Multi-Layer Thick Shells:
Supplemental Document

Yunuo Chen, Tianyi Xie, Cem Yuksel, Danny Kaufman,
Yin Yang, Chenfanfu Jiang, Minchen Li

Contents

1 Derivation of Prism Elements 1
1.1 Deformation Gradient and Its Derivatives 1
1.2 Consistent Mass Matrix L 2
1.3 Switching the Degrees of Freedom to Surface Nodes 4

2 Derivation of Complementary Wrinkle Coupling 4
2.1 Change of Variable with Null-Space Basis 4
2.2 Temporal Discretization and Optimization Form 5
2.3 Pseudocode for Generating the Basis Matrices 6

1 Derivation of Prism Elements

1.1 Deformation Gradient and Its Derivatives

For our isoparametric prism element, we derived that the deformation gradient at an arbitrary point X in
the prism is

_0x _0x 00X,
F(Q)—ﬁ(Q)—aq(aq)) (1)
where
oX
9q X2 —X; +v(N2 —Ny), X3 —X; +79(N3g—Ny), N; + A (N2 —Nyp) + X2 (N3 —Ny)] (2)
and 5
X
9q =[x —x1 +7(n2 —n1), X3 —x; +y(n3 —ny), n; + A (nz —n;) + A (n3 —ny)]. (3)

Here we see that, unlike the linear tetrahedral elements, the deformation gradient is not constant in each
prism element.
Let B = (%)*1 € R3, we can derive the derivative of F w.r.t. the degrees of freedom x and n as

-1 I O -1 0
0 vec(F) 0% 18
oI, %y, xI,nf,nd,n] (Lot 1 0 QB) € R™,)
182,43,y ,Hy, 13 0O 0 O (17)\1—)\2)1 MI A1

where we define the operator ® as: taking each column of the left operand, reshaping it to a 3 x 3 matrix
in column major, premultiplying the reshaped matrix to B, reshaping the resulting 3 x 3 matrix back to a

column vector in column major, and finally organizing all resulting column vectors together. In this way,
we obtain

“Bi - Ba)I Bul Bol

F (=B 21 11 21

% = |(=Bi2 — Ba2)I B2l Baol (5)
1%z, %3] (=Bi3 — Ba3)I Bizl B3l

and

8 vec(F) (=7(Bu1 + Ba1) + (1 = A1t = A2)Ba)I (vBi1 + MiB31)l (YBa1 + Ao Ba1)1
O[T, nl,nl] = | (=7(Bi2 + Ba2) + (1 = At — A2)B32)I (yBi2 + A1 Bs2)l (vBa2 + A2 B32)I|, (6)
ot 1 (=7(Biz + Bag) + (1 = A1 — A2)Ba3)l (vB13 + A1 Bs3)l (vBas + A2 Bs3)l

which are useful in computing the nodal elasticity force and its Jacobian.

1.2 Consistent Mass Matrix

In FEM literature, if we define the shape function of node i as N;(X) and director 7 as O;(X) in an element,
we have

3
x(X) =Y (x:V;(X) + 0i0;(X)). (7)
i=0
Based on our definition of
x(q) = x1 + A1(x2 —X1) + A2(x3 — x1) + (01 + A1 (n2 —ny) + A2(nz —ny)), (8)

we know that
Ni(X)=1-X1—Aa, No(X) = A1, N3(X) = Ao,

O01(X) =7(1 =X = X), O5(X) =71, O3(X) = Ao

If we stack these shape functions together as O(X) = [N1(X), Na(X), N3(X), 01(X), 02(X), O5(X)] 7T,
we can write the consistent mass matrix of a prism element as

9)

M = (/Q pOO(X)O(X)TdX) € R6X6 (10)

according to the weak form derivation of FEM. Here pg is the density at rest configuration, and each entry
of the mass matrix applies to all the 3 dimensions of the corresponding two nodal positions or directors.
For example,

1 pl=x pl
M11 = po/ / / (1 —)\1 —)\2)2(9 + hv + ’i’72)d’7d)\2d)\1 (11)
o Jo —-1
after changing the integration variables to the parameters q, where

g = (X12 x Xy3) - Ny + (X12 x Xy3) - N12A1 + (Xi2 x Xi3) - NisAg,
h = (Xj2 x N3 + X3 x N3) - Ny + (X3 x Ny2) - NigAe + (X3 X Nig) - Nz, (12)
7= (N2 X Ng) 'Nl,

and X;; = X; — X;. Evaluating the integral analytically or via quadrature rules we obtain

