
A General Two-Stage Initialization for Sag-Free Deformable Simulations

JERRY HSU and NGHIA TRUONG, University of Utah, USA
CEM YUKSEL, University of Utah & Cyber Radiance, USA
KUI WU, Lightspeed &Quantum Studios, Tencent America, USA

N
ai
ve

O
ur

s

Fig. 1. An example deformable object simulation prepared using (top-row) naive initialization that treats the given initial shape as the rest shape,
which leads to sagging with gravity, and (bottom-row) our initialization that preserves the given initial shape by treating it as the intended shape
in static equilibrium under gravity. The two initialization methods produce qualitatively similar animations, while ours maintains the initial
shape prior to collisions with the torus. Simulations are generated using FEM with corotated linear elasticity material [Sifakis and Barbic 2012].

Initializing simulations of deformable objects involves setting the rest state
of all internal forces at the rest shape of the object. However, often times the
rest shape is not explicitly provided. In its absence, it is common to initialize
by treating the given initial shape as the rest shape. This leads to sagging,
the undesirable deformation under gravity as soon as the simulation begins.
Prior solutions to sagging are limited to specific simulation systems and
material models, most of them cannot handle frictional contact, and they
require solving expensive global nonlinear optimization problems.

We introduce a novel solution to the sagging problem that can be
applied to a variety of simulation systems and materials. The key feature
of our approach is that we avoid solving a global nonlinear optimization
problem by performing the initialization in two stages. First, we use a
global linear optimization for static equilibrium. Any nonlinearity of the
material definition is handled in the local stage, which solves many small
local problems efficiently and in parallel. Notably, our method can properly
handle frictional contact orders of magnitude faster than prior work. We
show that our approach can be applied to various simulation systems by

Authors’ addresses: Jerry Hsu, jerry060599@gmail.com; Nghia Truong, University of
Utah, Salt lake city, UT, USA; Cem Yuksel, cem@cemyuksel.com, University of Utah &
Cyber Radiance, Salt lake city, UT, USA; Kui Wu, kwwu@tencent.com, Lightspeed &
Quantum Studios, Tencent America, Los Angeles, CA, USA.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530165.

presenting examples with mass-spring systems, cloth simulations, the finite
element method, the material point method, and position-based dynamics.

CCS Concepts: • Computing methodologies→ Physical simulation;

Additional Key Words and Phrases: deformable simulation, mass-spring
system, FEM, MPM, PBD, inverse problem, inverse simulation

ACM Reference Format:
Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-
Stage Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph.
41, 4, Article 64 (July 2022), 13 pages. https://doi.org/10.1145/3528223.3530165

1 INTRODUCTION
Deformable objects are a primary target for physically-based
simulations in computer graphics. These simulations can be
initialized using an explicitly provided rest shape, where the
object is stationary without any internal or external forces. Yet,
oftentimes such a rest shape is not provided. This is because artists
typically model assets by implicitly considering gravity and contact.
Therefore, such models must contain internal forces to preserve
their shapes. Nonetheless, in the absence of a user-provided rest
shape, it is a common practice to treat the given initial shape (i.e.
the shape of the model at the beginning of the simulation) as its
rest shape. Unfortunately, this leads to the well-known problem
of sagging, the undesired deformation of the object as soon as the
simulation begins to apply external forces, such as gravity (see

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530165
https://doi.org/10.1145/3528223.3530165


64:2 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

Figure 1). Thus, the simulated deformable object deviates from its
intended initial shape, collapsing under its own weight.

Existing methods for sag-free initialization have to construct and
solve large nonlinear optimization problems. This is because typical
material models used in deformable simulations (e.g. hyperelastic
Neo-Hookean) are highly nonlinear. Furthermore, coupling with
frictional contacts subject to cone constraints in the optimization
makes the problem even more difficult and expensive to solve.
That is why, with few exceptions [Derouet-Jourdan et al. 2013;

Ly et al. 2018], external contacts are either completely ignored or
treated as fixed position constraints that are prone to producing
incorrect initialization. In addition, they are all specific to a
particular simulation method and/or material model that can
significantly limit their potential applications.
In this paper, we present a novel approach for initializing

deformable simulations that prevent sagging. Unlike some prior
methods that compute a rest shape, our approach simply solves
for the internal configurations at the given initial shape. A key
insight of our approach is the realization that the construction
of an expensive nonlinear system can be entirely avoided by
performing initialization in two stages: a global stage that ensures
static equilibrium and a local stage that converts the computed
static equilibrium conditions into simulation parameters.
The global stage can be handled with a linear system, which

allows using significantly faster solvers, by separating the material
definition from the static equilibrium conditions. Our global stage
remains linear, even in the presence of highly-nonlinear materials
and frictional contacts. Any nonlinearity is handled in the local
stage that solves much smaller local problems. Also, this local stage
can be trivially parallelized. Therefore, it can be computed quickly.
Unlike all prior methods that are limited to a single simulation

system [Chen et al. 2014; Ly et al. 2018; Mukherjee et al. 2018;
Wang 2015], our approach can be implemented with a variety of
simulation techniques. As a result, we present the first sag-free
initialization approaches for the material point method (MPM) and
position-based dynamics (PBD) to our knowledge. We also show
that our method can be applied to cloth simulation to achieve orders
of magnitude faster initialization than prior work with contact and
friction. Furthermore, our method can initialize mass-spring systems
and the finite element method (FEM) in the presence of frictional
contact and is orders of magnitude faster than prior work for similar
simulations [Ly et al. 2018; Twigg and Kačić-Alesić 2011].

Because we do not explicitly compute a rest shape, our approach
is less suitable for applications that require a rest shape, such as 3D
printing. On the other hand, a rest shape does not always exist in
reality either. For example, there exists no shape with no internal
forces for the internal structures of plants, concrete bonded with
tensioned rods, or tempered glass (with inner layers in tension and
outer layers in compression). In fact, a rest shape does not always
exist for deformable simulations either.
In summary, we present a sag-free initialization method for

deformable simulations that
• Supports various, significantly different simulation methods,
• Provides an efficient solution with a linear global system,
• Handles nonlinear materials by solving small local problems,
• And properly incorporates frictional contact.

2 RELATED WORK
Though we target simulations of deformable objects in this paper,
the problem of simulation initialization is not specific to deformable
objects. For example, it is possible to use backward-in-time
integration to determine the initial state of a rigid body simulation
that would result in a desired target state [Twigg and James 2008].
There is a large body of work on simulating deformable objects

in graphics. Earlier methods relied on mass-spring systems [Chen
et al. 1998; Terzopoulos 1995; Terzopoulos et al. 1987]. Then, finite
element method [Chen et al. 1998; Debunne et al. 2001; Müller et al.
2002; Sifakis and Barbic 2012] and, more recently, material point
method [Fang et al. 2019; Gao et al. 2018; Jiang et al. 2017, 2015;
Stomakhin et al. 2013] became more popular, as they are adopted
from continuum mechanics and can handle various materials and
physical phenomena. For high-performance simulations, position-
based dynamics (PBD) provides a popular alternative [Bender et al.
2014; Macklin and Muller 2021; Macklin et al. 2016].
Initializing simulations of deformable objects has been an

important problem, since naive initialization that treats the initial
shape as the rest shape leads to sagging when simulation begins.
This problem received particular interest in hair simulation.

Earlier work circumvented the sagging problem by modeling hair
in the presence of gravity [Lee and Ko 2001]. The multi-body
chain representation [Hadap 2006] allowed initializing each
strand using inverse dynamics. The super-helix model for hair
simulation [Bertails et al. 2006] was adapted for simulating 2D
curves [Derouet-Jourdan et al. 2010], which can be initialized to
maintain static equilibrium under gravity. All of these approaches
initialize curves in isolation without considering contact. The
only complete solution for initializing hair simulations is limited
to the super-helix representation and requires a global nonlinear
quadratic optimization in a conic domain for formulating inverse
dynamics with frictional contact [Derouet-Jourdan et al. 2013]. Hair
simulation methods used in production today still rely on ad hoc
solutions, such as adding spring forces and constraints to minimize
sagging [Iben et al. 2019].
Methods for sag-free initialization have been explored for

simulating other deformable objects as well. Example-based
deformable simulations can be initialized by leveraging explicitly-
provided rest shapes [Martin et al. 2011; Schumacher et al. 2012].
In the absence of a given rest shape, Twigg and Kačić-Alesić
[2011] proposed a force-based formulation of static equilibrium
for deformable objects simulated using mass-spring systems. This
method bears similarities to our approach, but differs starkly in its
complex nonlinear global optimization, lack of frictional contact
handling, and, for some problems, the requirement for changing
certain constraints’ stiffness in order to generate a valid solution.

