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Figure 1: Comparison of the number of ray-plane and ray-triangle intersection tests generated by the primary rays using identical space
partitioning between the BVH and our dual-split tree for the San Miguel scene shown on the right. The results show that our dual-split tree
representation substantially reduces the number of ray-plane intersection tests during ray traversal with only a minor increase in the number of
ray-triangle intersection tests.

ABSTRACT
We introduce the dual-split tree, a new tree-based acceleration struc-

ture for ray tracing. Each internal node of a dual-split tree uses two

axis-aligned planes to either split the parent node into two child

nodes or to mark the empty regions of the node. This allows child

bounding boxes to overlap when desired. Thus, our dual-split tree

is capable of representing space partitioning identical to any given

bounding volume hierarchy. Our dual-split tree provides a signif-

icant reduction in the required acceleration structure storage by

eliminating the redundant bounding planes that are commonplace

in bounding volume hierarchies, providing better performance and

storage savings than similar previous methods. As a result, we

achieve improved rendering performance with dual-split trees, as

compared to bounding volume hierarchies with a comparable level

of optimization using identical or similar space partitioning.
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1 INTRODUCTION
Acceleration structures are crucial for high-performance ray tracing

because they significantly reduce the ray traversal costs. Kd-trees

were popular until recently, since they were known to provide the

best rendering performance in most scenes. Unfortunately, building

high-quality kd-trees that can deliver desirable render-time perfor-

mance has been expensive, thereby undermining their popularity.

More recently, bounding volume hierarchies (BVHs) have be-

come a popular choice for ray tracing acceleration because of the

advances in algorithms for fast construction of the high quality

BVHs and the good render-time performance they provide. BVHs

have the unique property that they permit overlapping bounding

volumes for sibling nodes in the tree structure, while other typical

acceleration structures (such as kd-trees, octrees, grids, etc.) strictly

separate the bounding volumes of sibling nodes. Thus, BVHs do

not necessarily spatially separate the scene triangles, regardless of

how they are oriented and distributed in a scene.

In this paper we introduce dual-split trees, a new acceleration

structure for ray tracing. Unlike kd-trees that store a single axis-

aligned plane to separate the child nodes of an internal node, our

dual-split trees store two axis-aligned planes per node, which can

align to either the same or different axes. This allows representing

overlapping bounding volumes for sibling nodes, just like BVHs.

Therefore, dual-split trees can represent a space partitioning iden-

tical to any given BVH. Furthermore, dual-split trees can provide

a substantial reduction in storage as compared to a BVH with the

identical space partitioning by eliminating the inherent storage

redundancies in a typical BVH implementation. This is particu-

larly important for large scenes, where memory accesses can be

the bottleneck of ray traversal operations. Compared to other hy-

brid acceleration structures like the bounding interval hierarchy

(BIH) [Wächter and Keller 2006] and H-Tree [Havran et al. 2006],

our dual-split trees reduce the storage used and achieve higher

traversal performance. In our tests with different scene sizes, we

have observed up to 48% reduction in the acceleration structure

https://doi.org/10.1145/3306131.3317028
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storage, as compared to an uncompressed BVH with the identical

space partitioning. Dual-split trees can be generated from a given

BVH faster than building the source BVH. Even though a dual-split

tree contains more nodes than the BVH from which it is generated,

the overall storage for dual-split trees is considerably reduced com-

pared to the uncompressed source BVH because dual-split trees

avoid storing redundant data and require much less storage per

node. Dual-split trees also introduce a similar reduction in the

number of ray-plane intersection tests. All of these reductions lead

to improvements of the ray traversal performance.

We compare our dual-split trees to uncompressed BVHs and

other hybrid acceleration structures representing identical space

partitioning. In our experiments, our dual-split trees provide a

significant reduction in storage and achieve similar or better per-

formance compared to other acceleration structures. Moreover, we

show that additional reductions in storage and computation time

can be achieved with our dual-split trees through slight modifica-

tions to the space partitioning that eliminates some of the bounding

planes.

2 BACKGROUND
A large body of work is dedicated to ray tracing acceleration struc-

tures. They reduce the number of ray-object intersection tests and

significantly improve ray tracing performance, especially as the

geometric complexity of scenes continues to grow [Wald et al. 2009].

Overall, the approaches can be classified based on whether they

partition space or objects.

One of the more popular space-partition acceleration structures

is a kd-tree [Bentley 1975; Futchs et al. 1988; Havran 2000]. Each

node in the binary tree relies on an axis-aligned plane to split its

child nodes and thus their geometric primitives. The plane can also

separate geometry and empty space. Although kd-trees provide

excellent ray traversal performance, they are not the fastest accel-

eration structures to build and require duplicating references to

primitives that span across a splitting plane.

More recently, bounding volume hierarchies (BVHs) [Rubin and

Whitted 1980] have become widely used for ray tracing. They par-

tition objects rather than space, and thus typically do not duplicate

references to geometric primitives. Essentially each node stores its

bounds and a reference to child nodes contained within. Although

a variety of bounding volumes have been explored, the rendering

community has settled on axis-aligned bounding boxes, which can

be intersected against a ray faster than their alternatives. One issue

with the BVH is that node bounds can overlap, forcing the traversal

of additional nodes even after a ray intersection is found.

