
Real-Time Stochastic Lightcuts
Daqi Lin

University of Utah
daqi@cs.utah.edu

Cem Yuksel
University of Utah

cem@cemyuksel.com

Figure 1: Our real-time stochastic lightcuts method renders a scene with unbiased sampling of direct lighting from 24,782 emissive triangles with
a sampling time of 11.5 ms (including tracing shadow ray and lighting computation) and a total frame time of 23 ms on a NVIDIA RTX 2080 card,
using 4 light samples per pixel. The screen resolution is 1920 × 1080. SVGF [Schied et al. 2017] and TAA are applied to filter the sampling result.

ABSTRACT
We present real-time stochastic lightcuts, a real-time rendering
method for scenes with many dynamic lights. Our method is the
GPU extension of stochastic lightcuts [Yuksel 2019], a state-of-
art hierarchical light sampling algorithm for offline rendering. To
support arbitrary dynamic scenes, we introduce an extremely fast
light tree builder. To maximize the performance of light sampling
on the GPU, we introduce cut sharing, a way to reuse adaptive
sampling information in light trees in neighboring pixels.

CCS CONCEPTS
• Computing methodologies → Rendering; Ray tracing.

KEYWORDS
Many lights, ray tracing, importance sampling.

ACM Reference Format:
Daqi Lin and Cem Yuksel. 2020. Real-Time Stochastic Lightcuts. In Proc.
ACM Comput. Graph. Interact. Tech. (Symposium on Interactive 3D Graphics
and Games, I3D 2020). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3384543

Symposium on Interactive 3D Graphics and Games (I3D), 2020,
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proc. ACM Comput.
Graph. Interact. Tech. (Symposium on Interactive 3D Graphics and Games, I3D 2020),
https://doi.org/10.1145/3384543.

1 INTRODUCTION
Scenes with many lights are commonplace in real-time rendering
applications like video games. Yet, handling many lights has been a
challenge in real-time rendering, due to the complexity of accumu-
lating illumination from all lights for all pixels. Most game engines
handle scenes with many lights using a mixture of baking and tile-
based deferred rendering [Olsson and Assarsson 2011; Olsson et al.
2012] to determine which pixels should be illuminated by which
lights. However, baked lighting is difficult to use with animations
and tile-based deferred rendering only works if the lights have
relatively small influence ranges (though stochastic ranges can be
used for lights with unbounded influence ranges [Tokuyoshi and
Harada 2016] to approximate the lighting). Recent Monte Carlo
sampling methods for real-time rendering [Moreau and Clarberg
2019; Moreau et al. 2019] lift these limitations, but their compu-
tation cost limits the number of light samples that can be used at
real-time frame rates, resulting in noisy lighting estimations.

We present an extension of stochastic lightcuts [Yuksel 2019] and
describe how it can be used to achieve high-performance rendering
with many lights on the GPU (Figure 1). Our goal is to minimize the
overhead of sampling from a light tree, so that we can afford more
light samples within the same render time, achieving higher quality
(i.e. lower noise). Thus, we accept sacrificing the quality of the light
tree to save computation time, which can be used towards more
light samples, resulting in a net gain in quality. To achieve this, we
use a perfect (i.e. balanced, full, and complete) binary light tree.

https://doi.org/10.1145/3384543
https://doi.org/10.1145/3384543
https://doi.org/10.1145/3384543


Symposium on Interactive 3D Graphics and Games (I3D), 2020, Daqi Lin and Cem Yuksel

A perfect binary tree allows extremely fast construction and also
boosts the light sampling performance. Moreover, we introduce
a novel weight computation scheme for hierarchical importance
sampling that provides improvements in sampling quality in our
test scenes. Furthermore, we introduce cut sharing, which allows
a block of pixels to share the same cut through the light tree for
minimizing the overhead of cut selection. We show how cut sharing
enables the use of interleaved sampling [Segovia et al. 2006] to
further improve the performance or light sampling quality. We
compare our real-time stochastic lightcuts method with prior work
on sampling many lights and show that our method improves the
speed of light sampling, thereby providing higher quality with more
light samples within the same render time budget.

