelerated bilinear filtering operations
using u` and u`+1, and linearly interpolate the result.

While generating the 2D textures, care must be taken for triangle
edges that are placed diagonally on the texture map. Bilinear fil-
tering near a diagonal edge would use two texels c1 and c2 that
correspond to the two colors along the edge, a texel inside the trian-
gle c0, and a texel outside of the triangle c3 (Figure 1). The color c3
must be set as c3 = c1 + c2 − c0 to make sure that the bilinearly
interpolated color along the edge would be a function of c1 and c2
only for avoiding potentially visible seams. As a result, when using
unsigned color channels, we must enforce c0 ≤ c1 + c2.

Our trilinear operation only uses two texture lookups and it can also
handle anisotropic filtering. However, anisotropic filtering across
seams can produce incorrect results. For producing correct filter-
ing results, the texture filtering hardware must avoid barycentric
extrapolation of the texture coordinates and only sample the part of
the texture that corresponds to the shaded triangle.

For handling trilinear filtering with a single texture lookup, two rel-
atively minor hardware modifications are necessary. The first one
is a 2D texture lookup operation using 4D coordinates to compute
a different 2D texture coordinate per mipmap level, as explained
above. Secondly, the resolution of our mipmap level ` is more than
half of the resolution of mipmap level ` + 1 in each dimension,
which is not supported by current hardware. Hardware extensions
for these two relatively minor features would permit hardware ac-
celerated trilinear filtering of mesh colors with only a single tex-
ture lookup, thereby eliminating any performance penalty for using
mesh colors as opposed to standard 2D textures.

References

YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh colors.
ACM Transactions on Graphics 29, 2, 15:1–15:11.

http://dx.doi.org/10.1145/2856400.2876017