Much research targets improving the BVH, producing many

variants. BVH build times can be accelerated significantly by sorting

the primitives along a space-filling curve, a highly parallelizable

operation [Lauterbach et al. 2009; Pantaleoni and Luebke 2010;

Vinkler et al. 2017]. The quality of BVHs built quickly bottom-up can

suffer compared to sweep-based top-down builds, so recentmethods

perform tree rotations [Kensler 2008; Kopta et al. 2012]. Nodes

can also be reordered within small neighborhoods (treelets) to

improve BVH quality [Karras and Aila 2013; Domingues and Pedrini

2015]. Often the scene geometry is highly irregular and produces

lots of bounding volume overlaps, which results in unnecessary

intersection tests. A splitting plane can be used to tighter assign

the triangles between nodes, duplicating triangle references, while

removing bounding box overlaps and the corresponding surface

area [Stich et al. 2009]. Aila et. al. evaluate and compare quality of

BVHs produced by popular builders [2013].

As scene sizes increase and the gap between compute and mem-

ory widens, traversing ever-larger tree structures has become in-

creasingly memory-bound. A wide variety of modern research

focuses on compressing scene data and the corresponding BVH. In-

creasing the arity of the BVH can decrease the structure depth

reducing the number of nodes, with an extra benefit of better

SIMD utilization during traversal [Dammertz et al. 2008; Wald et al.

2008; Ernst and Greiner 2008]. Storing nearby nodes grouped into

small subtrees closer in memory increases the L1 or L2 cache hit

rates, thus reducing bandwidth required to render the scene [Aila

and Karras 2010]. Many methods tackle compressing BVH data

directly [Kim et al. 2010a,b; Bauszat et al. 2010; Vaidyanathan et al.

2016; Ylitie et al. 2017]. Such approaches usually make use of quan-

tized coordinates for the BVH [Mahovsky and Wyvill 2006; Keely

2014] and/or the geometry [Segovia and Ernst 2010] to achieve com-

pression, paying specific attention to memory performance [Liktor

and Vaidyanathan 2016].

Fabianowski and Dingliana observe that for each axis at least

two of the four planes bounding the children of a BVH node are

shared with the parent [2009]. Consequently, the Compact BVH
structure the authors introduce stores only six planes in every node

to fully encode the two child bounding boxes, largely reducing the

storage required to fully represent a BVH.

Other research explores the middle ground between a kd-tree

and a BVH by combining the low traversal cost of a kd-tree and

the low construction cost of a BVH. Bounding interval hierarchy

[Wächter and Keller 2006] replaces the full axis-aligned bound-

ing boxes for the two child nodes by two parallel clipping planes

separating the two children. Havran et al. propose H-Tree [2006],

which inserts different types of bounding volumes into a spatial kd-

tree [Ooi 1987], helping cull empty space during traversal. Wächter

uses two clipping planes for BIH nodes to tighten the bounding

volumes [Wächter 2008]. B-KD Trees use two pairs of parallel

bounding planes for the two children and accelerate ray tracing via

special-purpose hardware [Woop et al. 2006].

While sharing some ideas, our dual-split trees achieve substan-

tial additional reduction in storage and computation by using two

planes per node that align to different axes, allowing empty space

to be culled by only two planes in many cases. With our compact

node representation, in some cases we obtain higher compression

rates than the Compact BVH.

3 DUAL-SPLIT TREES
Each node of the dual-split tree stores two axis-aligned planes,

which we label by their normal directions. We consider space along

the normal direction as empty. There are two types of internal

nodes corresponding to the two ways of using the planes: they

either split space (splitting nodes) or carve out empty space (carving
nodes). The planes are used to partition objects. However, unlike a

classic BVH, we eliminate storing redundant planes which affords

both reduced computation and storage.
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(a) BVH Node (b) splitting node (c) carving nodes

Figure 2: Dual-split tree in 2D: (a) shows two configurations of a
BVH node (child bounding boxes are shown in gray); (b) creates a
splitting node (split planes depicted in blue); (c) adds carving nodes
as children of the splitting node (carving planes depicted in orange).
Each arrow indicates the plane normal, with the empty space on the
positive side of the plane.

3.1 Splitting Nodes
The two planes in a splitting node separate the bounding boxes of

the node’s children into two bounding volumes along a single axis.

We refer to these planes as splitting planes.
Consider the BVH node with two child nodes shown in Figure 2a.

The corresponding separation of child bounding boxes in a dual-

split tree would begin with a splitting node, as shown in Figure 2b.

The first splitting plane of a splitting node marks the maximum

bound of the first child along the splitting axis, and the second

splitting plane marks the minimum bound of the second child node.

3.2 Carving Nodes
A carving node, shown in Figure 2c, is used to trim the empty space

within the bounding volume. Carving nodes partition the space

into two regions: one empty and another non-empty. Each carving

node has only a single child node.