2 BACKGROUND
In this section we briefly overview the related work for handling
many lights and summarize stochastic lightcuts [Yuksel 2019].

2.1 Related Work
Early work on rendering with many lights includes sorting lights
by contributions [Ward 1994], importance sampling [Shirley et al.
1996], building octrees for light clustering [Paquette et al. 1998],
and constructing a local illumination environment [Fernandez et al.
2002]. The introduction of virtual point lights (VPLs) for approxi-
mating global illumination [Keller 1997] has drawn more research
interests into the many-lights problem. Walter et al. [2005] intro-
duced the lightcuts method as an efficient solution to the many-
lights problem. The method is based on a light tree which resembles
the hierarchical approach introduced by Paquette et al. [1998]. For
each point in the scene, where lighting is evaluated, lightcuts picks
a cut through the light tree and only computes the representa-
tive lights of the internal light tree nodes above this cut. It is also
possible to avoid computing a cut for each pixel using reconstruc-
tion cut [Walter et al. 2005] or lightcut interpolation [Rehfeld and
Dachsbacher 2016].

Another efficient solution to the VPL-related many-lights prob-
lem is matrix row-column sampling (MRCS) [Hašan et al. 2007]
which approximates the lighting matrix of the scene. Extensions
of lightcuts [Davidovič et al. 2012; Walter et al. 2006, 2012] and
techniques inspired by MRCS [Davidovic et al. 2010; Hašan et al.
2008; Huo et al. 2015; Ou and Pellacini 2011] improve the efficiency
or handle more general scenarios Dachsbacher et al. [2014].

The Lighting Grid Hierarchy method [Yuksel and Yuksel 2017]
introduces a temporally coherent approximation of a large number
of VPLs for rendering self illuminating volumes by using multiple
representations of the illumination at different resolutions. The
methodwas recently extended for real-time approximation of global
illumination [Lin and Yuksel 2019].

Vévoda and Křivánek [2016] used the clusters formed by light-
cuts for adaptive importance sampling of direct illumination instead
of using the them directly as the illumination approximation. A fol-
lowing work [Vévoda et al. 2018] uses Bayesian online regression to
learn the light selection probability distributions for the light clus-
ters. Keller et al. [2017] added additional node information into the
light tree, where each node stores directionally varying light inten-
sities, instead of a single flux. Adaptive tree splitting [Estevez and

Kulla 2018] introduced a light bounding volume hierarchy (BVH)
with a technique that splits light tree traversal based on the cluster
variance. Recently, Yuksel [2019] introduced stochastic lightcuts
which provides low noise results using much fewer samples than
other methods.

With the advancement of high-quality denoisers and ray trac-
ing capable GPUs, it is now possible to implement Monte Carlo
sampling algorithms on the GPU using limited samples. Recently,
Moreau and Clarberg [2019] presented a version of adaptive tree
splitting for real-time rendering, and Moreau et al. [2019] intro-
duced a two-level light BVH builder for dynamic scenes.

2.2 Stochastic Lightcuts
Stochastic lightcuts [Yuksel 2019] extends the lightcuts method
[Walter et al. 2005]. Lightcuts builds a binary light tree prior to
rendering. During rendering the light tree is evaluated from top to
bottom for selecting a cut through the light tree. The cut is initially
placed at the root node. For each node of the light tree along the
cut, if the maximum possible illumination from the subtree under
the node is above a threshold, the cut is moved one level below.

Stochastic lightcuts [Yuksel 2019] uses a hierarchical importance
sampling technique (similar to [Estevez and Kulla 2018]) for ran-
domly selecting a light sample within each subtree under the chosen
cut, converting lightcuts to an unbiased light sampling method. For
each light tree node above the cut, hierarchical importance sam-
pling traverses the subtree below the node from top to bottom,
randomly picking one of the child nodes under each node, down
to a leaf node that contains a single light source, which is chosen
as the light sample.

