
Deferred Adaptive Compute Shading
Agatha Mallett

University of Utah
agatha@geometrian.com

Cem Yuksel

University of Utah

cem@cemyuksel.com

Deferred Adaptive Compute Shading Checkerboard Deferred Adaptive Compute Shading

41% Shaded 18% Shaded

RMSE: 0.009 / PSNR: 40.8 / MSSIM: 0.96 RMSE: 0.042 / PSNR: 27.5 / MSSIM: 0.89 RMSE: 0.026 / PSNR: 31.6 / MSSIM: 0.89

Equal Time

21.5% the RMSE

Equal Quality

4.22× Faster

Figure 1: Comparison of Deferred Adaptive Compute Shading (DACS) to typical checkerboard methods. Left: given equal time, DACS produces

only about a fifth the per-pixel error. Right: for equal MSSIM quality, DACS produces a result well over four times faster. Although numerically

equal, the error in DACS is allocated into smoothly varying regions while silhouette edges are shaded at the full rate, resulting in a perceptually

superior image (see zoomed views). Checkerboard rendering, which is non-adaptive, cannot do this.

ABSTRACT

A primary advantage of deferred shading is eliminating wasted

shading operations due to overdraw. We present a new algorithm

that we call Deferred Adaptive Compute Shading, for providing fur-

ther reduction in shading computations. Our method hierarchically

shades the image while reducing the number of required shading

operations to below one shading computation per pixel on average.

We determine whether to shade a pixel or approximate it using

previously shaded pixels around it, based on an estimate of the

image variance at the pixel location. The algorithm is designed to

dynamically reconfigure itself to achieve optimal warp coherence

and measurable performance gain. We extensively evaluate our al-

gorithm, demonstrating that it produces high-quality results and is

robust and highly scalable while providing significant performance

improvements in complex scenes.

CCS CONCEPTS

• Computing methodologies → Rasterization;

KEYWORDS

Deferred shading, adaptive shading, compute shader

HPG ’18, August 10–12, 2018, Vancouver, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in HPG ’18: High-

Performance Graphics, August 10–12, 2018, Vancouver, Canada, https://doi.org/10.1145/

3231578.3232160.

ACM Reference Format:

Agatha Mallett and Cem Yuksel. 2018. Deferred Adaptive Compute Shading. In
HPG ’18: High-Performance Graphics, August 10–12, 2018, Vancouver, Canada.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3231578.3232160

1 INTRODUCTION

In an ordinary forward rasterizer, it is likely that fragments from
some triangles that are ultimately behind other triangles (and there-
fore invisible) will be drawn first. Among other advantages, de-
ferred shading [Saito and Takahashi 1990] provides a mechanism
for eliminating this wasted shading cost, executing the (potentially
expensive) fragment shader only once per pixel sample, avoiding
additional fragment shading invocations due to overdrawing.

We propose reducing the shading rate further using a particular
adaptive subdivision scheme. Our method determines whether to
shade a pixel or else approximate its color using previously shaded
pixels nearby. This way, we can dramatically reduce the number of
shading invocations for parts of the image that have low estimated
variance (e.g. regions of similar color), while preserving visual detail
in high-variance areas (such as detailed textures or discontinuities
in illumination or depth). This is particularly relevant with high-
resolution displays that cause a considerable amount of per-pixel
shading work [Clarberg et al. 2013]. We also describe a compute
shader implementation that achieves full SIMD utilization and no
additional divergence.

2 RELATED WORK

As graphics moves toward more-complex and computationally ex-
pensive shading algorithms involving realistic, physically based
materials and a large number of light sources, deferred shading

https://doi.org/10.1145/3231578.3232160
https://doi.org/10.1145/3231578.3232160
https://doi.org/10.1145/3231578.3232160

HPG ’18, August 10–12, 2018, Vancouver, Canada Agatha Mallett and Cem Yuksel

First Level Second Level Third Level Fourth Level Fifth Level Reference

Figure 2: Subdivision levels of our algorithm for an initial grid step size of 4. For each additional pixel added in each level (orange), we consider

“neighbor” pixels from the previous level, as indicated by the arrows. Estimating the framebuffer’s local variance from the G-buffer and these

neighbor pixels, we decide whether to interpolate the new pixel from the neighbors, or else to shade it.