Unlike the splitting nodes, the planes of a carving node do not

have to be along the same axis. We refer to a carving node with

the two planes along the same axis as a single-axis carving node.
The first plane indicates where the non-empty region begins and

the second plane indicates where it ends along the chosen axis

(Figure 3a). We refer to a carving node with the two planes each

along a different axis as a dual-axis carving node. In this case, the

empty space around the bounding box is carved along the two

separate axes. For a given pair of axes, there are four different

carving plane configurations such that each one of the two carving

planes can either mark the beginning or the end of the non-empty

region (Figure 3b).

In 3D there are three possible combinations for a pair of axes (𝑥𝑦,

𝑥𝑧, and 𝑦𝑧), each with four different carving plane configurations,

resulting in 12 unique types of dual-axis carving nodes. Combined

with the three possibilities for single-axis carving nodes, there are

15 different types of carving nodes in a dual-split tree structure.

(a) single-axis carving node (b) dual-axis carving node

Figure 3: Two carving node types shown in 2Dwith the node bounding
box shown by a dashed line. The carving planes are shown in orange,
with arrows indicating their normal. The carving planes bound the
bounding box of a child node (gray).

Algorithm 1 Pseudocode for dual-split tree traversal.

procedure DualSplitTreeTraversal
if miss global bounding box then

return miss

𝑁 ← root node

while true do
if 𝑁 is leaf then

test triangles and record the closest hit

if 𝑁 is splitting node then
if intersect either of 𝑁 ’s children then

𝑁 ← nearest intersected child

if exists, push far child onto Stack

continue
if 𝑁 is carving node then

if intersect 𝑁 ’s child then
𝑁 ← child node

continue
repeat

if Stack is empty then
return closest hit or miss

else
𝑁 ← pop Stack

until newly popped 𝑡𝑚𝑖𝑛 < closest hit

3.3 Tree Structure
A dual-split tree contains a collection of splitting nodes and carving

nodes. Each splitting node divides the scene data into two partitions,

which may be overlapping or separated by empty space. Carving

nodes are placed after splitting nodes to mark the empty regions of

each partition.

Carving nodes can also act as leaf nodes. A carving node that

is a leaf would simply point to a set of scene primitives rather

than a child node. The carving planes are treated in the same way,

regardless of whether a carving node is a leaf.

A dual-split tree can also contain leaf nodes that are not carving

nodes. Such leaf nodes would need no splitting or carving planes.

3.4 Traversal
The traversal of dual-split trees is similar to kd-trees, shown as

pseudocode in Algorithm 1. Each ray keeps track of the valid depth

range [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] along its direction. As the ray traverses through

each node, it checks intersections with split and carved bounding

volumes. Each traversal step modifies the current valid depth range

corresponding to the bounds of the nearest child, while pushing the

range for the far child and its index onto the traversal stack. When a

node is popped from the traversal stack, it is culled using the current
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tmin

t2

t1

tmax

(a) 𝑡𝑚𝑖𝑛 ≤ 𝑡1 ∩ 𝑡𝑚𝑎𝑥 ≥ 𝑡2

tmin

t2

t1

tmax

(b) 𝑡𝑚𝑖𝑛 > 𝑡1 ∩ 𝑡𝑚𝑎𝑥 < 𝑡2

tmin

t2

t1

tmax

(c) 𝑡𝑚𝑖𝑛 ≤ 𝑡1 ∩ 𝑡𝑚𝑎𝑥 < 𝑡2

tmin

t2

t1

tmax

(d) 𝑡𝑚𝑖𝑛 > 𝑡1 ∩ 𝑡𝑚𝑎𝑥 ≥ 𝑡2

Figure 4: Four cases in splitting node traversal. Subcaptions specify
the conditions when a ray (black arrows) intersects (a) both children,
(b) neither child, (c) the closer child, and (d) the farther child. When a
ray intersects the empty space (b), traversal stops.

closest hit distance. Unlike kd-tree traversal which terminates as

soon as a hit is found, dual-split tree traversal continues until the

traversal stack is empty, because node bounding boxes can overlap.

A single ray-node intersection generates two hit distances, one

for each plane. Similar to intersecting against an axis-aligned bound-

ing box, one must properly consider plane orientations relative to

the ray direction. Let 𝑡1 and 𝑡2 be the ray distances marking the

intersections with the two planes.

For splitting nodes, we order 𝑡1 and 𝑡2 such that 𝑡1 corresponds

to the plane with its normal direction having the same sign as the

ray direction, and 𝑡2 corresponds to the intersection with the other

plane. The ray intersects the closer child node when 𝑡𝑚𝑖𝑛 ≤ 𝑡1 and

intersects the other child node when 𝑡𝑚𝑎𝑥 ≥ 𝑡2. Note that the ray

would miss both child nodes if it is passing through the empty space

in between the splitting planes, as shown in Figure 4.

The intersection with a carving node first trims the ray’s valid

depth range to the non-empty volume defined by the carving planes.

Then, the values 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are compared such that if 𝑡𝑚𝑖𝑛 >

𝑡𝑚𝑎𝑥 , the ray traverses the empty space, thus missing the child of

the carving node. The ray intersects a single-axis carving node only

when both 𝑡𝑚𝑖𝑛 ≤ 𝑡1 and 𝑡𝑚𝑎𝑥 ≥ 𝑡2.