3 REAL-TIME STOCHASTIC LIGHTCUTS
Our real-time stochastic lightcuts method contains two key com-
ponents that make it GPU friendly. First, we use a perfect binary
light tree, which is extremely fast to build (Section 3.1) and effi-
cient to traverse (Section 3.2). Second, we share cuts within k × k
pixel blocks (Section 3.3), instead of computing a cut for each pixel
during light sampling. Our cut sharing technique naturally enables
interleaved sampling (Section 3.4), which can be used for further
accelerating light sampling or improving its quality.

Our goal is to minimize the light tree construction and light
sample selection times. The choices we make for achieving this
goal, however, may adversely affect the quality of the tree and the
light sample distribution. Yet, this reduction in sampling quality
can be offset by using more light samples. Thus, our ultimate goal is
using the time we save during the tree construction and light sam-
ple selection towards more light samples for a better illumination
estimation.

3.1 Perfectly Balanced Light Tree
As mentioned above, neither the existing agglomerative or divisive
light clustering methods are fast enough to fully rebuild the light
tree in real-time. To solve this problem, we use a perfect (i.e. bal-
anced, complete, and full) binary light tree. In a perfect tree, all leaf
nodes that contain the individual light sources appear at the bottom
level of the tree. Since the number of leaf nodes in a perfect tree
must be a power of two, we add bogus lights as needed (Figure 2).



Real-Time Stochastic Lightcuts Symposium on Interactive 3D Graphics and Games (I3D), 2020,

Level 0

Level 2

Level 1

Level 3

Figure 2: An example of a perfectly balanced light tree with four
levels. Bogus lights with zero intensities are appended to the end of
the leaf level (level 3) to round up the number of lights to the nearest
greater power of two. Bogus lights and bogus nodes are marked with
gray color.

Each node in the light tree stores the bounding box of the un-
derlying lights and the total light intensity. Since we use a perfect
tree, there is no need to store child node pointers, as the child node
indices can be computed directly from the parent node index. Addi-
tionally, each leaf node stores the corresponding light ID. Note that
light IDs cannot be directly computed from leaf node indices in
dynamic scenes, since the leaf index of a light can vary each frame.

For minimizing the construction time, our builder sorts the light
sources based on the Morton code of their positions (conceptually
similar to a Morton code BVH builder [Lauterbach et al. 2009]). The
leaf nodes are generated by directly copying the light information
in the sorted order into the leaf nodes of the tree. Afterwards, com-
puting the internal node data is a straightforward gathering process
in a bottom-up order. For each internal node, the bounding boxes
and intensities of the child nodes are simply added together. Bogus
lights are assigned zero intensities and excluded from the bounding
box computation. Since this gathering process is fully deterministic
and commutative, we can generate level ℓ from any level ℓs below
it, such that ℓs > ℓ, not necessarily the level immediately below
it (where ℓs = ℓ + 1). This means that any combination of levels
can be generated in parallel, and the construction process can be
parallelized in a way that fully exploits the capability of the GPU.

While our perfectly balanced light tree is fast enough to be re-
built for every frame, we also provide an option to use a two-level
light tree, where a light tree is split into one top-level and multiple
bottom-levels. This is to improve the quality of light sampling for
scenes with sparsely distributed light meshes of heterogeneous
sizes, where Morton code sorting on all lights might not repro-
duce the spatial proximity very well. In a two-level light tree, each
bottom-level is built separately as a perfect binary light tree. After
all bottom-levels are built, they are used as leaf nodes of the top-
level tree, which is also built as a perfect binary tree. Notice that in
this case the combined light tree as a whole is not necessarily a per-
fect tree. Furthermore, two level tree introduces complexity in light
tree traversal, but it can improve the sampling quality. An additional
benefit of a two-level light tree is that it allows instancing.

