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1 Derivation of Prism Elements

1.1 Deformation Gradient and Its Derivatives

For our isoparametric prism element, we derived that the deformation gradient at an arbitrary point X in
the prism is
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where
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Here we see that, unlike the linear tetrahedral elements, the deformation gradient is not constant in each
prism element.
Let B = (%)*1 € R3, we can derive the derivative of F w.r.t. the degrees of freedom x and n as
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where we define the operator ® as: taking each column of the left operand, reshaping it to a 3 x 3 matrix
in column major, premultiplying the reshaped matrix to B, reshaping the resulting 3 x 3 matrix back to a



column vector in column major, and finally organizing all resulting column vectors together. In this way,
we obtain
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which are useful in computing the nodal elasticity force and its Jacobian.

1.2 Consistent Mass Matrix

In FEM literature, if we define the shape function of node i as N;(X) and director 7 as O;(X) in an element,
we have

3
x(X) =Y (x:V;(X) + 0i0;(X)). (7)
i=0
Based on our definition of
x(q) = x1 + A1(x2 —X1) + A2(x3 — x1) + (01 + A1 (n2 —ny) + A2(nz —ny)), (8)

we know that
Ni(X)=1-X1—Aa, No(X) = A1, N3(X) = Ao,

O01(X) =7(1 =X = X), O5(X) =71, O3(X) = Ao

If we stack these shape functions together as O(X) = [N1(X), Na(X), N3(X), 01(X), 02(X), O5(X)] 7T,
we can write the consistent mass matrix of a prism element as

9)

M = (/Q pOO(X)O(X)TdX) € R6X6 (10)

according to the weak form derivation of FEM. Here pg is the density at rest configuration, and each entry
of the mass matrix applies to all the 3 dimensions of the corresponding two nodal positions or directors.
For example,

1 pl=x pl
M11 = po/ / / (1 — )\1 — )\2)2(9 + hv + ’i’72)d’7d)\2d)\1 (11)
o Jo —-1
after changing the integration variables to the parameters q, where

g = (X12 x Xy3) - Ny + (X12 x Xy3) - N12A1 + (Xi2 x Xi3) - NisAg,
h = (Xj2 x N3 + X3 x N3) - Ny + (X3 x Ny2) - NigAe + (X3 X Nig) - Nz, (12)
7= (N2 X Ng) 'Nl,

and X;; = X; — X;. Evaluating the integral analytically or via quadrature rules we obtain

1
M11 = %po(?)(xlg X Xlg) . (N3 + N2 + 3N1) =+ 5(N2 X Ng) . Nl) (13)



Similarly,

1
M M21 (3(X12 X X13) . (N3 —+ 2N2 + 2N1) —+ 5(N2 X N3) . :N-l)7
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1
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1
Mg = Mg = @PO((5X12 x N3 4 4X;3 x N2) - Ny + (X3 x Nj2) - N3).

1
Moy = %Po( (X12 x X13) - (N3 4+ 3N3 + N;) + 5(Ny x N3) - Ny),

1
Myz = M3z = ——po(3(X12 x X13) - (2N3 + 2N3 + Np) 4 5(N3 x N3) - Ny),

180
Moy = My = Mys,

1
Mos = Mso = %,00((3)(12 x N3+ 5Xy3 x Ng) - Ny + 2(X12 x Ni3) - N3),

1
Mg = Mgy = §M14-

1
M33 = %p0(3(X12 X X13) . (3N3 + NQ + Nl) + 5(N2 X Ng) . Nl),

M34 = My3z = Mig,
M35 = Ms3 = Mo,

1
Mz = Mgz = %po((g)xlg x N3 4+ 3X3 X NQ) -Ny + 2(X13 X ng) . Ng)

1
M44 = —po((Xlg X X13) . (N3 + N2 =+ 3N1) + 3(N2 X N3) . Nl),

90
Mas = My = 1;0 o(X12 x X3) - (N3 + 2Ny + 2N,) + 3(Na x Ny) - Ny ),
My = Mgy = 1;0 o((X12 X X13) - (2N + Ny + 2N1) + 3(Ny x N3) - Ny ).
Mss = %Po((xm x Xi3) - (N3 + 3N3 + Nj) + 3(N3 x N3) - Ny),
Mse = Megs = 1;0 0((X12 x Xi3) - (2N3 + 2N3 + Np) 4+ 3(Ng x N3) - Ny).

1
Mgs = %Po((xu x Xi3) - (BN3 + N2 + Ny) + 3(Nz x N3) - Ny).

With consistent mass matrix, gravity from a single element can be calculated as

3
Z Mg
=1

for x;, and
3

Z Mit3);8
=1

for n;, where g is the gravitational acceleration vector. We will skip the derivation.
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1.3 Switching the Degrees of Freedom to Surface Nodes

For the convenience of derivation, we defined the degrees of freedom as the midsurface nodal positions x"¢

and directors n. Switching the degrees of freedom to the surface nodes y, we get
maid

Y2j—1 =X; 7 — 1y, Y25 = X}md + nj, (22)

which indicates that
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With this derivative, we can conveniently transform the forces and their Jacobian matrices from the original
degrees of freedom to y using chain rule.