Intersecting a dual-axis carving node resembles testing against

a 2D axis-aligned bounding box defined by the two carving planes.

Because the four possible configurations share different bounds

with the parent node, each needs to be considered separately as

shown in Figure 5.

4 IMPLEMENTATION DETAILS
Our dual-split tree implementation stores the acceleration structure

linearly in memory with nodes in depth-first order. Sibling nodes

are stored next to each other. The geometry is stored as an array

of vertices and normals. Triangles are stored as an array of vertex

indices. Leaf nodes reference into a global list of triangle indices.

t1

t2
tmin

tmin

(a) 𝑡𝑚𝑖𝑛 ≤ min(𝑡1, 𝑡2 )

t2

t1

(b) 𝑡1 ≤ 𝑡2

t1

t2

(c) 𝑡2 ≤ 𝑡1

t2

t1

tmax

tmax

(d) max(𝑡1, 𝑡2 ) ≤ 𝑡𝑚𝑎𝑥

Figure 5: Four configurations of carving planes (orange) in a dual-
axis carving node. Subcaptions specify the conditions when a ray
(black arrows) intersects the child within the node. These tests are
similar to intersecting against a 2D axis-aligned bounding box.

4.1 Node Data Layout
In our implementation of dual-split trees, each node begins with

a 6-bit header that determines the node type followed by a 26-

bit integer offset. Leaf nodes with no carving planes are packed

into 4 bytes. Other nodes that store two splitting planes require

an additional 8 bytes to store the two plane locations as single-

precision floating-point numbers. Thus, we use variable node sizes

in our implementation.

The integer offset within the internal nodes points to the node’s

first child as a relative index offset from the node’s position. The

integer offset within each leaf node stores the index of the first

triangle. Leaf nodes avoid storing the triangle count explicitly;

instead, they rely on how triangle indices are stored in the global

triangle index list. We use the sign bit of the triangle index to

specify that a triangle is the last one belonging to a particular leaf

node. Therefore, ray-triangle intersection starts at a given index

list location and iterates until it reaches (and processes) a triangle

specified by a negative index.

The 6-bit node header is shown in Figure 6. Node type dictates

how the remaining bits are interpreted. Splitting nodes use two bits

Split

Single-axis Carve

Dual-axis Carve

1Leaf

ignored

0

plane axis left child size

1

plane axis

plane axes corner type

0

0

1

1

0

leaf

leaf

leaf

leaf

type

type

type

type

Figure 6: Node headers in our implementation of the dual-split tree
consist of six bits allocated differently depending on the node type.
Empty spaces store data as described in Section 4.1.



Dual-Split Trees I3D ’19, May 21–23, 2019, Montreal, QC, Canada

Figure 7: Examples of carving empty space around a node (gray box)
in 2D using two levels of carving nodes. The first level carving planes
(orange lines) leave some empty space (orange) which gets carved by
the second carving level (green lines). One can use either single-axis
carving nodes (left, center) or dual-axis carving nodes (right).

to store the axis used for splitting and another two bits to store the

size of the first child in words, which can be either 1 or 3 (meaning

4 or 12 bytes). This simplifies computing the address for the second

child using the integer offset.

Single-axis carving nodes use two bits to store the axis used

for carving planes. Dual-axis carving nodes use two bits to store

which axes are used for carving, encoded in the following manner

for convenience: 00 for 𝑥𝑦, 01 for 𝑥𝑧, and 11 for 𝑦𝑧. The two bits,

labeled corner type in Figure 6, denote which of the four possible

configurations is used, all illustrated in Figure 5.

Carving nodes can also act as leaves based on the leaf bit. If

it is set, the index offset is interpreted as an index into the global

triangle array. Leaf carving nodes still store and use the carving

planes during traversal.

4.2 Construction from BVH
For fair comparison between a BVH or other hybrid acceleration

structures and our dual-split tree, we construct the latter directly

from a given BVH. The builder constructs a collection of dual-split

tree nodes from each BVH node in a top-down manner. The builder

relies on the surface area heuristic (SAH) [MacDonald and Booth

1990] to choose the configuration of splitting and carving nodes.

Given a BVH node with two child nodes, our builder first creates

a splitting node. The splitting axis can be chosen as any one of

the three possibilities. After splitting, carving nodes are placed as

the child nodes of the splitting node as needed. Figure 7 shows

examples of different carving node configurations in 2D that can

be used to trim the same empty space. As shown in Figure 8, up

to three carving nodes may need to be placed one after another to

achieve the same space partitioning as the child nodes of the BVH

node. Yet, three carving nodes following a splitting node is rare

in practice, since most BVH nodes share some planes with their

parents. In most cases, zero or one carving node is sufficient to

represent the space partitioning identical to the BVH.