3.2 Light Tree Traversal
During rendering, we first select a cut through the light tree, similar
to the original lightcuts method [Walter et al. 2005]. Yet, unlike
lightcuts, we cannot afford to pick a cut with hundreds of nodes,
which would result in too many light samples to achieve real-time
performance. Instead, we pick a cut with a relatively small, user-
defined number of nodes. Therefore, cut selection is not performed
until convergence with a given error threshold. In fact, given a
small number of nodes for the cut, it is almost guaranteed that we
can never satisfy a reasonable error threshold. Thus, we do not use
an error threshold parameter and our cut selection terminates until
a user-defined number of nodes (i.e. subtrees) are selected.

Given any subtree root, it is easy to select a light sample by
traversing our perfect light tree down to a leaf node. We use the
hierarchical importance sampling approach of stochastic lightcuts
[Yuksel 2019]. At each internal node, one of its child nodes is ran-
domly selected based on their weights computed at the shaded point.
To improve the sampling quality in our test scenes, we introduce
a novel weight computation scheme for hierarchical importance
sampling.

Ideally, the weights should be proportional to the expected illu-
minations of the child nodes. However, when the shaded point is
inside the bounding box of a node, its expected illumination goes
to infinity. Yuksel [2019] solves this problem by effectively ignor-
ing the distance term when the shaded point is too close to either
one of the child node bounding boxes. We use a different strategy.
Since the expected illumination can go to infinity, we approximate
the expected weights by computing two weights at two different
distances from the shaded point: the closest distance dmin

j and the
farthest distance dmax

j within the bounding box of the child node
j, such that

wmin
j =

Fj (x,ω)


Ij

(

dmin
j (x)

)2 wmax
j =

Fj (x,ω)


Ij

(

dmax
j (x)

)2 , (1)

where x is the shaded point, Fj (x,ω) is the reflectance bound, and
Ij is the total light intensity within the node. Note that when the
child node bounding boxes are relatively small and far from the
shaded point,wmin

j andwmax
j approach to the same values. Given

two child nodes j and k , we compute two probabilities for picking
j as

pmin
j =

wmin
j

wmin
j +wmin

k

pmax
j =

wmax
j

wmax
j +wmax

k
. (2)

We use the average of these two pj = (pmin
j + pmax

j )/2 as the prob-
ability of picking child node j. The only singularity with this ap-
proach is when both dmin

j and dmin
k are zero (i.e x is within the

bounding box of both child nodes), in which case we ignore the
distance terms for computingwmin

j andwmin
k . In our tests, we have

found that this new weight computation scheme can improve the
quality of light sampling.

Note that a bogus node (or a bogus light) has zero probability to
be selected due to its zero intensity. When a dead branch is detected,
we simply return a light with zero intensity. The intensity of the
selected light is divided by the selection probability, and shadows
are computed via ray tracing on the GPU.



Symposium on Interactive 3D Graphics and Games (I3D), 2020, Daqi Lin and Cem Yuksel

3.3 Light Sampling with Cut Sharing
Cut selection of lightcuts performed independently for each pixel
can be expensive. Yet, neighboring pixels often share the same cuts.
This is particularly the case when the number of light samples
(i.e. the number of nodes above the cut) is small. Based on this
observation, we can accelerate cut selection by performing it for a
group of pixels, rather than independently for each pixel. Thus, a
group of nearby pixels share the same cut through the light tree. We
call this cut sharing. Note that cut sharing does not cause sampling
correlation, since pixels within a group are still free to pick different
light samples using the same cut.

Cut sharing can be broken down into two passes. First, a cut
computation pass is executed once for each k ×k pixel block where
one of the pixels is randomly selected as the representative pixel
whose geometric and material properties are used to select the cut.
In the second pass, we perform light sampling, such that each pixel
in the k × k block uses the same cut.

Cut sharing accelerates light sampling with a smaller additional
memory footprint for storing the cut. Notice that our cut sharing
method bears some resemblance to Adaptive Direct Illumination
Sampling [Vévoda and Křivánek 2016], where a cut is shared by
each scene cell in a 3D grid. In comparison, our screen-space cut
sharing enables efficient GPU implementation and screen-space
subsampling as explained below.