2 Derivation of Complementary Wrinkle Coupling

2.1 Change of Variable with Null-Space Basis

With Lagrangian mechanics, we obtain the following spatially discretized dynamical system for our coupled
fine membrane x and thick shell y:

dc‘l’tf — M (-VE.(x) + PA), (24)
dx

g = Vg, (25)
vy 1 _pr

=M (-VE,(y) - PTPX), (26)
dy

PT(x - Py)=0. (28)

Let x = Py + Qz where the columns of Q are the null-space basis of P we defined and PTQ = 0, Eq. 28
holds by construction, and Eq. 24 and Eq. 25 can be rewritten as

P% + Qd(;; =M, (-VE,(Py + Qz) + PX), (29)
dy dz

Here, we can see that the position updates of y and z are decoupled as P and Q are orthogonal, which
gives us
% =V, (31)
in addition to the equation of y given by Eq. 27. However, the velocity update could not be decoupled,
but we can certainly eliminate the Lagrange multiplier vector .
Premultiplying QTM,, to both sides of Eq. 29, we get

dv dv,
QTMxP(Tty +Q"™™.Q T -Q'VE,(Py + Qu). (32)




Similarly, premultiplying PTM, to both sides of Eq. 29, we get

PTM, Pd— +P™

i = -P'VE,(Py + Qz) + PTPA. (33)

Then combining Eq. 33 and Eq. 26, we can eliminate PTPA and obtain

dvz _

d
(M, + PTM,P) dVy +P"M,Q—* = ~P"VE,(Py + Qz) - VE,(y). (34)
Reorganizing Eq. 34, 32, 31, 27 together, we get an unconstrained system

dv, dvz

Q"M,PY +Q"M,Q T = —Q"VE,(Py + Qz),

dz

@ (35)
35

d dv,

(M, + PTM,P) dvy +P M, Q- Y2 = _PTVE,(Py + Qz) — VE,(y),

dy

E = Vy.

2.2 Temporal Discretization and Optimization Form

Next, if we apply implicit Euler to discretize Eq. 35 (other time integration schemes can also be used),
approximating any dq/dt as (q"*t! — q")/h, where h is the time step size, and using quantities in the
(n + 1)-th time step for the right hand sides, we obtain the fully discretized system

n+l _ n n+1 n

v
QTMmP Y 7 Y + QTMmQ - -V, _ _QTVEx(Pyn-&-l 4 an—i-l)7
zn+1h_ z" — YL
n+1l _ n vyt v (36)
(M, + P"M,P)-~ ; L+ PTMIQ% = -PT'VE,(Py"™ + Qz"t") - VE,(y"),
yn+1 _ yn _ vn+1.
h Y
Now, we can clearly see that if we denote w = [yT,zT]", the nonlinear system in Eq. 36 is equivalent to
the optimization problem
W = argmin w5, + 1 (B[P, Qw) + B (L, 0w)) (37)

followed by velocity update v = (w"t! — w™)/h, where w" = w" + hv" and
M. {My +PTM,P PTMIQ}

Q"M,P  Q™M,Q| (38)



2.3 Pseudocode for Generating the Basis Matrices

void get-P_Q_mat(int nx, int ny,
vector<Vector3i> P_ind, vector<Vector2d> P_weight,
Mat& P, Mat& Q)

{
/* nx: # high—res points (including those who are also low—res points),
ny: # low—res points,
P_.ind: interpolating low—res points of each high—res point,
P_weight: barycentric weights. x/
/] P
Triplets Tri;
for (int xI = 0; xI < nx; +4+xI) {
Vector3i indl = P_ind[xI];
Vector2d weightl = P_weight [xI];
T wO = (1 — weightI[0] — weightI[1]), wl = weightI[0], w2 = weightI[1];
if (w0 != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back(xI * 3 + d, indI[0] * 3 + d, w0);
if (wl != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back(xI * 3 + d, indI[1] * 3 + d, wl);
if (w2 != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(xI * 3 + d, indI[2] * 3 + d, w2);
}
P.resize(nx * 3, ny * 3);
P.setFromTriplets (Tri.begin(), Tri.end());
/] Q
Tri.clear ();
map<int , int> y-to-x; // index map from low—res to high-—res
int nz = 0; // # high—res points that is not also a low—res point
for (int xI = 0; xI < nx; ++xI) {
Vector3i indl = P_ind [xI];
Vector2d weightl = P_weight [xI];
T wO = (1 — weightI[0] — weightI[1]), wl = weightI[0], w2 = weightI[1];
if (wl!=0 || w2!= 0) { // xI is not a low—res point
if (w0 != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(y-to_x[indI[0]] * 3 + d, nz * 3 + d, —w0);
if (wl != 0)
for (int d = 0; d < 3; ++d)
Tri.emplace_back(y_-to_x[indI[1]] * 3 +d, nz * 3 +d, —wl);
if (w2 != 0)
for (int d = 0; d < 3; +Hd)
Tri.emplace_back (y-to_x[indI[2]] * 3 +d, nz * 3 + d, —w2);
for (int d = 0; d < 3; +4+d)
Tri.emplace_back(xI * 3 +d, nz = 3 +d, 1.0);
nz++;
} else { // xI is also a low—res point
y-to_x [indI [0]] = xI;
}
Q.resize(nx * 3, nz * 3);
Q.setFromTriplets (Tri.begin (), Tri.end());
}




