
A Narrow-Range Filter for Screen-Space Fluid Rendering
Nghia Truong
University of Utah
ttnghia@cs.utah.edu

Cem Yuksel
University of Utah

cem@cemyuksel.com

Figure 1: Example frames from different particle-based fluid simulations rendered using our screen-space fluid rendering method.

ABSTRACT
We introduce a simple screen-space filtering technique for real-
time rendering of particle-based fluid simulations. Starting with
a depth-map generated directly from the particle data, our new
filter formulation smooths the depth-map by considering the depth
values in a narrow range. The depth values outside of this range are
carefully handled to achieve the desired surface shape near disconti-
nuities. The simplicity of our formulation leads to a computationally
efficient filter. We present examples with complex particle-based
fluid simulations and provide comparisons, clearly showing that our
filter provides improved surface quality in terms of surface smooth-
ness and preserving boundaries near discontinuities, as compared
to prior filtering methods.

CCS CONCEPTS
• Computing methodologies→ Rendering;

KEYWORDS
fluid rendering, real-time rendering, screen-space filtering, particle-
based simulation
ACM Reference Format:
Nghia Truong and Cem Yuksel. 2018. A Narrow-Range Filter for Screen-
Space Fluid Rendering. In Proceedings of Interactive 3D Graphics and Games
(i3D2018). ACM, New York, NY, USA, Article 17, 8 pages. https://doi.org/10.
1145/3203201

1 INTRODUCTION
Fluid simulations are popular in computer graphics. For video
games and other real-time graphics applications, particle-based
simulation methods are often preferred, as they are fast and flexible.
While the computation powers of current CPUs and GPUs allow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
i3D2018, May 2018, Montreal, Quebec, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 2577-6193/2018/5-ART17. . . $15.00
https://doi.org/10.1145/3203201

simulating fluids with a relatively large number of Lagrangian parti-
cles at high frame-rates for producing visually complex animations,
there is still room for improvement when it comes to efficiently
rendering the fluids represented by the simulated particles.

The main difficulty in rendering the results of particle-based
fluid simulations has been mesh generation, which can be computa-
tionally expensive. Therefore, recent real-time rendering methods
for particle-based fluids use screen-space filtering techniques that
begin with directly rendering the particle data. The resulting sur-
face is then filtered to produce the desired smooth fluid surface.
It is the properties of the screen-space filter that predominantly
determines the quality of the final rendering result.

In this paper, we introduce a novel filtering technique for render-
ing particle-based fluid simulations on the GPU. Our filter directly
uses the depth values within a narrow range and carefully han-
dles the depth values outside of this narrow range to produce a
smooth surface with a desired curvature near discontinuities. Ex-
ample frames from different fluid simulations rendered using our
method are shown in Figure 1. Our filter formulation not only leads
to improved surface quality but also provides improved perfor-
mance as compared to prior screen-space fluid rendering methods.
It is also simple and easy to implement. We provide detailed com-
parisons that highlight the qualitative improvements provided by
our method.

2 PRIORWORK
While there is a large body of work in computer graphics on particle-
based fluids simulations [Desbrun and Gascuel 1996; Macklin and
Müller 2013; Müller et al. 2007; Weiler et al. 2016], real-time fluid
rendering methods, particularly screen-space techniques, have re-
ceived relatively little attention.

Earlier methods for real-time particle-based fluid rendering gen-
erate polygonal meshes from the particle data using screen-space
techniques [Müller et al. 2007] or marching cubes [Rosenberg and
Birdwell 2008]. As mesh generation can be computationally expen-
sive, these methods do not provide the most efficient alternatives
for real-time fluid rendering. Using metaballs with ray-isosurface
intersection [Zhang et al. 2008] eliminates the need for explicitly
generating a surface mesh and it also avoids the grid discretization

https://doi.org/10.1145/3203201
https://doi.org/10.1145/3203201
https://doi.org/10.1145/3203201

i3D2018, May 2018, Montreal, Quebec, Canada Nghia Truong and Cem Yuksel

artifacts for mesh generation, but produces thick surfaces because
of the large metaball size needed for achieving surface smoothness.