Static equilibrium problems have been of interest for engineering
applications as well. In particular, Whiting et al. [2009], Deuss et al.
[2014], Shin et al. [2016], and Yao et al. [2017] proposed linear
systems for static equilibrium, similar to our global stage.
More recently, Ly et al. [2018] presented a specialized sag-free

initialization solution for simulating elastic shells, which is capable
of handling frictional contact using a two-step algorithm. The first
step solves a nonlinear static equilibrium problem by constraining

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:3

the positions of all vertices that are in contact. Then, the second step
projects the results onto a convex domain of valid frictional contact,
using a nonlinear least squares minimization. In comparison, our
approach can initialize similar simulation scenarios with orders of
magnitude faster computation times.

A closely-related problem to sag-free initialization of deformable
simulations is inverse elastic shape design, which is motivated by
the intention of fabricating soft objects with a desired shape under
gravity. In this case, the goal is computing a rest shape for the object
from a given desired shape, such that the object fabricated using
the rest shape deforms into the desired shape under gravity. This
problem has been investigated for fabricating balloons [Skouras
et al. 2012], soft characters with actuators [Skouras et al. 2013], 3D
printed soft objects [Chen et al. 2014; Mukherjee et al. 2018; Wang
et al. 2015], flexible rod meshes [Pérez et al. 2015], garments [Bartle
et al. 2016], and planar-rod structures [Miguel et al. 2016]. All of
these solutions are limited to a particular simulation system and
involve a global nonlinear optimization problem. More importantly,
since these methods are not targeted for initializing simulations,
they cannot handle frictional contact, which is essential for various
simulation scenarios.

3 DEFORMABLE SIMULATION INITIALIZATION
Our sag-free initialization method can be applied to various
deformable simulation systems. To keep our descriptions here in
general, we use an abstraction of the simulation system, assuming
that the deformable object is discretized into a number of masses
and elements. The elements apply internal forces on the masses,
based on the deformation of the object.

How these elements and masses are defined can vary depending
on the simulation method. Graphics simulations typically use point
masses at particles or vertices of a mesh. The elements in FEM with
a tetrahedral mesh would be the tetrahedra, and, in a mass-spring
system, it would be the springs. In Section 4, we provide a more
detailed discussion of how to interpret them in other simulation
methods, including PBD, which does not directly use forces.

An element’s forces depend on the element’s state, a local measure
of the object’s current shape. An element applies no forces at its rest
state and its difference from the current state determines its forces.

Our goal is to find a rest state for each element in the presence of
external forces (like gravity and contact), such that the deformable
object minimizes its deformation when the simulation begins. Our
solution is to divide the problem into a global stage and a local
stage. The global stage solves a static equilibrium problem for the
entire deformable object to determine the internal forces that should
be generated by all elements to maintain the initial shape under
external forces. Then, the subsequent local stage initializes the
elements by computing their rest states from their current states
and their target forces computed in the global stage.

A key insight of our method is the realization that this two-stage
process simplifies both stages. The global stage can be constructed
as a linear system, even when the elements have nonlinear force
responses. Any nonlinearity is contained in the local stage, which
requires solving much smaller (i.e. local) problems that can be
handled efficiently and parallelized trivially.

3.1 Static Equilibrium
Static equilibrium for a deformable object means that all masses
have zero acceleration. Thus, the forces acting on each mass must
add up to zero. Let f𝑖 𝑗 be the force generated by element 𝑖 acting on
the mass 𝑗 . We can write the static equilibrium condition as

∀𝑗,
∑︁
𝑖

f𝑖 𝑗 = −fext𝑗 , (1)

where fext
𝑗

is the external force acting on mass 𝑗 . Any set of internal
forces that satisfies Equation 1 would lead to static equilibrium.

Equation 1 is sufficient for defining a static equilibrium for point
masses. However, if masses are not points and the forces acting on
them are not necessarily applied to their centers, we must ensure
that their angular accelerations are zero as well. Thus, the net torque
generated by all elements acting on a mass must add up to zero,
such that

∀𝑗,
∑︁
𝑖

(
r𝑖 𝑗 × f𝑖 𝑗

)
= −𝝉ext𝑗 , (2)

where r𝑖 𝑗 is the vector from the center of the mass to the point that
the force f𝑖 𝑗 is applied and 𝝉ext

𝑗
is the torque applied by external

forces. Note that this condition is not needed for point masses, since
r𝑖 𝑗 = 0 and 𝝉ext

𝑗
= 0 for all elements 𝑖 and point masses 𝑗 .

3.2 Constraints on Internal Forces
We must also ensure that the set of internal forces is within the
subspace of forces that the elements can produce. This subspace can
vary depending on the specific force formulation used, but there
are constraints that broadly apply to all physical force models. For
example, elements must produce no net force (based on Newton’s
third law), satisfying

∀ 𝑖,
∑︁
𝑗

f𝑖 𝑗 = 0 . (3)

Note that if the element is connected to a stationary external body
(such as a cantilever beam with one side fixed on the wall), while the
net force it generates would still add up to zero, Equation 3 would
not apply to that specific element.

Also, elements would produce no net torque (to conserve angular
momentum). Thus, we can write

∀ 𝑖,
∑︁
𝑗

(
(x𝑗 − p) × f𝑖 𝑗

)
= 0 , (4)

where x𝑗 is the position of the mass 𝑗 and p is an arbitrary point in
the space.

Besides these general constraints, the formulation of an element
may constrain the subspace of forces it can produce. For example,
a spring applies forces only along the spring direction. Such
constraints, if any, must be considered when determining the set of
forces that must be produced by each element to maintain static
equilibrium. We present example force formulations that require
different sets of constraints when we discuss applications of our
initialization process to specific simulation systems in Section 4.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



64:4 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

3.3 The Global Stage
Our goal in the global stage is to find the set of forces f𝑖 𝑗 that can
be produced by the elements and would maintain static equilibrium.
Let𝑚 be the number of internal forces f𝑖 𝑗 generated by all elements
and f be a vector of length 3𝑚, containing all external forces f𝑖 𝑗
acting on 𝑛 masses. Using the static equilibrium condition for forces
(Equation 1) and the internal force constraints (Equations 3 and 4)
discussed above, along with the constraints imposed by the force
formulations (if any), we can form a linear system of equations

A f = −fext , (5)

where A is a (3𝑛 + 𝑛𝑓 ) × 3𝑚 sparse matrix and 𝑛𝑓 is the number of
internal force constraints (i.e. Equations 3 and 4). Note that the
constraints on the internal forces can be implemented as hard
constraints, considerably reducing the size of the linear system
in the global stage (as we discuss in Section 4).
In the case of non-point masses, we must also consider the net

torque condition (Equation 2). This adds another set of equations to
be satisfied per mass, resulting in[

A
A𝝉

]
f = −

[
fext

𝝉ext

]
, (6)

where A𝝉 is a 3𝑛 × 3𝑚 sparse matrix, representing the torque
conditions (Equation 2). For simplicity, we assume point masses in
the rest of the paper, omitting the torque conditions in our equations.