3.4 Interleaved Sampling
Since the cut sharing technique partitions all scene lights into
disjoint light clusters (i.e. light subtrees under the cut) for every
k ×k pixel block, interleaved sampling of many lights [Segovia et al.
2006; Wald et al. 2002] can be naturally used here, such that each
pixel in anm ×m sub-block only samples from a subset of all light
clusters, wherem ≤ k and k is a multiple ofm. Note that, though we
use square blocks and sub-blocks, they can be rectangular as well.
The lighting contribution from the lights within a sub-block is later
shared with the neighboring pixels in a reconstruction process.

Interleaved sampling [Segovia et al. 2006; Wald et al. 2002] par-
titions all light sources into m2 subsets. Each subset is assigned
to one pixel within a block ofm ×m pixels. The lighting for each
pixel is computed using its subset, reducing the number of light
sources used per pixel by 1/m2. After computing lighting, a blur-
ring kernel filters the irradiance buffer to remove the structured
noise artifacts, using a discontinuity buffer to avoid blurring across
geometric edges.

In our method, we instead partition the light subtrees under the
chosen cut. Each pixel within a sub-block ofm ×m pixels receives
a subset of the light subtrees and samples only those subtrees.
Note that both interleaved sampling (using a subset of the light
subtrees) and light sampling (randomly picking lights within each
subtree) lead to noise in lighting estimation. Therefore, a simple
blurring kernel (like a Gaussian filter used in prior work) may not
be sufficient to clear the noise. Instead a geometry-aware denoiser,
like SVGF [Schied et al. 2017], can be applied using more aggressive
parameters (such as more blending passes) than typical settings
used without interleaved sampling.

The benefit of interleaved sampling is that it can effectively
increase the number of light clusters (i.e. the number of nodes

0.8

1.0

1.2

1.4

1.6

1.8

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64

M
SE

 (r
el

at
iv

e)

Sa
m

pl
in

g 
Ti

m
e 

(re
la

tiv
e)

Cut Sharing Block Size 𝑘𝑘

Figure 3: The relationship between cut sharing block size k and
sampling time (blue line) and MSE (orange line), generated using the
camera view and sample count in Figure 9. The values are relative to
the sampling time and MSE of the image rendered without cut sharing
(lower is better).

along the cut) for a local pixel neighborhood without increasing
the number of light samples per pixel. This way, we can process
a deeper cut, which often leads to higher quality. Furthermore,
deeper cuts would also mean fewer steps needed for hierarchical
importance sampling to reach a leaf node, which improves the
sampling performance.

4 IMPLEMENTATION DETAILS
For generating our perfect light tree (or a bottom-level tree when
using a two-level light tree), we first sort all light primitives (points
or triangles) based on their centroid positions, using a 30-bit Morton
code with 10 bits for each of the x, y, and z coordinates. The centroid
positions are quantized using the bounding box of all light sources
in the tree (i.e. the global light bounds). We use parallel bitonic sort
[Batcher 1968] on 64-bit key-value pairs to produce a sorted index
list. This sorted index list is used to populate the leaf level. In our
implementation we limit the maximum number of light primitives
in each leaf node to 1.

After generating the leaf level, we generate the internal levels in
groups. All levels in a group are built in parallel. Given source level
ℓs , and d destination levels ℓs + 1 to ℓs +d , each destination level is
built directly from the source level ℓs . Thus, each destination node
at level ℓ is formed by merging 2ℓ−ℓs source nodes.

In our implementation, the nodes of perfect binary trees do not
store light orientation bounding cones. While this overestimates
the geometry term used for computing cluster error bounds and
sampling weights, we observed only subtle loss of sampling quality
in our tests. On the other hand, skipping the cone storage allows us
to pack the entire data per light tree node into 32 bytes and helps
to align the light tree levels to 64 byte cache lines.

For cut sharing, we use k = 8 as the block size for a balance
between speed and quality. In our test, we have observed that
using a block size smaller than 8 introduced a significant overhead,
resulting in slower rendering than not using cut sharing. On the
other hand, using a larger block size than 8 rapidly increased the
MSE with only minor improvement in sampling time (Figure 3).
With a block size of 8, the interleaved sampling sub-block sizem
can be chosen as 2, 4, or 8.