Let 𝑘 ∈ {𝑥,𝑦, 𝑧} represent the splitting axis for a splitting node
and 𝐶𝑘 = 𝐶𝐿

𝑘
+𝐶𝑅

𝑘
be the SAH cost of selecting axis 𝑘 , where 𝐶𝐿

𝑘

and 𝐶𝑅
𝑘
are the costs of the two child nodes. 𝐶𝐿

𝑘
can be computed,

including up to ℓ ≤ 3 carving nodes underneath it, such that

𝐶𝐿
𝑘
=

ℓ∑︁
𝑗=1

𝑆𝐿
𝑗−1
𝑆

𝐶 𝑗 +
𝑆𝐿
ℓ

𝑆
𝐶𝐼𝑇

𝐿 , (1)

where 𝑆 and 𝑆𝐿
0
are the surface areas of the parent splitting node

and its immediate left child node; 𝑆𝐿
1
, 𝑆𝐿

2
, and 𝑆𝐿

3
are the surface

areas of up to three carving nodes;𝐶1,𝐶2, and𝐶3 are their traversal

costs; 𝐶𝐼 is the triangle intersection cost, and 𝑇𝐿
is the number of

S

S2 S1
L R

(a) Source BVH

S

S3 S3
L R

S2

S1

S2

S1

L

L

R

R

(b) Identical dual-split tree

BVH  node

splitting  node

carving  node

Figure 8: BVH vs. dual-split tree: (a) three nodes of a BVH and
(b) the corresponding dual-split tree using up to three carving nodes
below each splitting node. Note that in most cases one carving node is
sufficient in practice (see Table 3) and if one child of the splitting node
has three carving nodes, the other child will have no carving nodes.

triangles within the left child node. 𝐶𝑅
𝑘
is computed similarly. In

our implementation we use 𝐶 𝑗 = 𝜎 𝐶𝐼 , where single-axis carving

nodes set 𝜎 = 0.3, and dual-axis carving nodes set 𝜎 = 0.5 (see

Figure 7). To select an optimal configuration of the nested carving

nodes, we compare the SAH costs of all possible configurations.

The builder generates the nested carving nodes corresponding to

the configuration with the lowest SAH cost.

4.2.1 Identical bounds. Dual-split tree can match the BVH par-

titioning exactly by generating up to three carving node levels for

every BVH node. In this case, the SAH costs (Equation 1) use the

bounding boxes 𝑆 , 𝑆𝐿
ℓ
and 𝑆𝑅

ℓ
that are provided directly by the

BVH for each node. Although this approach provides a faithful rep-

resentation of the BVH, it can generate more nodes than required.

We refer to this dual-split tree construction as identical.

4.2.2 Approximate bounds. In some cases, carving small

amounts could generate an excessive number of carving nodes

which would increase the traversal and storage costs. It is more

beneficial to delay the creation of a carving node until deeper

in the tree, so that a single carving node can carve empty space

accumulated over several BVH levels. We enable this optimization

by letting SAH dictate when to avoid the generation of a carving

node. The builder keeps track of node bounding boxes rather than

using what BVH provides directly.

5 RESULTS
We evaluate the performance of our dual-split tree and compare

it to a traditional uncompressed binary BVH, a BIH, an H-Tree,

and a Compact BVH. We do not compare with B-KD tree, as it is

designed for special hardware, and cannot be converted directly

from the BVH to use the same spatial partitioning. We evaluate

the acceleration structure storage and the traversal performance

measured by render times and ray intersection counts.

The binary BVH is built using the Intel Embree API v.2.16.5 [Wald

et al. 2014] without splits and with a maximum of 8 triangles per

leaf node. We store the uncompressed BVH linearly in memory

where each parent stores the bounding boxes of its children and sib-

lings are stored next to each other. We use varying node sizes, such

that the internal BVH nodes are 52 bytes, and leaf nodes are 4 bytes

(since their bounding boxes are stored by their parent nodes). The

Compact BVH is derived from the binary BVH and stores each node
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Crytek Sponza

262K triangles

Vegetation

1.1M triangles

Soda Hall Interior

2.2M triangles

Hairball

2.9M triangles

Dragon Sponza

6.6M triangles

San Miguel

10.5M triangles

Powerplant

12.8M triangles

Figure 9: Scenes used for all performance tests and comparisons.

Table 1: Comparison of the performance of several acceleration structures.

BVH Dual-Split Trees BIH H-Tree Compact
(identical) (similar) BVH

Crytek Sponza 7.04 4.53 (64%) 3.59 (51%) 6.55 (93%) 6.13 (87%) 4.02 (57%)

Vegetation 22.7 15.7 (69%) 13.8 (61%) 23.9 (105%) 21.8 (96%) 13.0 (57%)

Soda Hall Interior 51.9 28.7 (55%) 25.6 (49%) 37.2 (72%) 36.3 (70%) 29.7 (57%)

Hairball 43.8 28.7 (66%) 22.9 (52%) 41.5 (95%) 37.7 (86%) 25.0 (57%)

Dragon Sponza 182 112 (61%) 98.2 (54%) 148 (81%) 147 (81%) 104 (57%)

San Miguel 266 174 (66%) 145 (55%) 259 (97%) 242 (91%) 152 (57%)

A
cc
el
.S
tr
uc

tu
re

St
or
ag

e
(M

B
)

Powerplant 316 164 (52%) 147 (47%) 213 (67%) 207 (65%) 180 (57%)

Crytek Sponza 2.65 2.04 (77%) 2.04 (77%) 2.36 (89%) 2.35 (88%) 2.83 (107%)