Typically, we have many more elements than masses (i.e. 𝑛 > 𝑚).
As such, A is often an under-determined system, which may lead to
infinitely many solutions. Out of all possible solutions, we would
often prefer the solution that would minimize the internal stress of
the object in the initial shape. In fact, minimizing the internal stress
might even be more favorable over strictly preventing all sagging.
Thus, we solve

min
f



A f + fext


2
2 + 𝜌 ∥f ∥

2
2 , (7)

where 𝜌 is a small regularization coefficient that steers the solution
towards minimal internal stress (𝜌 = 10−7 in our examples). Note
that using 𝜌 = ∞ would correspond to naive initialization with
f = 0. The resulting least squares problem can be written as(

A𝑇A + 𝜌I
)
f = −A𝑇 fext (8)

Since A𝑇A + 𝜌I is positive definite, we can solve this minimization
using conjugate gradient or any sparse linear system solver. Note
that if Equation 5 does not have a solution, we get f that would
minimize the motion.

3.4 Contacts
For a deformable object to be in static equilibrium under gravity,
it must either be attached to a stationary object or rest in contact
on a surface. To properly handle contacts, we define normal forces
acting onmasses in contact with stationary objects, along the surface
normal n𝑗 at the contact point. Thus, the normal force can be written
as

fn𝑗 = 𝑐 𝑗 n𝑗 , (9)

where 𝑐 𝑗 is a scalar indicating the magnitude of the normal force.

nj u4
j u3

j

u2
j

u1
ju0

j
u7

j

u6
j

u5
j

Fig. 2. Conservative polygonal approximation of the friction, using 8
frictional contact directions u𝑘

𝑗
around the collision normal n𝑗 .

We add the normal force fn
𝑗
to f in Equation 5 to treat as just

another unknown force, which is only solved in the global stage to
maintain the contact. In fact, since n𝑗 is known, we simply need
to solve for the magnitude of the normal force 𝑐 𝑗 . However, fn𝑗 is
subject to a special constraint that 𝑐 𝑗 must not be negative.
Fortunately, this boundary constraint (i.e. 𝑐 𝑗 ≥ 0) can be

enforced without requiring nonlinear optimization, such as using
the boundary-constrained conjugate gradient (BCCG) method
[Vollebregt 2014]. Though any other constrained optimization
solver would work as well, keeping the problem linear provides
major improvements in performance, which we demonstrate in
Section 5.7.
Notice that our contact handling mechanism does not consider

how the simulation system handles contacts. Indeed, it is not
required that the simulation system uses a similar or even a
force-based contact handling method. Any method for contact
handling that would prevent excessive penetration between the
deformable object and the collision objects would be effectively
equivalent to applying corresponding forces to balance the
deformable object.

3.5 Friction
Friction can be modeled in our formulation as forces acting on
contact points in orthogonal directions to the surface normal. Thus,
the friction force f 𝜇

𝑗
acting on mass 𝑗 must satisfy the orthogonality

condition f 𝜇
𝑗
· n𝑗 = 0, which would be easy to add to our system as

a constraint. Yet, the magnitude of the friction force is also bounded
by the magnitude of the normal force, such that


f 𝜇𝑗 


 ≤ 𝜇 𝑐 𝑗 , (10)

where 𝜇 is the static friction coefficient. This is a nonlinear constraint
that cannot be directly inserted into our linear system.
Geometrically, the static friction constraint in Equation 10

forms a cone that contains all valid frictional contact forces. To
avoid this nonlinear constraint, we use a conservative polygonal
approximation of the friction cone, similar to Kaufman et al. [2008],
as shown in Figure 2. Using a 𝐾-sided prism, formed by unit vectors
u𝑘
𝑗
with 𝑘 ∈ {0 . . . 𝐾 − 1} around the collision normal n𝑗 and on the

surface of the collision cone, we can represent the frictional-contact
force within the collision cone as a weighted combination

f𝜇
𝑗
=

𝐾−1∑︁
𝑘=0

𝑐𝑘𝑗 u
𝑘
𝑗 , (11)

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:5

where 𝑐𝑘
𝑗
≥ 0 are the magnitudes of the frictional-contact forces.

Note that using sufficiently large 𝐾 , we can represent almost all
possible frictional-contact forces within the friction cone (we use
𝐾 = 8 for all examples in this paper). More importantly, this forms
a conservative approximation and the resulting collision contact
force f𝜇

𝑗
is guaranteed to remain within the collision cone as long as

𝑐𝑘
𝑗
≥ 0. Therefore, we can expect the simulation system to produce

the computed friction force (or use an equivalent static friction
handling mechanism) to maintain static equilibrium.

Again, the simulation system does not need to explicitly generate
the exact friction forces we compute in our global stage. Any form
of enforcing static friction that maintains the positions should be
sufficient for preserving the static equilibrium we compute. Because
the role of the static friction force is to simply prevent sliding, the
rest of the internal forces we compute can preserve the object’s
shape as long as the simulation system can prevent sliding (either
by applying a similar friction force or using an analogous constraint).
Indeed, the simulation examples we present in Section 5 use different
contact and friction handling mechanisms than the ones in our
global stage.

3.6 The Local Stage
The goal of the local stage is determining the rest state of each
element. Let q𝑖 represent the rest state parameters of element 𝑖 ,
and G𝑖 be its force function that depends on q𝑖 and the deformable
object’s shape x. We can write

H𝑖 = G𝑖 (x, q𝑖 ) , (12)

where H𝑖 =
[
f𝑖 𝑗 . . .

]
is the matrix of all forces generated by element

𝑖 . If the force function G𝑖 is invertible (with respect to q𝑖 ) and has a
closed form solution, such that

q𝑖 = G−1
𝑖 (H𝑖 )

��
x , (13)

the computation of rest configuration q𝑖 becomes trivial.
However, this is not the case for all possible force formulations

that can be used with our method. For example, most FEM material
models use nonlinear functions G𝑖 with respect to the rest shape
that is not easy to invert. In such cases, we can numerically solve
for q𝑖 using Newton or quasi-Newton iterations. Though this
requires solving a nonlinear system, since each element is handled
independently, we end up with many small systems of nonlinear
equations that can be solved efficiently and in parallel.
Note that within this local stage, we can also solve for the

stiffness of the force model to enable local stiffening of weak points.
This allows dynamically tuning the stiffness of the object without
recomputing the global stage.

4 EXAMPLE SIMULATION SYSTEMS
Our method can be used with various simulation systems that
have different integration methods, material models, and force
formulations. We only require that the set of equations in the global
stage includes the necessary constraints for defining the subspace of
forces f𝑖 𝑗 that can be produced by each element 𝑖 . As we show in this
section, this subspace, even for various nonlinear force models, can
be defined using linear constraints. Thus, our global stage remains

linear and any nonlinearity of the force formulation is reserved for
the local stage. In the rest of this section, we discuss the details of
using our method with example simulation systems.

4.1 Forces with Known Directions
Let x represent the current shape of the object, containing all
positions x𝑗 of its masses. Various force formulations used in
computer graphics have directions defined entirely by the current
shape x.
A good example of this is the spring force. Any spring 𝑖 , linear

or nonlinear, connecting two masses x𝑗 and x𝑘 applies equal and
opposite forces along the spring direction, such that

f𝑖 𝑗 = −f𝑖𝑘 = −𝜅𝑖 d𝑗𝑘𝑇𝑖 , (14)

where 𝜅𝑖 is the stiffness, d𝑖 𝑗 = (x𝑗 − x𝑘 )/∥x𝑗 − x𝑘 ∥ denotes the
spring direction, and 𝑇𝑖 is the spring tension. Notice that here the
only unknown during initialization is 𝑇𝑖 . It is trivial to enforce the
force direction as a hard constraint by solving for 𝑇𝑖 values, instead
of the individual forces f𝑖 𝑗 . Also, with this constraint Equations 3
and 4 are automatically satisfied.
Forces with known directions are not limited to springs that

connect two points. More generally, many such force formulations
can be written as derivatives of a scalar condition function [Baraff
and Witkin 1998], such that the resulting force is

f𝑖 𝑗 = −𝜅𝑖
𝜕𝐶𝑖 (x)
𝜕x𝑗

𝐶𝑖 (x) , (15)

where 𝐶𝑖 (x) is the scalar condition function. Here, the only
unknown during initialization is the value of 𝐶𝑖 (x) at the initial
shape. Thus, any force formulation that is derived from a scalar
condition can be easily used with our method, including all types
of springs [Choi and Ko 2002; Selle et al. 2008; Wu and Yuksel 2016]
and cloth forces [Baraff and Witkin 1998].
Note that, unlike prior methods, our global stage is entirely

independent of the material model. This makes it trivial to keep
the static equilibrium equations linear, when the force directions
are known, even when using highly-nonlinear materials. If the
material has limits on the force magnitude, however, they must be
incorporated as boundary constraints, similar to our contact forces.