[Saito and Takahashi 1990] has become nearly ubiquitous.

Decoupled shading [Ragan-Kelley et al. 2011] generalizes multi-

sample antialiasing for separating shading rate from visibility. This

can be implemented as a cache that simply reuses shading samples

for “similar” visibility samples and can be implemented efficiently

on the GPU [Liktor and Dachsbacher 2012] or speculative archi-

tectures [Clarberg et al. 2014, 2013]. However, there is a variety

of work that separates shading and visibility for various purposes,

and so can be considered forms of decoupled shading [Crassin

et al. 2015; Kerzner and Salvi 2014]. Ideally, undersampling should

be adaptive to the scene complexity. He et al. [2014] proposed a

scheme that shades at a coarse rate, refining via scene information,

such as known shadow edges. This approach only works for spec-

ulative hardware, and cannot be implemented on current GPUs.

Vaidyanathan et al. [2014] described a speculative, forward-shading

architecture that invokes the fragment shader at a coarse granular-

ity, and then scatters the shading result to pixels while considering

visibility samples. A different approach is to distribute sample loca-

tions in a perceptually-motivated fashion [Stengel et al. 2016], but

a practical implementation on modern hardware is not described.

Recently, developers in different game studios have explored

checkerboard rendering schemes for achieving various effects like an-

tialiasing and temporal coherency [Mansouri 2016; Wihlidal 2017].

The checkerboard variant of Vlachos [2016] shares the same goal as

our approach: undersampling the shading rate by skipping shading

for some pixels. The skipped pixels are later filled in using a com-

bination reconstruction filter and blur, implemented concurrently

using optimized weighted samples.While this can be an effective ap-

proach, our tests show that our deferred adaptive compute shading

algorithm can provide superior quality and performance.

3 ALGORITHM

Our Deferred Adaptive Compute Shading (DACS) algorithm par-

titions pixels in the framebuffer into multiple subdivision levels,

which are progressively-denser subsets of pixels, as shown in Fig-

ure 2. In this example, the first level includes only every fourth pixel

in a rectangular grid. Our processing begins with shading every

pixel in the first level. Then, the pixels of the remaining levels are

processed in order, starting with the second level. While process-

ing these levels, we first estimate the variance by comparing the

values of the four nearby pixels that belong to a previous level. If

the four neighboring pixels are similar, according to a user-defined

similarity criterion
1
, we estimate the pixel value as the average of

its neighbors; otherwise, we shade the pixel. This process continues

hierarchically through the levels until all pixels have been assigned

values. While the exact number of levels is variable we find that

the initial step size of 4 shown in Figure 2 works well, and provides

(potentially) up to ≈ 94% reduction in shading. This particular selec-

tion order is inspired by the adaptive subdivision sampler of V-Ray

[Chaos Group 2015]. The same fractal pattern was also used other

ray tracing applications [Steinberger et al. 2012].

While it is easy to implement our algorithm naïvely, achieving

effective warp utilization is non-trivial. Rasterized pixels are by-

nature contiguous, and the simple approach of branching to shade

or interpolate each pixel would create warp divergence. At a high

level, our compute shader implementation separates the problem

into two operations: searching for pixels that require shading by

testing the shading criterion and shading the pixels so identified.

Warps begin in the search phase, in which each warp atomically

increments a global pixel counter by k , the warp width. This cor-

responds to assigning a set of k pixels in the framebuffer to the

warp. The warp then evaluates the shading criterion at each of

these pixels. If the pixel can be interpolated from its neighbors,

the interpolated result is stored immediately. If the pixel must be

shaded, its coordinate is instead enqueued into the warp’s shad-

ing buffer, a warp-local ring buffer of size 2k − 1. When the warp

accumulates at least k pixel locations in this shading buffer, the

whole warp switches to the shading phase. In the shading phase,

a warp simply pops k pixels from its buffer, shades each, and then

returns back to search mode. Because shading is deferred through

the buffer, warps execute fully filled.

4 RESULTS

The Gradient, Step Functions, and Sinusoid tests in Figure 4

demonstrate low and high spatial frequencies at various angles. Low

frequencies are typical of soft shadows and many shaded regions,

such as walls or sky, while high frequencies are characteristic of

texture features and depth-discontinuities.

