
Mesh Colors with Hardware Texture Filtering

Cem Yuksel∗

University of Utah

Level 3

Level 2

Level 1

Level 0

Mipmap Levels for Mesh Colors
Stored as 2D Textures

c0 c1
c2 c3

Figure 1: Mesh colors converted to 2D textures at different mipmap levels, and mesh colors applied on a lower-resolution tessellation of a
polygonal model (prepared by Murat Afşar).

Abstract

Texture mapping has fundamental limitations that cause important
practical problems, such as the amount of manual labor needed for
specifying the mapping and the visual artifacts in texture filtering
that appear near seams. The mesh colors method [Yuksel et al.
2010] was proposed as an alternative to texture mapping that re-
solves these problems. However, mesh color filtering has been slow
for real-time rendering, simply because mesh colors cannot directly
use the existing texture filtering hardware on today’s GPUs. We in-
troduce a method that converts mesh colors into a format that is
similar to 2D textures (Figure 1), thereby allowing the use of exist-
ing texture filtering hardware on the GPU for mesh color filtering.
We also discuss potential future modifications to the texture filter-
ing hardware for fully supporting mesh color filtering.

Keywords: Mesh colors, texture mapping, texture filtering

Concepts: •Computing methodologies→ Texturing;

Limitations of Texture Mapping

Texture mapping works well when a small texture is tiled over the
surface of a model. However, 2D textures are often used differently
by splitting a model into multiple pieces, planarizing these pieces,
and distributing them over the texture space, such as the example in
Figure 2. While there exists numerous automatic methods for gen-
erating a texture mapping layout, in practice this process involves a
substantial amount of manual labor. Furthermore, modifications to
the model may require regenerating this layout; therefore, texture
paint is typically performed subsequent to modeling.

Texture mapping by splitting the model into pieces also causes

∗e-mail: cem@cemyuksel.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4282-7/16/07
DOI: http://dx.doi.org/10.1145/2897839.2927446

Figure 2: An example character model and its 2D texture layout.
The red curves on the model and the texture indicate the seams.

problems in texture filtering near seams. It is often impossible to
make sure that the colors on either side of a seam would match
perfectly (and that the seam would be completely invisible), be-
cause the colors are computed at different parts of the texture map.
In practice, it is possible to hide the seams by carefully painting
around them (the blue region in Figure 2), but they still show up in
mipmap levels. In fact, after only a few levels of mipmap filtering,
the colors near seams can be influenced by unrelated parts of the
model, depending on their proximity in the texture space. There-
fore, mipmap filtering produces incorrect results and the number
of mipmap levels that can be used without visible filtering artifacts
near seams is limited. The inaccuracies in texture filtering are espe-
cially important for displacement mapping, since they can lead to
visible cracks along the seams.

These are fundamental problems of texture mapping that are caused
by the fact that the model and the texture are defined in different
spaces and that a general model cannot be mapped onto the texture
space without introducing seams or substantial deformation.

Mesh Colors

Mesh colors [Yuksel et al. 2010] eliminate the fundamental prob-
lems of texture mapping by defining the colors directly on the
model surface. Thus, mesh colors exist in the same space as the
model surface. Using the existing topology of a polygonal mesh,
mesh colors allow generating detailed textures on arbitrary polyg-
onal meshes without having to specify mapping coordinates. By
avoiding the need for a mapping between the model and the texture
spaces, mesh colors eliminate the problems caused by mapping.

http://dx.doi.org/10.1145/2897839.2927446


Figure 3: Mesh colors on triangles with different resolutions:
(blue) vertex colors, (green) edge colors, and (red) face colors.

Mesh colors can be considered as an extension of vertex colors. In-
deed, the lowest resolution mesh colors on a face only includes ver-
tex colors. Higher resolution mesh colors include colors exactly on
the edges (edge colors) and inside the face (face colors), as shown
in Figure 3. The colors are spaced evenly in the barycentric space
on a triangle or the bilinear space on a quadrilateral. The resolution
of each face can be specified independently.

By placing colors exactly along the edges, mesh colors avoid fil-
tering artifacts of seams. The color value anywhere on a face can
be computed by using the vertex, edge, and face colors of the face,
without considering the neighboring faces. Moreover, mipmap lev-
els generated from mesh colors are guaranteed to be correct and
they allow pre-filtering all the way down to vertex colors. Per-
haps most importantly, mesh colors eliminate the labor of speci-
fying mapping coordinates by directly using the polygonal mesh as
a canvas for 3D painting.

On the other hand, the existing texture filtering units we have on
commercial GPUs are not designed to perform the texture filter-
ing operations of mesh colors. While it is possible to implement
mesh color filtering using GPU shaders, this introduces substan-
tial amount of additional code complexity. More importantly, it is
known that software texture filtering operations can be up to an or-
der of magnitude slower than hardware implementations.