4.2 Finite Element Method (FEM)
In FEM, we have tetrahedra as elements applying forces to their
vertices acting as masses. These force directions are not purely
defined by the vertex positions x𝑗 . In fact, a tetrahedron can apply
any set of forces, as long as it obeys the physical constraints of no net
force and no net torque, satisfying Equations 3 and 4, respectively.
Therefore, with FEM we simply need to incorporate these equations
into the linear system of our global stage.

We can satisfy these equations using hard constraints. Consider
a single tetrahedron applying forces f𝑗 onto its vertices 𝑗 , where
𝑗 ∈ {0, 1, 2, 3}. Equation 3 can be enforced by simply replacing f3 in
the linear system with

f3 = −f0 − f1 − f2 . (16)

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



64:6 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

To enforce Equation 4, we compute the torque at one of the vertices,
say p = x3, and the net torque condition simplifies to

𝝉 =

2∑︁
𝑗=0

e𝑗 × f𝑗 = 0 , (17)

where e𝑗 = x𝑗 − x3. Then, f2 can be cancelled out in this equation
using e2 · 𝝉 = 0, resulting

(e2 × e0) · f0 + (e2 × e1) · f1 = 0 . (18)

Based on this equation, any one component of f0 or f1 can be
represented using the other five components. Considering e2×𝝉 = 0,
f2 can be represented in the form of f0, f1, and a scalar value e2 · f2

f2 =
e2

e2 · e2
(e2 · f2) +

e2
e2 · e2

× (e0 × f0 + e1 × f1) . (19)

Therefore, only f0, two components of f1, and e2 · f2 are unknowns
in the linear system in Equation 5.

After all forces are determined in the global stage, the local stage
solves for the the reference shape matrix D𝑚 of each tetrahedron,
which represents its rest configuration [Sifakis and Barbic 2012]. The
force matrixH =

[
f0 f1 f2

]
of a tetrahedral element is computed

from D𝑚 using

H = −𝑤 (D𝑚) P(D𝑚) D−𝑇
𝑚 , (20)

where𝑤 (D𝑚) is the volume of the element and P(D𝑚) is the first
Piola-Kirchhoff stress tensor that defines the material behavior.
Given H computed in the global stage, we can find D𝑚 by solving a
small nonlinear optimization problem for each tetrahedral element

min
D𝑚




H +𝑤 (D𝑚) P(D𝑚) D−𝑇
𝑚




2
2
. (21)

Note that the target forces in H can only be produced by the
material, if it is sufficiently stiff. Otherwise, we must bound the
forces in the global stage. Alternatively, we can easily solve for the
minimal stiffness needed to produce the target forces in the local
stage. This provides an efficient and convenient way of introducing
local stiffening as a part of our initialization.

4.3 Material Point Method (MPM)
The way we incorporate our approach into MPM is somewhat
counterintuitive. We treat particles (a.k.a. material points) as the
elements and the grid vertices as the masses, because we solve
the static equilibrium on the grid. Though particles carry mass in
MPM, the forces are applied on the grid vertices, and while in static
equilibrium, each grid vertex has a corresponding mass, defined by
the surrounding particles.
Below we show how to apply our approach to two examples of

the moving least squares MPM (MLS-MPM) [Hu et al. 2018] with
quadratic interpolation kernel, though any other MPM formulation
can be used with our method as well. We first describe the details of
how to incorporate hyper-elastic MPM, and then we discuss MPM
fluid simulation.

4.3.1 Hyper-elastic MPM. We consider hyper-elastic MPM
simulations that do not incorporate plasticity, because plasticity
can simply overwrite the internal deformations we compute for
maintaining static equilibrium.

Let f𝑖 𝑗 represent the force applied by particle 𝑖 with position p𝑖
onto the grid node 𝑗 with position x𝑗 . It is computed using

f𝑖 𝑗 = − 4
Δ𝑥2

𝑉𝑖 𝜎𝜎𝜎𝑖 (x𝑗 − p𝑖 )𝜔𝑖 𝑗 (22)

where 𝜎𝜎𝜎𝑖 is a 3 × 3 symmetric matrix representing the particle’s
Cauchy stress tensor, 𝑉𝑖 is particle’s volume at the current shape x,
Δ𝑥 is the grid cell size, and𝜔𝑖 𝑗 is the interpolation weight computed
based on the distance from particle 𝑖 to grid node 𝑗 . The only
unknown in Equation 22 is 𝜎𝜎𝜎𝑖 and the rest can be directly taken
from the initial shape and the simulation parameters.
While forming the linear system in our global stage, we must

include the necessary constraints to make sure that the f𝑖 𝑗 values are
within the subspace of forces that can be generated by Equation 22.
We can easily achieve this using hard constraints and solving for 𝜎𝜎𝜎𝑖
in the global stage, instead of the individual f𝑖 𝑗 values. We enforce
that the resulting 𝜎𝜎𝜎𝑖 are symmetric matrices by solving for their
upper triangular parts. Note that this solution automatically satisfies
Equation 3 (i.e. no net force), because

∑
𝑗 (x𝑗 − p𝑖 )𝜔𝑖 𝑗 = 0, and

Equation 4 (i.e. no net torque), because 𝜎𝜎𝜎𝑖 is symmetric.
The Cauchy stress tensor𝜎𝜎𝜎𝑖 is a function of particle’s deformation

gradient F𝑖 , such that

𝜎𝜎𝜎𝑖 =
1

det(F𝑖 )
P(F𝑖 ) F𝑇𝑖 , (23)

where P(F𝑖 ) is the first Piola-Kirchhoff stress tensor, the definition
of which varies depending on the material model. F𝑖 is stored at each
particle to record how the material has been deformed. Therefore,
in the local stage, after having 𝜎𝜎𝜎𝑖 from the global stage, we compute
F𝑖 of each particle. This is achieved by solving the small nonlinear
optimization problems

min
F𝑖





𝜎𝜎𝜎𝑖 − 1
det(F𝑖 )

P(F𝑖 ) F𝑇𝑖





2
2
. (24)

Once we have F𝑖 , we can directly compute the particle’s volume at
the rest shape using 𝑉𝑅

𝑖
= 𝑉𝑖/det(F𝑖 ), completing the initialization.

4.3.2 MPM Fluid Simulation. We use the nearly incompressible
fluid model [Tampubolon et al. 2017] to simulate water using MPM.
In this case, the Cauchy stress tensor is defined using water pressure
𝑝 , such that

𝜎𝜎𝜎𝑖 = −I𝑝𝑖 with 𝑝𝑖 = 𝑘

(
1
𝐽
𝛾

𝑖

− 1

)
, (25)

where 𝑝𝑖 is designed to penalize the volume change of the water
tensor and computed based on the determinant of the water
deformation gradient 𝐽𝑖 = det(F𝑖 ), 𝑘 is the bulk modulus of the
water, and 𝛾 is a term to penalize deviation from incompressibility.

Similar to hyper-elastic MPM, we can solve 𝜎𝜎𝜎𝑖 in the global stage.
The only difference is that 𝜎𝜎𝜎𝑖 is a 3 × 3 scalar matrix, so our linear
system is formed using only the 𝑝𝑖 terms. Once the global stage
computes the 𝑝𝑖 values, we can directly evaluate 𝜎𝜎𝜎𝑖 and solve for
the F𝑖 terms of each particle in the local stage. Then, we can easily
evaluate 𝐽𝑖 to initialize each water particle.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:7

(a) (b) (c) (d)

Fig. 3. A thin elastic beam that is fixed on the right side and resting
on contact on a rigid object on the left side, simulated using FEM with
corotated linear elasticity material. The bottom row shows the final
simulated shape after the rigid object is removed. The simulations
are initialized using (a) naive initialization, (b) ours without contact
handling, (c) ours by treating contacts as position constraints, and
(d) ours with proper contact handling. Notice that proper contact
handling is important for both maintaining the initial shape and
allowing deformation when the contact is removed.