We have also tested our algorithm using frames generated by

Unreal Engine 4 [Epic Games 2014], with representative frames

shown in Figure 3 along with quantitative error statistics in Table 1.

1
Unless specified, in our results we shade a pixel if its neighbors have different material

IDs or if the pre-gamma (i.e., lRGB) pixel values of the neighbors have a variance

above a given threshold, which can be adjusted to vary quality. One could of course

leverage additional information in the G-buffer, particularly depth and normals, to

achieve potentially better results.

Deferred Adaptive Compute Shading HPG ’18, August 10–12, 2018, Vancouver, Canada

Table 1: Quantitative Accuracy Comparisons of Deferred Adaptive Compute Shading in Simulated Unreal Engine 4 Scenes

Scene Name 20% Shading Rate 50% Shading Rate 80% Shading Rate

RMSE PSNR MSSIM RMSE PSNR MSSIM RMSE PSNR MSSIM

Kite Demo Landscape 0.013434 37.450223 0.917924 0.006175 44.213449 0.976649 0.001992 54.152261 0.996919

Kite Demo Forest 0.014833 36.585668 0.933676 0.007348 42.700667 0.984564 0.003379 49.513014 0.992994

Xoio Berlin Flat 0.014190 37.059629 0.928814 0.006144 44.298021 0.974983 0.003052 50.316580 0.992241

Elvish Citadel 0.015064 36.508011 0.915203 0.007673 42.307247 0.966405 0.002751 51.219504 0.994643

Elemental Ice 0.011527 38.987657 0.948483 0.004451 47.111801 0.988349 0.001417 56.986239 0.998347

Elemental Lava 0.017941 34.989632 0.816162 0.010482 40.192873 0.910682 0.005681 46.208439 0.969872

Elemental Fire 0.007222 42.839877 0.978908 0.003622 49.077806 0.990305 0.002151 53.685692 0.996294

Figure 3: Timing and representative reference frames for Unreal Engine 4 demo scenes on which we evaluated our algorithm. From left to right:

Kite Demo Landscape, Kite Demo Forest, Xoio Berlin Flat, Elvish Citadel, Elemental Ice, Elemental Lava, Elemental Fire.

Reference & DACS Reference DACS (20% Shaded)

Figure 4: Synthetic examples of spatial frequency. Left: The low fre-

quencies in Gradient and infinite frequencies in Step Functions

are reconstructed perfectly by DACS, even at low shading rates.

Center: The Sinusoid example has many frequencies at all angles.

Right: Reproduction of this texture using DACS. Note: this example

may appear aliased or colored due to subpixel or perceptual issues.

Although the source frames from the game engine include aliasing

artifacts and flickering, which are not improved by our adaptive

shading approach, we see that the results produced by our algorithm

are virtually indistinguishable from the reference in most cases.

The Crytek Sponza scene in Figure 1 compares our results to

checkerboard rendering optimized for undersampling, as described

by Vlachos [2016]: a stencil pattern of 2×2 pixels is rendered before

the shading pass. This causes only alternating 2×2 quads to be emit-

ted during fine raster, leading to half the shading cost. The missing

pixels are then filled in by a combination reconstruction/blur filter,

implemented using optimized texture samples. When we adjust

the shading criterion such that DACS provides the same render

time, we find that DACS has only 21.5% the RMSE as checkerboard

rendering does. Meanwhile, when the shading criterion is adjusted

to produce results with similar mean structural similarity (MSSIM)

[Wang et al. 2004] values as checkerboard rendering, DACS pro-

duces its result 4.22× faster. We have observed a similar trend in

all other scenes we tested.

Note that the qualitative nature of the error produced by DACS

versus checkerboard rendering is very different. Checkerboard ren-

dering is not adaptive and operates on the granularity of 2 × 2

Figure 5: Nyra model containing high-resolution textures and high

geometric detail, rendered using diffuse image-based lighting and

soft shadows [Fernando 2005]. Here, DACS shades 11.0% of pixels,

affording a 2.76× speedup while maintaining a MSSIM of 0.993.

quads. Thus, it has difficulty reconstructing fine silhouette edges

and details. By contrast, DACS can reproduce fine edges, and most

of its error manifests as overblurring in low-frequency regions.