1
M11 = %po(?)(xlg X Xlg) . (N3 + N2 + 3N1) =+ 5(N2 X Ng) . Nl) (13)

Similarly,

1
M M21 (3(X12 X X13) . (N3 —+ 2N2 + 2N1) —+ 5(N2 X N3) . :N-l)7

180"

1
M3 = M3; = —po(3(Xi2 x Xi3) - (2N3 + No + 2N;) + 5(N3 x N3) - Ny),

180

1
My = My = Tgpo(xlz x N3 + X33 x Ng) - Ny,
1
M M51 180 ((4X12 X N3 —+ 5X13 X Nz) . Nl —+ (X12 X N13) . N2)7

1
Mg = Mg = @PO((5X12 x N3 4 4X;3 x N2) - Ny + (X3 x Nj2) - N3).

1
Moy = %Po((X12 x X13) - (N3 4+ 3N3 + N;) + 5(Ny x N3) - Ny),

1
Myz = M3z = ——po(3(X12 x X13) - (2N3 + 2N3 + Np) 4 5(N3 x N3) - Ny),

180
Moy = My = Mys,

1
Mos = Mso = %,00((3)(12 x N3+ 5Xy3 x Ng) - Ny + 2(X12 x Ni3) - N3),

1
Mg = Mgy = §M14-

1
M33 = %p0(3(X12 X X13) . (3N3 + NQ + Nl) + 5(N2 X Ng) . Nl),

M34 = My3z = Mig,
M35 = Ms3 = Mo,

1
Mz = Mgz = %po((g)xlg x N3 4+ 3X3 X NQ) -Ny + 2(X13 X ng) . Ng)

1
M44 = —po((Xlg X X13) . (N3 + N2 =+ 3N1) + 3(N2 X N3) . Nl),

90
Mas = My = 1;0 o(X12 x X3) - (N3 + 2Ny + 2N,) + 3(Na x Ny) - Ny),
My = Mgy = 1;0 o((X12 X X13) - (2N + Ny + 2N1) + 3(Ny x N3) - Ny).
Mss = %Po((xm x Xi3) - (N3 + 3N3 + Nj) + 3(N3 x N3) - Ny),
Mse = Megs = 1;0 0((X12 x Xi3) - (2N3 + 2N3 + Np) 4+ 3(Ng x N3) - Ny).

1
Mgs = %Po((xu x Xi3) - (BN3 + N2 + Ny) + 3(Nz x N3) - Ny).

With consistent mass matrix, gravity from a single element can be calculated as

3
Z Mg
=1

for x;, and
3

Z Mit3);8
=1

for n;, where g is the gravitational acceleration vector. We will skip the derivation.

(15)

(17)

(18)

(19)

(20)

(21)

1.3 Switching the Degrees of Freedom to Surface Nodes

For the convenience of derivation, we defined the degrees of freedom as the midsurface nodal positions x"¢

and directors n. Switching the degrees of freedom to the surface nodes y, we get
maid

Y2j—1 =X; 7 — 1y, Y25 = X}md + nj, (22)

which indicates that

i1 i1 o o o0 o

0 0 iI i o o0
dxT,x¥, xT nT ni nl]T 0 0 0 0o ir I (23)
d[YlTa}’QTayg,y:faygayg] 7%:[%I 0 0 0 0

0 0 —-iI iI o0 O

0 0 0 o0 -—iI iI

With this derivative, we can conveniently transform the forces and their Jacobian matrices from the original
degrees of freedom to y using chain rule.

2 Derivation of Complementary Wrinkle Coupling

2.1 Change of Variable with Null-Space Basis

With Lagrangian mechanics, we obtain the following spatially discretized dynamical system for our coupled
fine membrane x and thick shell y:

dc‘l’tf — M (-VE.(x) + PA), (24)
dx

g = Vg, (25)
vy 1 _pr

=M (-VE,(y) - PTPX), (26)
dy

PT(x - Py)=0. (28)

Let x = Py + Qz where the columns of Q are the null-space basis of P we defined and PTQ = 0, Eq. 28
holds by construction, and Eq. 24 and Eq. 25 can be rewritten as