4.4 Position-Based Dynamics (PBD)
PBD [Bender et al. 2014] is a significantly different simulation system
than the ones described above. Nonetheless, we can still use our
method with PBD, though we must redefine certain terms.

First of all, PBD does not directly use forces. Instead, it computes
position updates from a set of position constraints. We treat these
position constraints as our elements, acting on the vertices/particles
of the system that correspond to our masses. Matching our notation
in Section 3, let f𝑖 𝑗 represent the total position update of constraint
𝑖 on mass 𝑗 and fext

𝑗
be the position update due to external forces.

Then, the static equilibrium condition for PBD using position
updates can be written exactly as in Equation 1.
In addition, PBD uses iterative solvers, typically with a fixed

number of iterations 𝑁 per frame. The total position update f𝑖 𝑗 of a
constraint 𝑖 acting on mass 𝑗 depends on 𝑁 and its scalar constraint
function 𝐶𝑖 (x), along with the inverse mass 𝑤 𝑗 and the inverse
stiffness 𝛼𝑖 . The resulting static equilibrium condition for mass 𝑗 to
be used in our global stage can be written as∑︁

𝑖

g𝑖 𝑗 (x)𝐶𝑖 (x) = −fext𝑗 , (26)

where g𝑖 𝑗 (x) can be directly computed from the current positions x
and the parameters, such that

g𝑖 𝑗 (x) = −𝑁
𝑤 𝑗 ∇𝑗𝐶𝑖 (x)
𝛼𝑖 𝜎𝑖 (x)

, (27)

with

𝜎𝑖 (x) =
∑︁
𝑗

𝑤 𝑗 ∥∇𝑗𝐶𝑖 (x)∥2 . (28)

We present the derivation of g𝑖 𝑗 (x) in Appendix A. The only
unknown here during initialization is 𝐶𝑖 (x), which we solve for in
our global stage.
XPBD [Macklin et al. 2016], on the other hand, uses slightly

different position updates to make sure that the effective stiffness
of the constraints is independent of the number of iterations 𝑁 . As
described in Appendix A, with XPBD we get

g𝑖 𝑗 (x) = −
(
1 − 𝑠𝑁
1 − 𝑠

)
𝑤 𝑗 ∇𝑗𝐶𝑖 (x)
𝛼𝑖 + 𝜎𝑖 (x)

, (29)

Fig. 4. Jelly cubes are stacked with self-contacts. The state just after
the simulation is shown on the left, and the state after toppling is to the
right. Notice the sagging due to naive initialization and the difference
in rest shape after toppling.

where

𝑠 =
𝜎𝑖 (x)

𝛼𝑖 + 𝜎𝑖 (x)
. (30)

It is important to note that our derivation in Appendix A assumes
that PBD and XPBD use a sufficient number of iterations 𝑁 to
converge to a solution that properly satisfies all constraints. Though
we have not observed this in our experiments, we would expect that
using too small𝑁 that terminates the iterations prior to convergence
may lead to some minor sagging due to the remaining error.

5 RESULTS
We evaluate our method by initializing deformable simulations
using mass-spring systems, FEM, MPM, cloth, and XPBD. In all our
tests, our method successfully produces sag-free simulations under
external forces and contacts, and the motion of the deformable
objects closely matches simulations using naive initialization (i.e.
treating the initial shape as the rest shape).

5.1 FEM with Frictional Contacts
In our tests, we use the codebase of IPC [Li et al. 2020] for simulating
our FEM examples initialized with our method.
Figure 3 shows the importance of proper contact handling. The

thin rectangular elastic beam is fixed on one side and rested on
contact with a rigid obstacle on the other side. Suppose the contacts
are ignored (Figure 3b), the beam fails to deform when the rigid
object is removed. On the other hand, treating contacts as position
constraints (similar to the fixed side of the beam), as shown in
Figure 3c, leads to incorrect initialization owing to erroneous
negative contact normal forces. Proper contact handling with our
method is able to avoid all such failure cases.
Our method is able to handle self-contacts during initialization,

as shown in Figure 4, in which five jelly cubes are stacked on top of
each other. In this case, there can be no sag-free state if contacts are
not properly considered. Without contacts that indirectly connect
the upper cubes to the ground, it would be impossible to keep them
stationary in the air.
A common way of contact handling in prior work is to define

(infinitely stiff) fixed position constraints on colliding vertices [Chen
et al. 2014; Twigg and Kačić-Alesić 2011]. However, fixed position

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



64:8 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

Fig. 5. A soft bridge using our initialization and fixed position
constraints. In the latter case, contacts are treated as static and
friction is not handled. Our initialization is able to correctly solve
for friction and wedge itself between the two cliffs and (left) maintain
the initial state until (right) the barrels overwhelm the bridge’s friction.
Initializing using fixed position constraints, on the other hand, causes
the soft bridge to slide down as soon as the simulation begins.

Fig. 6. Tilted jelly cube stacks sandwiched between opposing rigid
obstacles. From left to right is our initialization, position constraint
initialization, and naive initialization. Treating contacts as position
constraints completely fails to provide a sag-free state as doing so
produces physically inaccurate contacts with negative normal force.

constraints cannot handle frictional contacts properly, as shown
in Figure 5. Without proper initialization, the soft bridge between
two adjacent cliffs falls under gravity. In this case, our method
automatically recognizes the need to expand into the cliffs in order
to avoid exceeding the static friction coefficient, leading to a static
equilibrium held purely through friction.
Figure 6 demonstrates a complex example with contacts,

self-contacts, and frictional contacts by sandwiching tilted
jelly cubes between two rigid obstacles. This demonstrates the
proper enforcement of non-negative normal forces, static friction
constraints, and self-contacts between cubes. If non-negative
normal forces were not enforced, the top most cube would most
certainly attempt to hang off of the top platform, leading to an
invalid solution. If friction constraints were not enforced, the stack
would most certainly slip and collapse, leading to an invalid solution.
Our method perfectly balances the internal forces, frictional forces,
and normal forces to provide a valid rest configuration. For further
demonstration, we initialize a truck of soft hay bales in Figure 7
that produces visually similar results during simulation, while
preventing sagging on the truck.

Fig. 7. The (top) before and (bottom) after of two trucks of soft FEM
hey bale. The left truck using naive initialization causes excessive
bulging of the hey bales compared to the right truck using our
initialization. Again, a difference in rest configuration can be found in
the after state on the right.

Fig. 8. Visualization and histogram of volume compression ratios
(measured by det(F𝑖 )) of the tetrahedra in the octopus models shown
in Figure 1, initialized using our method.

We show a large FEM example in Figure 1. When initialized using
our method, in comparison to naive initialization, Figure 8 shows
the computed internal stresses at the initial shape, visualized as
compression ratios of the tetrahedra volumes. Notice that most
tetrahedra have minor compression/stretching and only a small
percentage of them have slightly higher compression/stretching to
maintain the initial shape with the necessary internal forces. This
indicates that our method can produce stable initialization without
excessive internal force.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:9

Fig. 9. A plant model simulated using FEM with different
materials: (top) Neo-Hookean, (middle) Corotated Linear Elasticity,
and (bottom) Saint Venant-Kirchhoff, deforming with an external
wind force, producing visually similar motion, all initialized using our
method. The visualization on the right shows how the tetrahedra in
the initial shape are compressed (cyan color) or stretched (red color)
after initializing with the Corotated Linear Elasticity material. The
average compression ratio is 0.999 and the standard deviation is 0.038.
The other two materials produce similar visualizations.

Finally, Figure 9 shows FEM simulations with different material
models for internal force formulation, including Neo-Hookean,
Corotated Linear Elasticity, and Saint Venant-Kirchhoff. Our method
is able to handle all three of the common FEM material models we
implemented.