Vegetation 2.58 2.35 (91%) 2.34 (91%) 2.71 (105%) 2.66 (103%) 2.94 (114%)

Soda Hall Interior 3.21 2.64 (82%) 2.65 (83%) 2.85 (89%) 2.76 (86%) 3.31 (103%)

Hairball 1.70 1.57 (92%) 1.53 (90%) 1.78 (104%) 1.72 (101%) 1.93 (113%)

Dragon Sponza 2.31 1.92 (83%) 1.95 (84%) 2.06 (89%) 2.20 (95%) 2.41 (104%)

San Miguel 3.62 3.21 (89%) 3.20 (88%) 3.71 (102%) 3.62 (100%) 4.03 (111%)

A
vg

.F
ra
m
e

T
im

e
(s
ec
)

Powerplant 7.21 6.21 (86%) 6.19 (86%) 7.21 (100%) 7.17 (99%) 7.93 (110%)

Crytek Sponza 6.13 5.68 (93%) 6.11 (100%) 5.70 (93%) 6.25 (102%) 6.13 (100%)

Vegetation 23.3 23.1 (99%) 23.9 (103%) 23.1 (99%) 23.1 (99%) 23.3 (100%)

Soda Hall Interior 11.2 12.8 (114%) 13.6 (121%) 12.8 (114%) 11.3 (101%) 11.2 (100%)

Hairball 28.7 28.9 (101%) 29.8 (104%) 28.9 (101%) 28.9 (101%) 28.7 (100%)

Dragon Sponza 5.57 5.82 (104%) 6.11 (110%) 5.90 (106%) 6.09 (109%) 5.57 (100%)

San Miguel 10.8 11.0 (102%) 12.1 (112%) 11.1 (103%) 11.0 (102%) 10.8 (100%)A
vg

.T
ri
an

gl
e

Te
st
s
/R

ay

Powerplant 57.0 58.1 (102%) 58.8 (103%) 58.3 (102%) 57.7 (101%) 56.9 (100%)

Crytek Sponza 610 231 (38%) 219 (36%) 300 (49%) 279 (46%) 324 (53%)

Vegetation 774 337 (44%) 327 (42%) 444 (57%) 450 (58%) 413 (53%)

Soda Hall Interior 611 223 (37%) 219 (36%) 271 (44%) 252 (41%) 327 (53%)

Hairball 620 273 (44%) 260 (42%) 356 (57%) 362 (58%) 327 (53%)

Dragon Sponza 447 160 (36%) 156 (35%) 195 (44%) 214 (48%) 237 (53%)

San Miguel 688 301 (44%) 292 (42%) 391 (57%) 382 (56%) 365 (53%)

A
vg

.P
la
ne

Te
st
s
/R

ay

Powerplant 1336 543 (41%) 529 (40%) 697 (52%) 686 (51%) 707 (53%)

Crytek Sponza 57.0 113 (199%) 109 (192%) 150 (263%) 107 (188%) 57.0 (100%)

Vegetation 74.9 168 (224%) 166 (221%) 225 (300%) 160 (214%) 74.9 (100%)

Soda Hall Interior 58.2 111 (192%) 110 (190%) 137 (235%) 101 (174%) 58.2 (100%)

Hairball 61.4 136 (221%) 134 (218%) 182 (296%) 128 (208%) 61.4 (100%)

Dragon Sponza 41.9 78.5 (187%) 77.8 (186%) 97.1 (232%) 79.8 (190%) 41.9 (100%)

San Miguel 64.8 149 (230%) 147 (227%) 304 (197%) 217 (141%) 64.8 (100%)

A
vg

.N
od

es
T
ra
ve

rs
ed

/R
ay

Powerplant 129 275 (213%) 271 (210%) 357 (277%) 262 (203%) 129 (100%)

Percentages are relative to the (uncompressed) BVH. Lower values are better. Values shown in red are the smallest.

using 32 bytes. Our implementation closely follows the implemen-

tation details provided by Fabianowski and Dingliana [2009]. For

BIH and H-Tree, we use an optimized node representation (shown

in the supplemental material) that is comparable to ours, instead of

directly using the structures in the original publications [Wächter

and Keller 2006; Havran et al. 2006].

We evaluate two versions of the proposed dual-split tree: identical
which follows the BVH bounds precisely (Section 4.2.1), and similar
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Figure 10: Performance comparisons of several acceleration structures for different scenes: (top) acceleration structure storage and (bottom) the
resulting frame render times, provided in Table 1.

which approximates the bounds by removing some carving nodes

(Section 4.2.2). Both versions are built by converting the binary BVH

obtained from Embree. This conversion is much simpler than a full

acceleration structure build and takes about a half of the BVH build

time in our tests. For the tested scenes, Embree builds the source

BVHs in 47 to 1, 603 ms, while our unoptimized parallel converter

generates dual-split trees in 18 to 913 ms. Both BIH and H-Tree

are also converted from the same BVH which guarantees identical

space partitioning. For H-Tree, we use the SAH scheme that Havran

et al. provide [2006]. For BIH, we use the SAH scheme similar to

ours since the authors rely on a non-greedy fast builder [Wächter

and Keller 2006].