More recent methods avoid surface mesh generation using an
entirely different screen-space rendering approach: screen-space fil-
tering of rendered particle data. These methods begin with creating
a depth-map for the front surface of the fluid by directly rendering
fluid particles as spheres or ellipsoids, using either rasterization-
based techniques [Cords and Staadt 2009; Green 2010; Imai et al.
2016; van der Laan et al. 2009] or GPU-based ray-casting [Goswami
et al. 2010; Reichl et al. 2014; Xiao et al. 2017]. Anisotropic kernels
[Yu and Turk 2013] can be used for improving the final surface
quality near thin regions by rendering each particle as elongated
ellipsoids. Then, the resulting depth-map is smoothed via different
types of image-based filtering operations to achieve a more fluid-
like surface appearance. Finally, the filtered depth-map is used for
rendering the fluid with reflections and refractions. Obviously, the
properties of the filtering technique is the primary factor in the
resulting quality of the final image produced by these techniques.

Depending on the position of the camera, the screen-space size
of a fluid particle can be large. Therefore, screen-space filtering
may require large filter sizes and multiple iterations to produce
high-quality results. Unfortunately, computing large 2D filters can
be expensive. Therefore, it is common practice to use separable
filters that can be represented as a product of two 1D filters. Sep-
arable filters require two 1D filter passes to perform a single 2D
filter operation, but since large 1D filters can be computed more
efficiently, they lead to improved performance. That is why, even
when the filter kernel is not separable, it is common practice to use
a separable filter approximation, which can lead to visual artifacts.

Binomial filters [Cords and Staadt 2009; Müller et al. 2007] and
standard Gaussian filters are fast, since they can be implemented as
separable filters; however, they over-smooth the fluid surface and
fail to preserve sharp boundaries. Depending on the camera angle,
entirely unrelated parts of the fluid can be filtered together, based
on their screen-space positions, resulting fluid surface appearance
that can be a poor representation of the underlying particle-based
fluid data. Bilateral Gaussian filters [Green 2010] can preserve the
fluid boundaries, but they lead to excessive flattening near dis-
continuities. Furthermore, approximately flat fluid surfaces appear
rough and noisy when viewed from near grazing angles. Moreover,
bilateral Gaussian filters are not separable and using separable fil-
ter approximations with bilateral Gaussian filters lead to severe
visual artifacts in the form of axis-aligned streaks near most fluid
surfaces details. Still, because of the cost of computing large 2D
bilateral Gaussian filters, the separable filter approximation is often
preferred, even with its visual artifacts [Green 2010].

Screen-space curvature flow (SSCF) [van der Laan et al. 2009]
provides superior surface quality as compared to bilateral Gaussian
filters. SSCF iteratively solves a high order curvature flow PDE that
is used for smoothing the depth-map. However, it typically requires
numerous iterations (∼100 or even more) to produce a smooth
surface. Yet, since SSCF uses a small 3 × 3 filter, each pass can be
computed efficiently. On the other hand, the level of smoothness
depends on the number of passes and it can vary depending on
the distance of the particles to the camera. Therefore, achieving
a consistent surface smoothness requires dynamically adjusting
the iteration count per pixel [Bagar et al. 2010]. Nonetheless, the

need for a large number of filter iterations makes SSCF relatively
expensive and the explicit integration scheme of the high order
PDE may cause numerical instability, leading to some minor visual
artifacts in the form of apparent noise near discontinuities.

More recently, the total-variation-based image de-noising
method has been adapted to screen-space filtering for rendering
particle-based fluids [Reichl et al. 2014]. This approach also uses
a large number of iterations, so its performance is similar to
SSCF, but it provides a better preservation of sharp fluid details as
compared to SSCF. Furthermore, the amount of smoothing does not
depend on the number of iterations. Another recent work includes
an alternative approach using plane fitting for filtering [Imai
et al. 2016]. Plane fitting can produce relatively faster results with
only a few iterations and provides improved surface quality as
compared to bilateral Gaussian filters by avoiding flattening near
discontinuities. On the other hand, the surfaces produced by plane
fitting tend to be noisier than SSCF.

The filtering method we introduce in this paper is computa-
tionally efficient, as it works with few iterations, and it provides
smoother surfaces with well-preserved details near discontinuities.