P% + Qd(;; =M, (-VE,(Py + Qz) + PX), (29)
dy dz

Here, we can see that the position updates of y and z are decoupled as P and Q are orthogonal, which
gives us
% =V, (31)
in addition to the equation of y given by Eq. 27. However, the velocity update could not be decoupled,
but we can certainly eliminate the Lagrange multiplier vector .
Premultiplying QTM,, to both sides of Eq. 29, we get

dv dv,
QTMxP(Tty +Q"™™.Q T -Q'VE,(Py + Qu). (32)

Similarly, premultiplying PTM, to both sides of Eq. 29, we get

PTM, Pd— +P™

i = -P'VE,(Py + Qz) + PTPA. (33)

Then combining Eq. 33 and Eq. 26, we can eliminate PTPA and obtain

dvz _

d
(M, + PTM,P) dVy +P"M,Q—* = ~P"VE,(Py + Qz) - VE,(y). (34)
Reorganizing Eq. 34, 32, 31, 27 together, we get an unconstrained system

dv, dvz

Q"M,PY +Q"M,Q T = —Q"VE,(Py + Qz),

dz

@ (35)
35

d dv,

(M, + PTM,P) dvy +P M, Q- Y2 = _PTVE,(Py + Qz) — VE,(y),

dy

E = Vy.

2.2 Temporal Discretization and Optimization Form

Next, if we apply implicit Euler to discretize Eq. 35 (other time integration schemes can also be used),
approximating any dq/dt as (q"*t! — q")/h, where h is the time step size, and using quantities in the
(n + 1)-th time step for the right hand sides, we obtain the fully discretized system

n+l _ n n+1 n

v
QTMmP Y 7 Y + QTMmQ - -V, _ _QTVEx(Pyn-&-l 4 an—i-l)7
zn+1h_ z" — YL
n+1l _ n vyt v (36)
(M, + P"M,P)-~ ; L+ PTMIQ% = -PT'VE,(Py"™ + Qz"t") - VE,(y"),
yn+1 _ yn _ vn+1.
h Y
Now, we can clearly see that if we denote w = [yT,zT]", the nonlinear system in Eq. 36 is equivalent to
the optimization problem
W = argmin w5, + 1 (B[P, Qw) + B (L, 0w)) (37)

followed by velocity update v = (w"t! — w™)/h, where w" = w" + hv" and
M. {My +PTM,P PTMIQ}

Q"M,P Q™M,Q| (38)

2.3 Pseudocode for Generating the Basis Matrices

void get-P_Q_mat(int nx, int ny,
vector<Vector3i> P_ind, vector<Vector2d> P_weight,
Mat& P, Mat& Q)

{
/* nx: # high—res points (including those who are also low—res points),
ny: # low—res points,
P_.ind: interpolating low—res points of each high—res point,
P_weight: barycentric weights. x/
/] P
Triplets Tri;
for (int xI = 0; xI < nx; +4+xI) {
Vector3i indl = P_ind[xI];
Vector2d weightl = P_weight [xI];
T wO = (1 — weightI[0] — weightI[1]), wl = weightI[0], w2 = weightI[1];
if (w0 != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back(xI * 3 + d, indI[0] * 3 + d, w0);
if (wl != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back(xI * 3 + d, indI[1] * 3 + d, wl);
if (w2 != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(xI * 3 + d, indI[2] * 3 + d, w2);
}
P.resize(nx * 3, ny * 3);
P.setFromTriplets (Tri.begin(), Tri.end());
/] Q
Tri.clear ();
map<int , int> y-to-x; // index map from low—res to high-—res
int nz = 0; // # high—res points that is not also a low—res point
for (int xI = 0; xI < nx; ++xI) {
Vector3i indl = P_ind [xI];
Vector2d weightl = P_weight [xI];
T wO = (1 — weightI[0] — weightI[1]), wl = weightI[0], w2 = weightI[1];
if (wl!=0 || w2!= 0) { // xI is not a low—res point
if (w0 != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(y-to_x[indI[0]] * 3 + d, nz * 3 + d, —w0);
if (wl != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(y_-to_x[indI[1]] * 3 +d, nz * 3 +d, —wl);
if (w2 != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back (y-to_x[indI[2]] * 3 +d, nz * 3 + d, —w2);
for (int d = 0; d < 3; +4+d)
Tri.emplace_back(xI * 3 +d, nz = 3 +d, 1.0);
nz++;
} else { // xI is also a low—res point
y-to_x [indI [0]] = xI;
}
Q.resize(nx * 3, nz * 3);
Q.setFromTriplets (Tri.begin (), Tri.end());
}