TheNyra character scene (Figure 5) uses an 8K×8K shadowmap.

We test different numbers of texture look-up operations used by

the PCSS algorithm for the blocker search phase, which generates

distant, nonlocal, stochastic texture accesses, versus the shadow

filtering phase, which produces more-localized texture accesses.

We vary the number of texture look-up operations for both of these

phases and compare the relative performance of DACS versus stan-

dard deferred shading in Figure 7. Obviously, increasing the number

of texture look-up operations increases the render time in both al-

gorithms. However, interestingly, the render time increases by a

smaller amount with DACS, thereby resulting in a larger speedup

factor as sampling complexity increases. We believe this is because

in DACS, the reduced number of texture accesses overall increases

texture cache performance, despite the added incoherency intro-

duced by shading discontiguous pixels. This in turn leads to less

penalty for texture accesses. Thismeans that as the number of texture

lookups increases, DACS affords ever-larger performance advantages

over ordinary deferred shading.

Although thin textural detail is difficult, thin geometric detail is

easier to handle. In the Windmill scene (Figure 6), we show an ex-

ample of DACS handling very-thin geometry. Because the shading

criterion used in DACS checks material ID, thin features are not

HPG ’18, August 10–12, 2018, Vancouver, Canada

Figure 6: Windmill scene demonstrating that thin geometry can be

captured by means of a shading criterion that considers additional

factors, like material ID.

undersampled; DACS captures the thin features in the windmill’s

arms, even though they are often much finer than the initial shading

levels. Aliasing only occurs when the object is small enough that

the G-buffer cannot resolve it. For this view, the MSSIM is > 0.999

and the performance improvement is 1.90×.

5 DISCUSSION AND FUTURE WORK

The performance improvement of our method is correlated with its

reduction in shading operations. In our tests we have used a very

simple shading criterion, usually based on a simple comparison of

material IDs and color variance. We found that this works well in

practice, but a more-principled and/or perception-based heuristic

could possibly provide better results.

While DACS provides an efficient implementation on current

GPUs with high SIMD utilization, reordering the shading compu-

tation affects texture cache performance and the compute shader

implementation leads to some overhead. In our tests we have ob-

served that the savings in computation outweigh the overhead for

scenes with high shading complexity and low shading rates.

By varying the shading criterion’s threshold dynamically, it is

possible to achieve a fine-grained performance/energy vs. render-

quality tradeoff in realtime. This opens intriguing possibilities for

future real-time graphics applications. For example, the shading

criterion could vary temporally, based on the measured render time

of the previous frame. Thus, the shading rate could be varied dy-

namically to achieve a constant framerate, allowing more control

than with current LoD schemes. Also, render quality could be re-

duced to alleviate power consumption on mobile devices as energy

or thermal considerations come into effect.

6 CONCLUSION

We have presented the Deferred Adaptive Compute Shading algo-

rithm, an adaptive undersampling method that significantly reduces

shading complexity while preserving high quality in practical sce-

narios. Overall, our results show that our approach can significantly

reduce the amount of shading computation required to shade scenes,

and this is borne out in a variety of scenes containing high geo-

metric, textural, and shading detail, such as one would find in a

realistic production environment.

ACKNOWLEDGMENTS

We thank Amit Prakash for his help with early data collection, Paul

Tosca [2014], Morgan McGuire [2011], and Epic Games and XOIO

[2014] for test models/scenes. This work was supported in part by

NSF Grant #1409129.

Relative Texture Performance in Nyra Model

32
128

256

384

512

128

256

384

512

1.5
2

2.5
3

3.5
4

4.5
5

Loc
al S

am
ple

s

N
o
n
lo
c
a
l
S
a
m
p
le
s

D
A
C
S
S
p
e
e
d
u
p
F
a
c
t
o
r

Figure 7: Plot of relative performance of DACS compared to standard

deferred shading, as a function of shadowmap “local” and “nonlocal”

texture accesses for shadow computation with PCSS [Fernando 2005].

REFERENCES

Chaos Group. 2015. V-Ray. http://docs.chaosgroup.com/pages/viewpage.action?

pageId=7897184.

Petrik Clarberg, Robert Toth, Jon Hasselgren, Jim Nilsson, and Tomas Akenine-Möller.