3 NARROW-RANGE FILTER FORMULATION
Similar to other screen-space fluid rendering methods, we begin
with generating a depth-map from the particle data. We rasterize
the particles as spheres or ellipsoids (using anisotropic kernels [Yu
and Turk 2013]) and store a (negative) eye-space depth value zi
for each pixel i on the screen (i.e. smaller zi values correspond
to points further away from the camera). The depth-map is then
smoothed using our narrow-range filter, which is typically applied
a few times.

We use a Gaussian filter at the core of our narrow-range fil-
ter, though it is possible to use a different smoothing filter kernel.
Similar to a typical convolution filter, our narrow-range filter up-
dates the depth values based on the values of the neighboring
pixels for smoothing the screen-space surface representation in the
depth-map. The filter kernel size is defined in world-space, so the
screen-space kernel size is determined from the depth of each pixel.
For each pixel only the neighboring depth values within a narrow
range are directly used. The values outside of this narrow range
are carefully handled to achieve the desired surface smoothness
and curvature near discontinuities. This treatment eliminates the
problems of simple Gaussian filters and bilateral Gaussian filters.

3.1 Limiting the Depth Range
The output depth value z′i for pixel i computed using our narrow-
range filter can be written as

z′i =

∑
j ωi j f (zi , zj)∑

j ωi j
, (1)

where ωi j is the filter weight and f is our clamping function that is
defined as

f (zi , zj) =

{
zj , if zj ≥ zi − δ

zi − µ, otherwise,
(2)

where δ and µ are user-defined parameters, such that µ ≤ δ . This
clamping function merely returns the depth value zj , if it is within
the permitted range; otherwise, it returns a clamped value zi − µ.

A Narrow-Range Filter for Screen-Space Fluid Rendering i3D2018, May 2018, Montreal, Quebec, Canada

Gaussian Filter

Bilateral Gaussian Filter

Our Narrow-Range Filter

View
Direction

Figure 2: A simple 2D example comparing Gaussian, bilateral Gauss-
ian, and our narrow-range filters that are used for smoothing the
surface defined by eight particles (circles) and the vertical view direc-
tion. Notice that the Gaussian filter generates a smooth surface, but
filters across these two distinct groups of particles, effectively ignoring
the discontinuities and producing a view-dependent surface that is not
faithful to the underlying particle representation. Bilateral Gaussian
filter captures the sharp change in depth, but it flattens the surface
formed by the two particles at the top. Our narrow-range filter, on the
other hand, produces natural curved edges for the top surface, thanks
to the clamping function. Bilateral Gaussian filter also distorts the
surface for the particles at the bottom. Notice that the green bilateral
Gaussian filter curve bends upwards near the discontinuities. Our
narrow-range filter, however, produces the desirable flat surface near
the discontinuities for the particles at the bottom.

Its purpose is to prevent blending the filtered pixel depth with sur-
faces that are too far behind (determined by δ). However, unlike a
bilateral Gaussian filter that would effectively ignore pixels j with
depth values zj ≪ zi , which causes excessive flattening near dis-
continuities, our clamping function takes into account all pixels j
with zj < zi , but clamps their depth values used in filtering. This
makes the filter react to depth discontinuities and produce desir-
able curved edges. The desired curvature near discontinuities is
controlled by the µ parameter.

The importance of clamping is demonstrated with a simple 2D
example shown in Figure 2 and a simple 3D example in Figure 3. In
both examples Gaussian filter ignores discontinuities and bilateral
Gaussian filter flattens the edges of the foreground particles. The
clamping function of our narrow-range filter avoids flattening and
produces desirable curved boundaries for the foreground particles.