5.2 Thin Shell with Contacts
We implement a variety of thin shell examples using spring
energies and bending energies defined by the dihedral angle
between neighboring triangles. Collisions with the static signed
distance function collider, 𝜙 , are handled by projecting the vertex
position, x𝑗 , such that 𝜙 (x𝑗 ) = 0 and zeroing the velocity along
the projection direction. Vertex-face and edge-edge self-collisions
are handled by constraint projection similar to that proposed
by Bender et al. [2014]. Note the absence of a force-based collision
handling method here. Despite this, our experiments show that
our initialization method can still produce non-sagging results
with collision. As in Figure 10, our initialization preserves the
given shape of the page, while naive initialization leads to the
page falling flat. Friction between the page’s edge and the bottom
page is successfully accounted for, and the pageâĂŹs behavior
remains similar under blowing wind. Figure 11 shows an example
of a soft blanket wrapped around a sphere with a large number
of self-contacts. Initialized by our method, the blanket preserves
its initial shape, while naive initialization exhibits a substantial
amount of sagging.
We also show an example of local stiffening in cloth, which

is especially important here owing to the cloth’s soft nature. In

Fig. 10. Our initialization manages to preserve the initial shape
by resting on its edge with friction while naive initialization falls
flat. At the start of the simulation, the static friction is immediately
overwhelmed and the page collapses.

Fig. 11. A blanket wrapped around a sphere, demonstrating a
case with a large number of self-contacts: (left) our initialization
successfully preserves the initial shape by utilizing self-contacts for
support, but (right) with naive initialization, the folds collapse in on
themselves.

Fig. 12. Two hats are placed onto spheres and held on through
friction. While naive initialization (right) can stay on without slipping
off if placed correctly, it fails to maintain the target shape as with
our initialization (left). The area around the folds and contacts are
automatically stiffened with local stiffening where needed.

Figure 12, we place a hat on sphere, where friction is used to prevent
slippage. With our method, the ridges around the central bulge are
automatically stiffened with the edges remaining soft and pliable.
This is analogous to the stiffening of cloth when folded or at seams.

5.3 Tension Shifting for Mass-Spring Cloth
Buckling, toppling, and crumbling can be a major concern for poorly
supported models with soft materials like cloth. Extra care must be
taken to produce solutions that do not lead to runaway collapses
under arbitrarily small perturbations. As Equation 7 only considers
a solution of minimal internal stress, it may arrive at solutions

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



64:10 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

Fig. 13. We show the difference between our initialization with tension
shifting (a) and our initialization without tension shifting (b). While
both a and b preserve the initial shape when compared to naive
initialization, applying a light breeze quickly causes (b) to collapse. In
contrast, our initialization with tension shifting returns to the initial
shape even after large perturbations.

prone to buckling. Mathematically, this instability is characterized
by a non-positive definite hessian of the potential energy. However,
this is computationally expensive to verify, much less to enforce as
constraints. Instead of tackling the problem directly, we embed the
shift vector, s, in our optimization problem:

min
f



A f + fext


2
2 + 𝛼 ∥f − s∥22 . (31)

We use the shift vector s to guide solutions toward states in which
the springs are in tension, which we observe to be more stable. The
resulting least squares problem in Equation 8 can then be rewritten
as (

A𝑇A + 𝛼I
)
f = 𝛼s − A𝑇 fext (32)

More specifically, we define the shift vector, s, as following:

s𝑖 𝑗 = 𝛽
𝜕f𝑖 𝑗
𝜕𝐶𝑖 (x)

= 𝛽𝐸𝑖
x𝑗 − x𝑘
∥x𝑗 − x𝑘 ∥

, (33)

where 𝐶𝑖 (x) = (∥x𝑗 − x𝑘 ∥ − 𝑙𝑖 )/𝑙𝑖 is the relative strain of the i’th
spring (between masses 𝑗 and 𝑘), 𝑙𝑖 is the rest length, 𝛽 is a desired
relative strain specified by the user, and 𝐸𝑖 is the Young’s modulus.

We found this toworkwell in practice, and Figure 13 demonstrates
the importance of tension shifting for cloth. While our method
arrives at a state of static equilibrium without tension shifting, it
quickly buckles under the wind. Contrastly, the result generated
with tension shifting can reliably return to the target shape even
after introducing large perturbations.

5.4 Inverse Elastic Shape Design
Our method does not explicitly compute a rest shape for the given
deformable object. Therefore, it is not an ideal solution for inverse
elastic shape design. Yet, we can still use our method for estimating

(a) (b) (c) (d)

Fig. 14. Inverse elastic shape design: (a) the given initial shape,
used for initializing our method with gravity, (b) the generated rest
shape after simulation without gravity, (c) the final shape after
initializing using the generated rest shape and simulating with gravity,
and (d) all models. Notice that the initial and the final shapes closely
match. Simulated using FEM with corotated linear elasticity material.

a rest shape. An example of this is shown in Figure 14. We begin
with initializing the deformable object in the presence of external
forces (Figure 14a). After initialization, we simulate the deformable
object without any external force. This makes the object deform in a
direction that reduces the internal forces. After the object reaches a
steady state, its shape forms our rest shape estimation (Figure 14b).
It is important to note that this is not a true rest shape, since the
object can still have internal forces, based on our initialization.

To test the validity of this rest shape estimation, we reinitialize the
simulation using it as a rest shape. Then, we simulate the object’s
deformation with external forces. This is expected to bring the
object’s shape closer to its intended initial shape (Figure 14c). For
the example in Figure 14, this brings the shape remarkably close
to the initial shape, verifying that the estimated rest shape is a
reasonable approximation (Figure 14d).

5.5 Position-Based Dynamics
Figure 15 shows an example hair mesh simulation using XPBD.
Sagging is particularly an important problem for hair simulation.
In this example, the hair mesh model is in frictional contact at the
given initial shape. Naive initialization deforms the hair model when
the simulation begins. Our method, on the other hand, completely
prevents sagging, though a subtle motion can be observed in the
beginning when XPBD’s collision constraints resolve the minor
penetrations with the collision objects in the given initial shape.

5.6 Material Point Method (MPM)
Figure 16 shows an example MPM simulation, in which water
is simulated using MPM with a nearly incompressible fluid
model [Tampubolon et al. 2017], while the bunny is simulated
using the Corotated linear elasticity model [Sifakis and Barbic
2012]. Naive initialization leads to bouncing at the beginning
while the dam holds the water back. Since there is no interaction
between water and bunny during initialization, we initialize them
separately. Regarding contacts, we use a slip boundary condition
in the forward simulation, which clamps the velocity on the grid
perpendicular to the boundary plane. For initialization, we simply
remove the degrees of freedom (Dofs) corresponding to components
perpendicular to the boundary plane.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:11

Fig. 15. An example hair mesh simulation using position-based
dynamics (XPBD), exhibiting sagging with naive initialization.

N
ai
ve

In
iti
al
iz
at
io
n

O
ur

s

Fig. 16. An example of MPM simulation with deformable bunny
coupling with nearly incompressible MPM water. Before the brown
wall on the right of the water is removed, our initialization totally
avoids volume loss and sagging on the bunny’s ear due to gravity.

5.7 Performance and Comparisons
We summarize the performance results in Table 1. Since the global
stage involves linear optimization, it can be computed efficiently. On
the other hand, the local stage that contains many small nonlinear
optimization problems is computed in a fraction of the time.

The local stage is trivial in mass-spring simulations. For FEM, all
three material models in Figure 9 are computed in identical times.
Both the simulator and our initialization for MPM are implemented
in Python with Taichi programming language [Hu et al. 2018] and
SciPy [Virtanen et al. 2020]. Notice that the global stage for MPM

Table 1. Computation times of our method.