To evaluate the ray tracing performance of the acceleration struc-

tures, we rely on path tracing [Kajiya 1986] with up to five diffuse

bounces without Russian Roulette. This workload generates rays

that are highly incoherent. We render a variety of scenes, shown in

Figure 9, at the image resolution of 1024×1024 pixels with 1 sample

per pixel. We report the results as an average over 32 frames. Our

results are generated using a system with an Intel i7-5930K CPU

with 6 cores (12 threads) running at 3.5GHz base frequency. We

provide the source code for the traversal kernels in the supplemen-

tal materials. The rest of the rendering code is common to all tested

acceleration structure methods. Our traversal implementation does

not use ray packets.

5.1 Acceleration Structure Storage
First, we compare the storage of the acceleration structures, shown

in Table 1 and the top row of Figure 10. Overall, the identical dual-

split tree uses 31 − 48% less storage than the uncompressed BVH,

while the similar dual-split tree uses 39 − 53% less. The Compact

BVH uniformly reduces the storage by 43% compared to BVH, while

both BIH and H-Tree save less than 20% on average. Dual-split

trees use less space for scenes with more regular geometry (Soda

Hall Interior, Dragon Sponza, and Powerplant), because scenes

with more irregular geometry (Vegetation and Hairball) have more

overlapping bounding volumes. The same behavior also holds for

BIH andH-Tree.While the identical dual-split tree saves less storage

than the Compact BVH for scenes with more irregular geometries,

the similar dual-split tree saves more storage than the Compact

BVH for all tested scenes except for Vegetation.

We show the node counts and the percentages of the dual-split

tree node types in Table 2. The similar dual-split tree uses fewer

carving nodes than the identical dual-split tree. Table 3 shows

a reduction in the number of carving node levels after a single

splitting node. Since scenes with more irregular geometry include

multiple levels of carving nodes, removing some of the carving

nodes saves a significant amount of storage. In addition, for most

tested scenes, the similar dual-split tree also generates more single-

axis carving nodes because their traversal cost is lower.

Note that the dual-split trees contain more carving nodes for

scenes where geometry is more irregular. As shown in Table 1, for

scenes with irregular (regular) geometry, the dual-split trees require

more (less) than twice as many nodes traversed per ray compared

to the uncompressed BVH. Dual-split trees require more ray-plane

intersection tests for the scenes with more irregular geometry. The

intersection counts provide an insight of why our dual-split tree

results in better improvement in performance for scenes with more

regular geometry.

5.2 Frame Render Time
On average, both dual-split tree versions render frames about 17%

faster than BVH flavors for our test scenes, as shown in Table 1 and

the bottom row of Figure 10. More specifically, the identical dual-

split tree is 8.4 − 30.0% (17.0% on average) faster, and the similar

dual-split tree is 10.4 − 30.1% (17.3% on average) faster. Although

the similar dual-split tree that has fewer carving nodes reduces

storage, it provides a small reduction in render time in our tests

compared to the identical version. In comparison, BIH and H-Tree

are on average only 3.7% and 4.5% faster than the uncompressed

BVH.
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Table 2: Distribution of nodes based on their type.

BVH Dual-Split Tree (identical) Dual-Split Tree (similar)
Total Total Split Carve Leaf Total Split Carve Leaf

Crytek Sponza 263,533 408,081 32% 63% 4.5% 362,405 36% 41% 22%

Vegetation 851,475 1,401,624 30% 67% 2.9% 1,314,868 32% 53% 15%

Soda Hall Interior 1,945,211 2,706,022 36% 53% 11% 2,571,141 38% 42% 21%

Hairball 1,640,939 2,575,607 32% 64% 3.7% 2,372,584 35% 41% 25%

Dragon Sponza 6,797,063 10,255,159 33% 60% 7% 9,853,031 34% 46% 20%

San Miguel 9,957,577 15,661,806 32% 64% 4% 14,445,716 34% 45% 20%

Powerplant 11,825,435 15,275,412 39% 52% 9% 14,855,701 40% 40% 20%

In our test scenes, the Compact BVH renders the frames 3.3 −
12.4% slower than the uncompressed BVH. Profiling shows that

the performance drop is multifactorial–the prefetcher, caches, and

branches all seem to have a harder time, and the compiler fails to

optimize the branches in the Compact BVH traversal as well as

the uncompressed BVH traversal. Although this does not agree

with the results given by Fabianowski and Dingliana [2009], we

speculate that the difference can be attributed to the differences

in hardware (CPU vs GPU). In-particular, we speculate that the

compressed nature of nodes makes hardware prefetching difficult,

and CPUs have more trouble hiding the latency this introduces,

owing to their memory architectures being optimized for latency

over bandwidth.

5.3 Traversal Costs per Ray
While dual-split trees can maintain the space partitioning provided

by the BVH, the tree structure is different. We evaluate the effects

of this difference by considering the ray traversal in detail. Overall,

the dual-split trees generate more nodes than the BVH (50% on

average), although each dual-split tree node uses much less storage

(12 or 4 bytes per dual-split tree node compared to 52 or 4 bytes

per uncompressed BVH node). On average, the rays traverse 2× as

many dual-split tree nodes as BVH nodes. However, because each

node of a dual-split tree stores only two planes, the total number

of ray-plane intersections is around 40% that of the uncompressed

BVH, 51% of the BIH, and 51% of the H-Tree.