We must also prevent the foreground particles from distorting
the surface behind them, as shown in Figures 2 and 3. We achieve
this by eliminating the contributions of pixels j that belong to a
surface that is much closer to the camera than the filtered pixel
(i.e. zj ≫ zi). Thus, we simply ignore pixels j with zj > zi + δ by
computing the filter weights ωi j using

ωi j =

{
0, if zj > zi + δ

G(pi , pj ,σi), otherwise,
(3)

where pi and pj are the 2D pixel coordinates, G is the Gaussian
function, and σi is its standard deviation parameter, such that

G(pi , pj ,σi) = e−|pj−pi |
2
/2σ 2

i . (4)

Surface Before Gaussian Bilateral Narrow-Range
Filtering Filter Gaussian Filter Filter

Figure 3: A simple 3D example comparing Gaussian, bilateral Gauss-
ian, and our narrow-range filters. The particle data forms a flat sur-
face in the background and a drop in the foreground. Notice that
using a simple Gaussian filter forms a smooth but incorrect surface
by connecting the drop in the foreground to the surface behind it.
Bilateral Gaussian filter preserves the discontinuities but causes ex-
cessive flattening for the drop in the foreground near its boundaries.
Our narrow-range filter, however, produces a desirable curved bound-
ary for the drop and preserves discontinuities. Furthermore, bilateral
Gaussian filter also distorts the background surface near the disconti-
nuities. Our narrow-range filter, on the other hand, is able to produce
a flat surface for the background particles near the discontinuities.

(a) Perpendicular (b) Inclined (c) Bias
Surface Surface Correction

Figure 4: An example with a drop in the foreground and an approxi-
mately flat surface in the background, showing the importance of bias
correction: (a) background surface is perpendicular to the view direc-
tion, so no bias correction is needed, (b) background surface is inclined,
causing deformations near discontinuities, and (c) bias correction fixes
the distortion on the inclined surface near discontinuities.

The screen-space filter kernel size at pixel i is taken as 3σi , which
is computed using

σi =

⌈
H σ

2 |zi | tan(α/2)

⌉
, (5)

whereH is the vertical resolution of the screen, σ is the world space
filter size (fixed value), and α is the camera’s field of view angle.

3.2 Bias Correction
The depth range limiting with Equation 3 works well for flat back-
ground surfaces that are perpendicular to the view direction, as
shown in Figure 4a. However, if the background surface is viewed
from a different angle, as in Figure 4b, depth range limiting with
Equation 3 leads to distortion near discontinuities. The reason for
this distortion is that Equation 3 simply ignores the part of the
surface that is occluded by a foreground surface, which causes bias

i3D2018, May 2018, Montreal, Quebec, Canada Nghia Truong and Cem Yuksel

(a) Static Range (δ) (b) Dynamic Range (δlow,hiдh)
Figure 5: An example frame showing the impact of using (a) static
range and (b) dynamic range. Notice that the fluid surface with static
range contains many discontinuities, while dynamic range leads to
smooth fluid surface viewed at grazing angles.

in filtering by effectively eliminating parts of the filter kernel. Con-
sider a background pixel near the discontinuity. Filtering this pixel
would only consider the depth values that are not occluded, which
are on one side of the filter kernel. Thus, the values used in filtering
come from the other side of the filter kernel alone, leading to bias in
filtering. If the background surface is viewed at an angle, this bias
would cause the resulting surface to bend, following the surface
gradient.

We avoid this problem using bias correction. Our bias correction
ensures that the filter kernel is always symmetrical. We achieve
this by considering two opposing points on the filter kernel to-
gether. Let pixel j be on one side of the pixel i that is being fil-
tered. We consider the pixel k on the opposing side of the filter
kernel, such that pk = pi + (pi − pj). Note that if pixel indices
use scanline order, we can write k = i + (i − j). By construction,
G(pi , pj ,σi) = G(pi , pk ,σi); however, the weights computed using
Equation 3 can vary depending on whether zj and zk are within
the depth range. Our bias correction simply considers these two
pixels j and k together. If either one of them are out of range for fil-
tering pixel i , such that zj > zi + δ or zk > zi + δ , both of them are
ignored during filtering. We can achieve this by simply rewriting
Equation 3 as

ωi j =

{
0, if zj > zi + δ or zk > zi + δ

G(pi , pj ,σi), otherwise.
(6)

The result of bias correction with this formulation is shown in
Figure 4c. Notice that bias correction eliminates the distortion of
the background surface near discontinuities with inclined surfaces.
Note that this formulation does not assume that the background sur-
face is flat, but it merely ensures that the filter kernel is symmetrical.
Nonetheless, the visual artifacts of the biased filter (without bias
correction) become more obvious when the background surface is
nearly flat. When the background surface has sharp details, the bias
artifacts are more difficult to notice due to the complexity of the
background surface. However, when the background is nearly flat
(after filtering), the distortion around foreground surfaces because
of filter bias can be obvious and such artifacts can be fixed using
our bias correction.