Example Simulation Elements Masses Contacts Global S. Local S.
Octopus† Fig. 1 FEM 102,200 23,640 0 221 s 1.5 s
Box Stack∗ Fig. 4 FEM 2,802 1,104 245 3.5 s 10 ms
Bridge∗ Fig. 5 FEM 266 121 18 0.2 s 1 ms
Tilted Stack∗ Fig. 6 FEM 2,879 1,132 294 11 s 12 ms
Heybales∗ Fig. 7 FEM 4,390 1,920 294 4.1 s 13 ms
Plant∗ Fig. 9 FEM 47,077 14,842 0 34 s 147 ms
Book∗ Fig. 10 Cloth 483 180 9 0.08 s 0.03 ms
Blanket∗ Fig. 11 Cloth 5338 2750 300 1.13 s 0.14 ms
Hat∗ Fig. 12 Cloth 3,156 1,087 27 0.56 s 0.2 ms
Sail∗ Fig. 13 Cloth 360 136 0 0.006 s 0.02 ms
Hair Mesh∗∗ Fig. 15 XPDB 3,234 162 89 2.5 s <0.01 ms
Bunny‡ Fig. 16 MPM 86,819 18,565 - 29 s 36 s
Fluid‡ Fig. 16 MPM 686,937 309,048 - 96 s 15 s
Dragon∗ Fig. 17 Mass-Spring 35,874 7,212 0 0.4 s 0.2 ms

The performance results are measured on computers with different configurations: * an

AMD 5950X CPU (16 cores) and 32 GB RAM, †an Intel Core i9-9980XE CPU (18 cores) and

64GB RAM, ‡an AMD Ryzen Threadripper 3970X CPU (32 cores) and 256 GB RAM and

computed in Python, and ** dual Intel Xeon E5-2643 v3 CPUs (24 cores) with 64 GB RAM.

Naive
< 0.1 sec.

Twigg and Kačić-Alesić [2011]
192 sec.

Ours
0.4 sec.

Fig. 17. An example mass-spring simulation of a tetrahedral mesh.

simulation is more expensive than the other simulation systems.
This is because each element (i.e., particle) in MPM applies forces to
64 masses (i.e., grid vertices), forming a denser matrix in the global
linear system. The local stage for the MPM bunny is slower than
that for MPM fluid, because each iteration in the local stage for the
deformable bunny needs to perform 3 × 3 matrix SVD.
In Figure 17 we provide a direct comparison to the primal-dual

method introduced by [Twigg and Kačić-Alesić 2011] using
IPOPT [Wächter and Biegler 2006]. As our method allows for
handling rest length positivity constraints in the local stage, our
optimization remains linear and is 480× faster than the method of
Twigg and Kačić-Alesić [2011] in this example.

Our method also provides significantly faster initialization than
Ly et al. [2018], the only prior work that can handle frictional
contact with thin shells. For example, our initialization in Figure 12
is completed in half a second, in comparison to 50 minutes reported
by Ly et al. [2018] for a model with a similar shape and complexity.

6 DISCUSSION AND LIMITATIONS
In comparison to prior work, our approach is similar to methods
that compute internal force parameters [Derouet-Jourdan et al. 2013;
Twigg and Kačić-Alesić 2011] as opposed to ones that explicitly solve
for the global rest shape of the deformable object [Chen et al. 2014;
Ly et al. 2018; Mukherjee et al. 2018]. A clear distinction of our
approach to all prior work, however, is that we avoid solving a
global nonlinear system.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



64:12 • Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu

Another important distinction of our approach from prior work
is that our solution is not limited to a specific simulation system
or material model. As we have shown in this paper, we can apply
our solution to a variety of simulation methods and materials. Most
notably, we present the first sag-free initialization method that can
be used with MPM and PBD to our knowledge.
The main challenge for applying our solution to a simulation

system is determining the subspace of internal forces that can be
generated by the force elements. For example, the forces in FEM
cover the entire subspace of forces that satisfy the zero net force and
zero net torque constraints (Equations 3 and 4), force formulations
with known directions cover a portion of this subspace that have
force components along with these directions, and MPM forces
cover the subspace that can be represented by Equation 22. If the
necessary constraints are not enforced, the global step can generate
a set of forces for an element that is outside of its subspace. In that
case, the local step would fail to initialize the element, since it cannot
produce the given set of forces. As long as the subspace of the force
formulation can be represented using linear constraints, our global
step remains linear. However, if defining this subspace requires
nonlinear constraints, the optimization problem in our global step
would become nonlinear, since it must include these constraints.

Though our method is general, it is not a universal solution. First
of all, our method is only applicable to simulation systems that can
be abstracted as elements and masses. Also, we require that the
internal force formulation allows computing its rest configuration
from its output. Though typical force formulations would permit
such solutions, it is theoretically possible to come up with a function
that might be challenging.

7 CONCLUSION AND FUTURE WORK
We have introduced a two-stage solution for initializing deformable
simulations to achieve sag-free animations with frictional contact.
By splitting the problem into a global and a local stage, we can
efficiently solve the static equilibrium problem using a linear global
optimization and handle any nonlinearity of the force formulations
in the local stage. With various examples, we show that our method
provides an effective approach for producing sag-free simulations of
deformable objects and it can be applied to a variety of simulation
systems and material models.
In particular, we have also shown examples with FEM and

mass-spring systems, and, notably, we present the first sag-free
initialization method for MPM and PBD to our knowledge. More
generally, we have explained how any force with a known direction
can be initialized using our method.
An obvious future direction would be applying our solution to

other simulation systems. This requires investigating their internal
force formulations and identifying the set of constraints needed for
defining the subspace of forces they can produce.
Existing methods for plasticity in MPM modify the deformation

gradients of particles. When used with sag-free initialization,
plasticity would simply overwrite the computed deformation
gradients. Therefore, another interesting future direction would be
incorporating plasticity in MPM with sag-free initialization.

ACKNOWLEDGMENTS
We would like to thank Ming Gao and Yuanming Hu for helpful
discussions on our fluid simulation example. This project was
supported in part by NSF grant #1956085.

REFERENCES
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 43–54.

Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and
Floraine Berthouzoz. 2016. Physics-Driven Pattern Adjustment for Direct 3D
Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.

Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin.
2014. A Survey on Position-Based Simulation Methods in Computer Graphics.
Comput. Graph. Forum 33, 6 (sep 2014), 228–251.

Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy,
and Jean-Luc Lévundefinedque. 2006. Super-Helices for Predicting the Dynamics of
Natural Hair. ACM Trans. Graph. 25, 3 (July 2006), 1180–1187.

Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic
Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4,
Article 95 (July 2014), 11 pages.

Y. Chen, Q. Zhu, A. Kaufman, and S. Muraki. 1998. Physically-Based Animation
of Volumetric Objects. In Proceedings of the Computer Animation (CA ’98). IEEE
Computer Society, USA, 154.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans.
Graph. 21, 3 (July 2002), 604–611.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic
Real-Time Deformations Using Space Time & Adaptive Sampling. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01). ACM, New York, NY, USA, 31–36.

Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joëlle
Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans.
Graph. 32, 6, Article 159 (Nov. 2013), 10 pages.

Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, and Joëlle Thollot. 2010.
Stable Inverse Dynamic Curves. ACM Trans. Graph. 29, 6, Article 137 (Dec. 2010),
10 pages.

Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-
Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. ACM
Trans. Graph. 33, 6, Article 214 (nov 2014), 10 pages.

Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An
Implicit Material Point Method for Simulating Non-Equilibrated Viscoelastic and
Elastoplastic Solids. ACM Trans. Graph. 38, 4, Article 118 (July 2019), 13 pages.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and
Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. ACM Trans.
Graph. 37, 6, Article 254 (Dec. 2018), 12 pages.

Sunil Hadap. 2006. Oriented Strands: Dynamics of Stiff Multi-Body System. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Vienna, Austria) (SCA ’06). Eurographics Association, Goslar, DEU,
91–100.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and
Chenfanfu Jiang. 2018. A Moving Least Squares Material Point Method with
Displacement Discontinuity and Two-Way Rigid Body Coupling. ACM Trans. Graph.
(TOG) 37, 4 (2018), 150.

Hayley Iben, Jacob Brooks, and Christopher Bolwyn. 2019. Holding the Shape in Hair
Simulation. In ACM SIGGRAPH 2019 Talks (Los Angeles, California) (SIGGRAPH
’19). ACM, New York, NY, USA, Article 59, 2 pages.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity
for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152
(July 2017), 14 pages.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (July
2015), 10 pages.

Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered
Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5,
Article 164 (dec 2008), 11 pages.