On the other hand, the identical dual-split tree does not perform

exactly the same number of ray-triangle intersection tests per ray

as compared to the BVH. This is because the traversal order is

similar to a kd-tree: when using early ray termination, the child

bounding box intersected first is not guaranteed to be traversed

first, which could cause more triangle intersections compared to a

BVH. As a result, this can lead to a minor increase in the number

of ray-triangle intersection tests in some scenes (2% on average).

This increase is more prominent with similar dual-split trees (7%

on average).

6 DISCUSSION AND FUTUREWORK
It is important to note that our dual-split tree is not simply a com-

pression scheme for a BVH. Although the dual-split tree can rep-

resent space partitioning identical to a given BVH but with less

storage, the dual-split tree can also represent space partitioning that

would not be possible with a BVH. Our tests use space partitioning

identical (or similar) to a BVH to provide fair comparisons.

Our proposed dual-split trees significantly reduce the number of

ray-plane tests required during traversal, but at the cost of visiting

more nodes. On GPUs where memory latency is hidden by keeping

many threads in flight, rather than relying on caches, this might

not immediately translate to better performance. Increasing the

number of dependent memory accesses might be detrimental to

performance whereas pure compute can generally be well hidden.

In fact, the state of the art in GPU traversal of wide BVHs [Ylitie et al.

2017] is to fetch fewer and larger nodes. We leave the modifications

to increase the width of the dual-split trees for future work.

The proposed dual-split tree presents fertile ground for future

research. Although the results in this paper build the dual-split

tree from a BVH to provide direct comparisons, one can imagine

a dedicated builder that can help improve the space savings and

traversal performance further. Also, exploring methods to update

the dual-split tree dynamically for animated scenes would be an

interesting direction for future work.

Many high-performance ray tracing implementations today use

BVH flavors with more than two children per node. These variants

are known to provide performance improvements, especially when

combined with vectorization, SIMD processing, and ray packets.

While our dual-split tree can also represent space partitioning iden-

tical to such BVH variants, exploring modifications of the dual-split

tree to achieve the same benefits of the non-binary BVH flavors

would be an interesting future research direction.

One difficulty with the dual-split tree is that the node traversal

kernel is significantly more complicated than a simple BVH tra-

versal kernel. Therefore, both compiler and hand optimizations of

the dual-split tree traversal kernel may pose additional challenges.

Indeed, the significant reductions in storage and the number of

ray-plane intersections with our dual-split tree correspond to a

relatively small improvement in render time. We believe that the

additional complexity of the dual-split tree node traversal might be

one of the factors limiting the performance gain in our implementa-

tion. Additionally, different types of nodes result in code branching

during traversal, further affecting performance. However, the dual-

split tree may be an attractive option for the dedicated ray tracing

hardware which can include specialized decoding units for any

acceleration structure.

7 CONCLUSION
We have introduced a dual-split tree, an acceleration structure

that is capable of representing the spatial partitioning identical to

any BVH with substantial space savings and improved ray traver-

sal performance, which outperforms previous hybrid acceleration
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Table 3: Distribution of carving node types for the dual-split tree flavors reported as a percentage of the total number of carving nodes.

Dual-Split Tree (identical) Dual-Split Tree (similar)
Carving Node Levels Single- Dual- Carving Node Levels Single- Dual-

None 1 2 3 Axis Axis None 1 2 3 Axis Axis

Crytek Sponza 14% 73% 12% 0.10% 65% 35% 49% 44% 6.1% 0.07% 72% 28%

Vegetation 9.8% 71% 19% 0.43% 64% 36% 33% 53% 14% 0.28% 66% 34%

Soda Hall Interior 31% 65% 4.6% 0.10% 75% 25% 49% 48% 3.6% 0.10% 77% 23%

Hairball 15% 70% 15% 0.29% 75% 25% 52% 37% 11% 0.17% 77% 23%

Dragon Sponza 16% 78% 6.1% 0.003% 71% 29% 39% 56% 5.3% 0.004% 70% 30%

San Miguel 13% 74% 13% 0.36% 62% 38% 43% 48% 8.6% 0.3% 68% 32%

Powerplant 35% 62% 2.9% 0.06% 76% 24% 53% 45% 2.6% 0.05% 79% 21%

Carving Node Levels shows the number of carving node levels used consecutively after a splitting node. None means no carving nodes between
two splitting nodes. The Single-Axis and the Dual-Axis columns report the percentages of the single-axis and the dual-axis carving nodes. Note
that the similar dual-split tree removes a considerable number of carving nodes: the corresponding None column has a much larger percentage.

structures. By using a traversal order similar to a kd-tree but adding

one more splitting plane and additional carving planes which can

align to different axes, our dual-split tree significantly reduces the

number of ray-plane intersection tests during ray traversal through

a BVH-like spatial partitioning. We have also presented a simple

method for converting any BVH into the dual-split tree with identi-

cal or similar space partitioning. We expect that future research on

this new data structure can reveal additional improvements beyond

the performance and space-saving benefits we report in this paper.
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