(a) 2D Filter (b) 1D Filters (c) 1D Filters
Only Only + Clean-up

Figure 6: Close-up views from an example fluid surface rendered
using our narrow-range filter: (a) using the 2D filter without separable
filter approximation, (b) separable filter approximation using 1D
filters, and (c) separable filter approximation followed by the final
clean-up pass with a small 2D filter. Notice that 1D filters result in
vertical streaks that are visible near discontinuities and using a clean-
up pass removes those streaks, producing an image very similar to
the 2D filter result.

3.3 Dynamic Range Adjustment
One difficulty with our narrow-range filter formulation is setting
the right δ parameter for the desired result. In particular, with small
δ values, when an approximately flat fluid surface is viewed from
grazing angles, the steep change in surface depth can be mistaken
as depth discontinuity. This happens when the nearby depth values
zj within the filter kernel range fall out of the depth range defined
by zi + δ ≥ zj ≥ zi − δ . Larger δ values alleviate this issue, but they
can cause filtering across actual discontinuities.

We provide a simple solution for this by adjusting the depth
range dynamically using

zi + δhiдh ≥ zj ≥ zi − δlow , (7)

where δlow and δhiдh are dynamic threshold values that are ini-
tially set as δlow = δhiдh = δ . While computing the filtered depth
value for pixel i , starting with the closest neighboring pixels, we dy-
namically adjust δlow and δhiдh , such that if the neighboring pixel
depth zj is within acceptable range zi − δlow ≤ zj ≤ zi + δhiдh , we
adjust the thresholds using

δlow ← max(δlow , zi − zj + δ) , (8)
δhiдh ← max(δhiдh , zj − zi + δ) . (9)

This effectively expands the acceptable depth range along the cur-
rent surface. Thus, our δ parameter effectively controls the accept-
able depth difference between neighboring pixels. By replacing
δ with δlow and δhiдh , we can produce smooth surfaces for flat
regions at grazing angles. Figure 5 shows an example with an ap-
proximately flat surface rendered with and without dynamic range
adjustment, showing that using dynamic ranges with δlow and
δhiдh can significantly improve the surface quality.

A Narrow-Range Filter for Screen-Space Fluid Rendering i3D2018, May 2018, Montreal, Quebec, Canada

Figure 7: Example frames from different particle-based fluid simulations rendered using our narrow-range filter.

Plane Screen-Space Narrow-Range
Fitting Curvature Flow Filter

Figure 8: The same example in Figure 3 with a drop occluding an
approximately flat fluid surface in the background, comparing plane
fitting, SSCF, and our narrow-range filters. Plane fitting leads to some
minor distortion on the background surface near discontinuities. SSCF
requires a large number of passes to smooth the background surface
and numerical instabilities lead to minor distortion near discontinu-
ities. Our narrow-range filter produces an artifact-free image in this
example, using the same particle data.

3.4 Separable Filter Approximation
Unfortunately, our narrow-range filter formulation is not separable.
Yet, it is still possible to use a separable filter approximation by
applying our filter as two 1D filter passes with alternating direc-
tions. This leads to substantial performance improvement, espe-
cially when rendering extreme close-ups that use large filter sizes,
but it also produces visible artifacts in the form of axis-aligned
streaks. An example of these artifacts are shown in Figure 6b.

We noticed that these artifacts mostly disappear with an addi-
tional filter pass using our 2D filter after multiple passes with the
separable filter approximation. Therefore, as a remedy for these
artifacts, we introduce an additional clean-up pass, after all 1D filter
passes are completed. This final clean-up pass uses our 2D filter with
a small fixed filter size. Its purpose is to hide the streaks produced
by the last 1D filter pass, rather than filtering the depth values.
Using a small filter size (5 × 5 in our implementation) provides a
minor performance overhead, but can hide majority of the artifacts.
This way, we can benefit from the performance improvement of the
separable filter approximation without introducing objectionable
artifacts.

Figure 6c shows an example of the impact of our final clean-up
pass. Notice that the final result is similar to using the 2D filter
without separable filter approximation (Figure 6a).