2014. AMFS: adaptive multi-frequency shading for future graphics processors.

ACM Transactions on Graphics (TOG) 33, 4 (2014), 141.

Petrik Clarberg, Robert Toth, and Jacob Munkberg. 2013. A Sort-based Deferred

Shading Architecture for Decoupled Sampling. ACM Trans. Graph. 32, 4, Article

141 (July 2013), 10 pages.

Cyril Crassin,MorganMcGuire, Kayvon Fatahalian, andAaron Lefohn. 2015. Aggregate

G-buffer Anti-aliasing. In Proceedings of the 19th Symposium on Interactive 3D

Graphics and Games (i3D ’15). 109–119.

Epic Games. 2014. Unreal Engine 4. http://www.unrealengine.com/.

Randima Fernando. 2005. Percentage-closer Soft Shadows. In ACM SIGGRAPH 2005

Sketches (SIGGRAPH ’05). ACM, New York, NY, USA, Article 35.

Yong He, Yan Gu, and Kayvon Fatahalian. 2014. Extending the graphics pipeline

with adaptive, multi-rate shading. ACM Transactions on Graphics 33, 4 (2014),

Article–142.

Ethan Kerzner and Marco Salvi. 2014. Streaming G-Buffer Compression for Multi-

Sample Anti-Aliasing. In Proceedings of High Performance Graphics. Eurographics

Association, 1–7.

Gábor Liktor and Carsten Dachsbacher. 2012. Decoupled Deferred Shading for Hard-

ware Rasterization. In Proc. of the ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games. 143–150.

Jalal Eddine El Mansouri. 2016. Rendering ’Rainbow Six | Siege’. http://www.gdcvault.

com/play/1022990/Rendering-Rainbow-Six-Siege GDC.

Morgan McGuire. 2011. Computer Graphics Archive. http://graphics.cs.williams.edu/

data.

Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen Chen, Michael Doggett, and Frédo

Durand. 2011. Decoupled Sampling for Graphics Pipelines. ACM Trans. Graph. 30,

3, Article 17 (May 2011), 17 pages.

Takafumi Saito and Tokiichiro Takahashi. 1990. Comprehensible Rendering of 3-D

Shapes. SIGGRAPH Comput. Graph. 24, 4 (Sept. 1990), 197–206.

Markus Steinberger, Bernhard Kainz, Stefan Hauswiesner, Rostislav Khlebnikov, Denis

Kalkofen, and Dieter Schmalstieg. 2012. Ray prioritization using stylization and

visual saliency. Computers & Graphics 36, 6 (2012), 673 – 684.

Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor. 2016. Adap-

tive Image-Space Sampling for Gaze-Contingent Real-time Rendering. In Computer

Graphics Forum, Vol. 35. Wiley Online Library, 129–139.

Paul Tosca. 2014. Nyra. http://www.paultosca.com/newSite/nyra.html.

Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim Foley, Tomas Akenine-Möller,

Jim Nilsson, Jacob Munkberg, Jon Hasselgren, Masamichi Sugihara, Petrik Clarberg,

Tomasz Janczak, and Aaron Lefohn. 2014. Coarse Pixel Shading. In Proceedings of

High Performance Graphics. Eurographics Association, 9–18.

Alex Vlachos. 2016. Advanced VR Rendering Performance. http://www.gdcvault.

com/play/1023134/Advanced-VR-Rendering GDC.

Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P Simoncelli. 2004.

Image quality assessment: from error visibility to structural similarity. Image

Processing, IEEE Transactions on 13, 4 (2004), 600–612.

Graham Wihlidal. 2017. 4K Checkerboard in Battlefield 1 and Mass Effect Andromeda.

GDC.

Agatha Mallett and Cem Yuksel

http://docs.chaosgroup.com/pages/viewpage.action?pageId=7897184
http://docs.chaosgroup.com/pages/viewpage.action?pageId=7897184
http://www.unrealengine.com/
http://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege
http://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege
http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data
http://www.paultosca.com/newSite/nyra.html
http://www.gdcvault.com/play/1023134/Advanced-VR-Rendering
http://www.gdcvault.com/play/1023134/Advanced-VR-Rendering

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Results
	5 Discussion and Future Work
	6 Conclusion
	References