Mesh Color Filtering on Hardware

Since the existing texture filtering hardware is designed for 2D (as
well as 1D and 3D) textures, we convert the mesh color data into 2D
textures. This is extremely easy to do by defining texture coordi-
nates such that vertices are mapped to the centers of some texels, as
shown in Figure 1. This way, we can achieve bilinear texture filter-
ing on hardware by copying mesh colors onto a 2D texture, where
vertex and edge colors are duplicated as needed. The number of du-
plicated colors can be minimized by defining mesh colors using a
lower-resolution version of the mesh than the tessellated mesh used
for rendering, as explained in Yuksel et al. [2010].

The difficulty, however, is trilinear filtering using mipmap levels. A
naı̈ve mapping, as explained above, would require specifying differ-
ent texture coordinates for each mipmap level, which is infeasible.
We solve this problem by converting non-normalized 2D texture
coordinates u ∈ [0, S0,1]

2, where S0 and S1 are the texture res-
olutions (number of pixels) in each dimension, using a 4D texture
coordinate that contains two 2D components. Let ` be the mipmap
level, such that ` = 0 is the lowest resolution mipmap level. The
texture coordinate for level ` is represented as u` = 2`u0 + uδ ,
where u0 is the 2D texture coordinate for level ` = 0 and uδ is a
constant offset. This way, we only need to store a 4D texture co-
ordinate (u0 and uδ) per vertex. For trilinear filtering, we perform
two hardware accelerated bilinear filtering operations using u` and
u`+1, and linearly interpolate the result.

While generating the 2D textures, care must be taken for triangle
edges that are placed diagonally on the texture map. Consider the
four texels labeled c0 through c4 in Figure 1. The correct linear fil-

Table 1: Performance of Mesh Color Filtering on Hardware

Bilinear
Filtering

Trilinear
Filtering

Anisotropic
Filtering

Number of
Textures 1 Number of

Mipmap Levels
Number of

Mipmap Levels

Texture
Lookups 1 2 2

Software
Computation none

Mipmap level,
UV coordinate,

and lerp

Mipmap level,
UV coordinate,

and lerp

Filtering
Quality exact exact Possible seams

near edges

tering along the diagonal edge must only depend on the edge colors
c1 and c2. However, bilinear filtering near the diagonal edge also
uses a texel inside the triangle c0, and a texel outside of the trian-
gle c3. Since c3 is outside of the triangle, it does not correspond
to a vertex, edge, or face color, and it is merely used for assisting
bilinear filtering near the diagonal edge. Therefore, we can set it
as c3 = c1 + c2 − c0 to make sure that the bilinearly interpolated
color along the edge would be a function of c1 and c2. Thus, if this
diagonal edge is placed horizontally or vertically for another face,
the filtered color result along the edge would be consistent and it
would avoiding visible seams along edges. One limitation of this
formulation is that when using unsigned color channels, we must
enforce c0 ≤ c1 + c2.

Limitations and Hardware Extensions

Table 1 shows the performance of mesh color filtering on current
GPUs. Bilinear filtering is as simple as a regular 2D texture lookup.
Trilinear filtering with mipmaps, however, requires storing each
mipmap level using a different texture, because the resolution of our
mipmap level ` is more than half of the resolution of mipmap level
` + 1 in each dimension, which is not supported by current GPUs.
The additional texture lookup does not introduce performance loss
as compared to regular 2D texture lookup with trilinear filtering,
but the desired mipmap levels and the corresponding texture co-
ordinates must be computed in software. The implementation of
anisotropic filtering (with mipmaps) is identical to trilinear filter-
ing. However, anisotropic filtering across seams can produce in-
correct results, because current GPUs automatically determine the
sampling positions for anisotropic filtering and those samples may
fall outside of the texture area of the shaded face. For producing
correct filtering results, the texture filtering hardware must avoid
barycentric extrapolation of the texture coordinates and only sam-
ple the part of the texture that corresponds to the shaded triangle.

For handling trilinear filtering with a single texture lookup, two rel-
atively minor hardware modifications are necessary. The first one is
the ability to specify a custom texture resolution for each mipmap
level, and the second one is a 2D texture lookup operation using
4D coordinates to compute a different 2D texture coordinate per
mipmap level, as explained above. Hardware extensions for these
two relatively minor features would permit hardware accelerated
trilinear filtering of mesh colors with only a single texture lookup,
which would make the implementation of mesh color filtering on
hardware even simpler (as simple as regular 2D textures).

References

YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh colors.
ACM Transactions on Graphics 29, 2, 15:1–15:11.