4 RESULTS
We have tested our fluid rendering method with our narrow-range
filter using various particle-based fluid simulations. Example frames

from some of these simulations are shown in Figures 1 and 7. We
also compare the results of our method to bilateral Gaussian filter,
plane fitting [Imai et al. 2016], and SSCF [van der Laan et al. 2009].
In all examples we use the same number of iterations for bilateral
Gaussian filter, plane fitting, and our narrow-range filter, but more
iterations are used for SSCF. The filter size for bilateral Gaussian
and plane fitting are dynamically computed similar to ours, using
Equations 5 with σ = 0.7r , where r is the radius of a particle. For
our narrow-range filter we use δ = 10r and µ = r for all examples
in this paper unless otherwise specified.

Figure 8 shows the same example in Figure 3, where an approx-
imately flat fluid surface is occluded by a drop in the foreground.
Bilateral Gaussian filter (Figure 3) not only distorts the background
surface but also flattens the drop in the foreground. Both plane
fitting and SSCF produce a desirable curved boundary for the drop
in the foreground, but they lead to some minor distortion on the
background surface near the discontinuities. Using the same parti-
cle data, our narrow-range filter produces a smooth surface for the
background without any visible distortion near discontinuities.

A more comprehensive comparison is provided in Figure 9, show-
ing a challenging frame that includes various surface features.
Some of these surface features are highlighted, including isolated
drops, complex details, thin surfaces with sharp discontinuities, and
smooth areas. All methods use three iterations, except for SSCF,
which requires a large number of iterations to produce smooth
surfaces.

As apparent in previous comparisons as well, bilateral Gaussian
filter flattens isolated drops (Figure 9a). A similar form of flattening
is also apparent near all other surface details involving discontinu-
ities. Furthermore, the fluctuations in the input depth values lead
to extensive noise on approximately flat parts of the surface.

Plane fitting (Figure 9b) provides some improvements over bilat-
eral Gaussian filter. The surfaces of the isolated particles are not
completely flattened with plane fitting and sharp discontinuities
are properly handled. However, it fails to produce a smooth surface
for complex features, thin surface details, and approximately flat
regions. The smooth parts of the fluid surface are less noisy than the
bilateral Gaussian filter results, but they still contain considerable
amount of noise.

SSCF (Figure 9c) produces high-quality surface details in most
areas. However, even after 100 iterations, parts of the surface still
lack a desirable level of smoothness. Isolated particles are not flat-
tened, but particles that are relatively closer to the camera require
more iterations to form smooth surface details. On the other hand,
parts of the fluid surface that are further away from the camera
have excessive smoothness. This could be resolved by limiting the
iteration count for those regions [Bagar et al. 2010]. However, SSCF

i3D2018, May 2018, Montreal, Quebec, Canada Nghia Truong and Cem Yuksel

(a) Bilateral Gaussian
(3 iterations)

(b) Plane Fitting
(3 iterations)

(c) Screen-Space Curvature Flow
(100 iterations)

(d) Our Narrow-Range Filter
(1D + clean-up, 2+1 iterations)

Figure 9: Comparison of different filtering methods: (a) bilateral Gaussian filter, (b) plane fitting, (c) screen-space curvature flow, and (d) our
narrow-range filter using separable filter approximation with an additional clean-up pass.

encounters some numerical instability near sharp discontinuities,
producing a few pixel-wide high-frequency noise around them.

In comparison, our narrow-range filter (Figure 9d) can produce
smooth surfaces using only two iterations (a total of four 1D filter
passes) and a final clean-up pass. Isolated particles join together to

form smooth surfaces with a desirable curvature near discontinu-
ities. The surface has uniform smoothness, regardless of the camera
distance. All discontinuities are preserved with curved boundaries
for the foreground surfaces and smooth surfaces without distortion
for the partially-occluded background surfaces.