Doo-Won Lee and Hyeong-Seok Ko. 2001. Natural Hairstyle Modeling and Animation.
Graph. Models 63, 2 (March 2001), 67–85.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM Trans.
Graph. 39, 4, Article 49 (jul 2020), 20 pages.

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans.
Graph. 37, 6, Article 201 (dec 2018), 16 pages.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.



A General Two-Stage Initialization for Sag-Free Deformable Simulations • 64:13

MilesMacklin andMatthiasMuller. 2021. AConstraint-Based Formulation of Stable Neo-
Hookean Materials. In Motion, Interaction and Games (Virtual Event, Switzerland)
(MIG ’21). ACM, New York, NY, USA, Article 12, 7 pages.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
ACM, New York, NY, USA, 49–54.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-Based Elastic Materials. In ACM SIGGRAPH 2011 Papers (Vancouver, British
Columbia, Canada) (SIGGRAPH ’11). ACM, New York, NY, USA, Article 72, 8 pages.

Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable
Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages.

Rajaditya Mukherjee, Longhua Wu, and Huamin Wang. 2018. Interactive Two-Way
Shape Design of Elastic Bodies. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article
11 (July 2018), 17 pages.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara
Cutler. 2002. Stable Real-Time Deformations. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas)
(SCA ’02). ACM, New York, NY, USA, 49–54.

Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod
Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.

Christian Schumacher, Bernhard Thomaszewski, Stelian Coros, Sebastian Martin,
Robert Sumner, and Markus Gross. 2012. Efficient Simulation of Example-Based
Materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association,
Goslar, DEU, 1–8.

Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A Mass Spring Model for
Hair Simulation. ACM Trans. Graph. 27, 3 (aug 2008), 1–11.

Hijung V. Shin, Christopher F. Porst, Etienne Vouga, John Ochsendorf, and Frédo
Durand. 2016. Reconciling Elastic and Equilibrium Methods for Static Analysis.
ACM Trans. Graph. 35, 2, Article 13 (feb 2016), 16 pages.

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:
A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH ’12). ACM, New York,
NY, USA, Article 20, 50 pages.

Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012.
Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May
2012), 835–844.

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus
Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans.
Graph. 32, 4, Article 82 (July 2013), 10 pages.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4,
Article 102 (July 2013), 10 pages.

Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran,
Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand
and water mixtures. ACM Trans. Graph. (TOG) 36, 4 (2017), 1–11.

Demetri Terzopoulos. 1995. Heating andmelting deformable models (from goop to glop).
In Graphics interface, Vol. 89. Canadian Information Processing Society, Toronto,
Ontario, Canada, 219–226.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically
Deformable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205–214.

Christopher D. Twigg and Doug L. James. 2008. Backward Steps in Rigid Body
Simulation. ACM Trans. Graph. 27, 3, Article 25 (Aug. 2008), 10 pages.

Christopher D. Twigg and Zoran Kačić-Alesić. 2011. Optimization for Sag-Free
Simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Vancouver, British Columbia, Canada) (SCA ’11). ACM, New
York, NY, USA, 225–236.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, EricW. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul vanMulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17 (2020), 261–272.

Edwin A. H. Vollebregt. 2014. The Bound-Constrained Conjugate Gradient Method for
Non-negative Matrices. Journal of Optimization Theory and Applications 162, 3 (01
Sep 2014), 931–953.

Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming 106 (2006), 25–57.

Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015.
Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article

94 (July 2015), 12 pages.
Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective

and Position-Based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015),
9 pages.

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of
Structurally-Sound Masonry Buildings. ACM Trans. Graph. 28, 5 (dec 2009), 1–9.

Kui Wu and Cem Yuksel. 2016. Real-Time Hair Mesh Simulation. In Proceedings of the
20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Redmond,
Washington) (I3D ’16). ACM, New York, NY, USA, 59–64.

Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017.
Interactive Design and Stability Analysis of Decorative Joinery for Furniture. ACM
Trans. Graph. 36, 2, Article 20 (mar 2017), 16 pages.

A DERIVATION OF PBD AND XPBD TOTAL UPDATES
PBD and XPBD use iterative solvers that directly operate on
positions and update the positions every time a constraint is applied.
Let x𝑡

𝑗
represent the position of mass 𝑗 at iteration 𝑡 , 𝑡 ∈ {0, . . . , 𝑁 }.

The PBD position update due to constraint 𝑖 can be written as

f𝑡𝑖 𝑗 = −
𝑤 𝑗 ∇𝑗𝐶𝑖 (x𝑡−1)
𝛼𝑖 𝜎𝑖 (x𝑡−1)

𝐶𝑖 (x𝑡−1) . (34)

To simplify this and because we are solving for a static equilibrium,
we assume that the position of mass 𝑗 is always at x𝑗 prior
to applying any of its constraints (i.e. x𝑡 = x𝑡−1). With this
simplification, we get the same position update at each iteration
(i.e. f𝑡

𝑖 𝑗
= f𝑡−1

𝑖 𝑗
) and the resulting total position update becomes

f𝑖 𝑗 =
𝑁∑︁
𝑡=1

f𝑡𝑖 𝑗 = 𝑁 f1𝑖 𝑗 = g𝑖 𝑗 (x)𝐶𝑖 (x) . (35)

In XPBD, however, the position update at iteration 𝑡 depends on
the position update of the previous iterations. This is formulated
using Lagrange multipliers 𝜆𝑡

𝑖
that vary at each iteration, such that

𝜆𝑡
𝑖
= 𝜆𝑡−1

𝑖
+ Δ𝜆𝑡

𝑖
and 𝜆0

𝑖
= 0. Again, using the same simplification

(i.e. x𝑡 = x𝑡−1), we can write

f𝑡𝑖 𝑗 = 𝑤 𝑗 Δ𝜆
𝑡
𝑖 ∇𝑗𝐶𝑖 (x) , (36)

where

Δ𝜆𝑡𝑖 = −𝐶𝑖 (x) + 𝛼𝑖𝜆
𝑡−1

𝛼𝑖 + 𝜎𝑖 (x)
. (37)

This can be used for defining a recursive function

𝜆𝑡𝑖 = 𝜆
1
𝑖 + 𝑠𝜆

𝑡−1
𝑖 where 𝜆1𝑖 = − 𝐶𝑖 (x)

𝛼𝑖 + 𝜎𝑖 (x)
. (38)

The corresponding geometric series for 𝑁 iterations has a closed-
form solution

𝜆𝑁𝑖 = 𝜆1𝑖

𝑁∑︁
𝑡=1

𝑠𝑡−1 = 𝜆1𝑖

(
1 − 𝑠𝑁
1 − 𝑠

)
. (39)

The resulting total position update for XPBD can be written as

f𝑖 𝑗 =
𝑁∑︁
𝑡=1

f𝑡𝑖 𝑗 = 𝑤 𝑗 ∇𝑗𝐶𝑖 (x)
𝑁∑︁
𝑡=1

Δ𝜆𝑡𝑖 = 𝑤 𝑗 ∇𝑗𝐶𝑖 (x) 𝜆
𝑁
𝑖 . (40)

Combining them with f𝑖 𝑗 = g𝑖 𝑗 (x)𝐶𝑖 (x), we get Equation 29.

ACM Trans. Graph., Vol. 41, No. 4, Article 64. Publication date: July 2022.


	Abstract
	1 Introduction
	2 Related Work
	3 Deformable Simulation Initialization
	3.1 Static Equilibrium
	3.2 Constraints on Internal Forces
	3.3 The Global Stage
	3.4 Contacts
	3.5 Friction
	3.6 The Local Stage

	4 Example Simulation Systems
	4.1 Forces with Known Directions
	4.2 Finite Element Method (FEM)
	4.3 Material Point Method (MPM)
	4.4 Position-Based Dynamics (PBD)

	5 Results
	5.1 FEM with Frictional Contacts
	5.2 Thin Shell with Contacts
	5.3 Tension Shifting for Mass-Spring Cloth
	5.4 Inverse Elastic Shape Design
	5.5 Position-Based Dynamics
	5.6 Material Point Method (MPM)
	5.7 Performance and Comparisons

	6 Discussion and Limitations
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Derivation of PBD and XPBD Total Updates