A Narrow-Range Filter for Screen-Space Fluid Rendering i3D2018, May 2018, Montreal, Quebec, Canada

(a) Bilateral Gaussian
(3 iterations)

(b) Plane Fitting
(3 iterations)

(c) Screen-Space Curvature Flow
(100 iterations)

(d) Our Narrow-Range Filter
(1D + Clean-up, 2+1 iterations)

Figure 10: Comparison of reflections and refractions on surfaces generated using different filtering methods: (a) bilateral Gaussian filter, (b) plane
fitting, (c) screen-space curvature flow, and (d) our narrow-range filter using separable filter approximation with an additional clean-up pass.

(a) µ = 0, δ = 10r (b) µ = r , δ = 10r (c) µ = 10r , δ = 10r

Figure 11: Surfaces generated with different µ parameter values using
our narrow-range filter (1D + clean-up, 2+1 iterations).

The smoothness of the surface is especially important when
rendering the surface with reflections and refractions, as shown
in Figure 10. Notice that our narrow-range filter can produce a
smooth surface with smooth reflections and refractions, while other
methods, including curvature flow with 100 iterations, contain
considerable amount of noise.

The µ parameter of our narrow-range filter controls the curva-
ture of the surface near discontinuities. Figure 11 shows results
with different µ values. Using extremely small µ values, such as
µ = 0, make the edge of the fluid appear flat (Figure 11a), similar
to bilateral Gaussian filter results. Larger µ values form a curved
border (Figure 11b). This effect is exaggerated when the µ value is
too large (Figure 11c).

The δ parameter of our narrow-range filter controls the depth
range that is considered when filtering. Results with different δ val-
ues are shown in Figure 12. When δ is too small, filtering is limited

(a) µ = r , δ = r (b) µ = r , δ = 5r (c) µ = r , δ = 50r

Figure 12: Surfaces generated with different δ parameter values using
our narrow-range filter (1D + clean-up, 2+1 iterations).

to a very narrow depth range (Figure 12a). Consequently, surfaces
viewed at an angle, which have relatively large variations in the
depth values of neighboring pixels, may not be filtered properly.
When neighboring depth values fall out of the depth range, they
are treated as discontinuities, resulting in cracks in surface appear-
ance. Simply using larger δ values resolves this issue (Figure 12b).
However, if the δ value is too large, actual discontinuities may be
missed and separate parts of the surface may get filtered together
(Figure 12c). In other words, the δ parameter determines the mag-
nitude of depth variance that is treated as a surface discontinuity
and the range within which depth values are filtered together.

Like other screen-space filtering methods, the number of itera-
tions control the effective filter size. Figure 13 show results with
different numbers of iterations. Notice that using more iterations
make the surfaces smoother by filtering out small-scale details, but
the same surface discontinuities remain.

i3D2018, May 2018, Montreal, Quebec, Canada Nghia Truong and Cem Yuksel

Table 1: Performance Results

Figure 1 Figure 1 Figure 1 Figure 1 Figure 7 Figure 7 Figure 7
Armadillo Bunny Emitter Drop Lucy Tori Balls

Number of Particles 368K 333K 350K 65K 135K 135K 180K

Bilateral Gaussian Filter 0.40 ms 0.46 ms 1.03 ms 0.68 ms 0.48 ms 0.38 ms 0.62 ms
Plane Fitting 0.70 ms 0.90 ms 1.95 ms 1.51 ms 0.93 ms 0.72 ms 1.32 ms
Screen-Space Curvature Flow 5.02 ms 5.50 ms 6.05 ms 5.30 ms 4.34 ms 4.82 ms 5.80 ms
Our Narrow-Range Filter 2D 0.53 ms 0.68 ms 1.58 ms 1.23 ms 0.72 ms 0.53 ms 1.04 ms
Our Narrow-Range Filter 1D 0.51 ms 0.58 ms 1.25 ms 0.62 ms 0.62 ms 0.50 ms 0.67 ms
Our Narrow-Range Filter 1D & Clean-up 0.46 ms 0.52 ms 1.21 ms 0.54 ms 0.56 ms 0.46 ms 0.58 ms

(a) 2 + 1 iterations (b) 4 + 1 iterations (c) 14 + 1 iterations

Figure 13: Surfaces generated with different number of filter itera-
tions using our narrow-range filter (1D + clean-up).

Table 1 provides the performance results of the filtering opera-
tions for our test scenes. All timings are computed on an NVIDIA
GTX 1080 GPU. Notice that our narrow-range filtering methods
with and without separable filter approximation provide a similar
performance as the bilateral Gaussian filter results. In these ex-
amples separable filter approximation with our method leads to
only a minor performance improvement, though the performance
difference can be more substantial if the rendered scene includes
extreme close-ups that would lead to large screen-space filter sizes.
In most cases, our 1D filter with clean-up is faster than the 1D
and 2D variants, because the last clean-up pass performs filtering
with very small fixed filter size (5 × 5). Plane fitting is considerably
slower than our method and SSCF takes about an order of magni-
tude longer to compute because of the large number of iterations
needed.

5 CONCLUSION
We have introduced a narrow-range filter for rendering particle-
based fluid simulations. Our filter formulation is simple, easy to
implement, and fast to compute. Our test results show that this
new filter provides improved surface quality, as compared to prior
screen-space fluid rendering methods.

REFERENCES
Florian Bagar, Daniel Scherzer, and Michael Wimmer. 2010. A Layered Particle-Based

Fluid Model for Real-Time Rendering of Water. Computer Graphics Forum 29, 4
(2010), 1383–1389.

Hilko Cords and Oliver G. Staadt. 2009. Interactive Screen-Space Surface Rendering of
Dynamic Particle Clouds. Journal of Graphics, GPU, and Game Tools 14, 3 (2009),
1–19.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A New Para-
digm for Animating Highly Deformable Bodies. In Proceedings of the Eurographics
Workshop on Computer Animation and Simulation ’96. Springer-Verlag New York,
Inc., New York, NY, USA, 61–76.

Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato Pajarola. 2010.
Interactive SPH Simulation and Rendering on the GPU. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’10). Euro-
graphics Association, Aire-la-Ville, Switzerland, Switzerland, 55–64.

Simon Green. 2010. Screen Space Fluid Rendering for Games. In Game Developers
Conference.

Takuya Imai, Yoshihiro Kanamori, and Jun Mitani. 2016. Real-time screen-space liquid
rendering with complex refractions. Computer Animation and Virtual Worlds 27,
3-4 (2016), 425–434. cav.1707.

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph.
32, 4, Article 104 (July 2013), 12 pages.

Matthias Müller, Simon Schirm, and Stephan Duthaler. 2007. Screen Space Meshes. In
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA ’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
9–15.

F. Reichl, M. G. Chajdas, J. Schneider, and R. Westermann. 2014. Interactive Rendering
of Giga-particle Fluid Simulations. In Proceedings of High Performance Graphics
(HPG ’14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 105–
116.

Ilya D. Rosenberg and Ken Birdwell. 2008. Real-time Particle Isosurface Extraction. In
Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games (I3D ’08).
ACM, New York, NY, USA, 35–43.

Wladimir J. van der Laan, Simon Green, and Miguel Sainz. 2009. Screen Space Fluid
Rendering with Curvature Flow. In Proceedings of the 2009 Symposium on Interactive
3D Graphics and Games (I3D ’09). ACM, New York, NY, USA, 91–98.

Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of
the 9th International Conference on Motion in Games (MIG ’16). ACM, New York,
NY, USA, 79–84.

Xiangyun Xiao, Shuai Zhang, and Xubo Yang. 2017. Real-time High-quality Surface
Rendering for Large Scale Particle-based Fluids. In Proceedings of the 21st ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’17). ACM, New
York, NY, USA, Article 12, 8 pages.

Jihun Yu and Greg Turk. 2013. Reconstructing Surfaces of Particle-based Fluids Using
Anisotropic Kernels. ACM Trans. Graph. 32, 1, Article 5 (Feb. 2013), 12 pages.

Yanci Zhang, Barbara Solenthaler, and Renato Pajarola. 2008. Adaptive Sampling and
Rendering of Fluids on the GPU. In Proceedings of the Fifth Eurographics / IEEE
VGTC Conference on Point-Based Graphics (SPBG’08). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 137–146.

	Abstract
	1 Introduction
	2 Prior Work
	3 Narrow-Range Filter Formulation
	3.1 Limiting the Depth Range
	3.2 Bias Correction
	3.3 Dynamic Range Adjustment
	3.4 Separable Filter Approximation

	4 Results
	5 Conclusion
	References