Real-Time Stochastic Lightcuts Symposium on Interactive 3D Graphics and Games (I3D), 2020,

Using n light samples per pixel, we pick a cut with n subtrees
shared by an entire block. Our interleaved sampling implementation
distributes the n subtrees to the pixels within a sub-block as evenly
as possible. Each pixel with index p within anm ×m sub-block (i.e.
p ∈ {0, 1, ...m2 − 1}) uses the subtrees tp through tp+1 − 1, where
tp ∈ {0, 1, ...n − 1}, such that

tp =
⌊ pn
m2

⌋
. (3)

In our implementation, we also rotate the light cluster assignment
of pixels within a sub-block, so that the same pixel does not get
the same clusters every frame. This allows achieving better quality
with spatiotemporal filtering. At each frame f , each pixel i within
a sub-block is assigned an index of p = i + f (mod m2).

5 RESULTS
We present test results in different scenes with many lights. Our
results do not include interleaved sampling (Section 3.4), unless oth-
erwise stated. We compute the flux of textured emitters using the
method introduced by Moreau and Clarberg [2019]. All scenes but
Lumberyard Bistro use a one-level light tree. The Amazon Lumber-
yard Bistro scene uses a two-level light tree mentioned in Section 3.1
to improve the sampling quality since the mesh lights have more
irregular shapes than other scenes. All scenes only evaluate direct
lighting from the light sources or virtual lights. Direct lighting sam-
ples are only generated by sampling the lights, without multiple
importance sampling. All random numbers used for sampling are
generated using the GPU Tiny Encryption Algorithm [Zafar et al.
2010]. The results are rendered at 1920 × 1080 resolution using an
NVIDIA RTX 2080 graphics card on a computer with an Intel Core
i7-8700K CPU and 16GB RAM. We implemented our algorithm
using the Direct3D 12 graphics API with DirectX Raytracing (DXR)
capability. All timings are averaged over 512 frames.

5.1 Light Tree Construction
We present the breakdown of light tree construction time in Table 1
using two scenes. In the Crytek Sponza scene, we generate approxi-
mately 100,000 virtual point lights from a single sun (point) light by
periodically varying the sun angle via ray tracing in every frame.
The Cornell Box scene includes 12 animated mesh lights with 12,146
emissive triangles. The bounding box of all lights is first computed
using parallel reduction. Notice that sorting is the bottleneck of
our light tree construction.

Our light tree construction on the GPU is more than two orders
of magnitude faster than the agglomerative clustering on the CPU
that produces an unbalanced tree. Agglomerative clustering takes
251 ms for Crytek Sponza and 22 ms for Cornell Box on CPU, while
our tree construction takes only 0.43 ms and 0.15 ms on the GPU,
respectively.

Note that it is possible to construct an unbalanced light tree
using divisive clustering [Walter et al. 2008], which splits nodes by
spatial median in a top-down order. Divisive clustering is faster than
agglomerative clustering and more suitable for a GPU implementa-
tion. Nonetheless, divisive clustering is not expected to produce a
light tree with higher quality that would lead to lower noise in light
sampling, as compared to agglomerative clustering. Also, since it
would produce an unbalanced tree, it would not have the sampling

Table 1: Breakdown of the light tree construction time.

Crytek Sponza Cornell Box
Geometry update N/A (0%) 0.01 ms (6%)
Compute bounds 0.03 ms (7%) 0.02 ms (10%)
Morton code generation 0.01 ms (3%) 0.01 ms (4%)
Sorting 0.28 ms (63%) 0.07 ms (45%)
Building the leaf level 0.03 ms (8%) 0.01 ms (5%)
Building internal levels 0.08 ms (19%) 0.05 ms (29%)
Total Time 0.43 ms (100%) 0.15 ms (100%)

(a) ATS (5 spp)
21.9 ms

(b) Ours (11 spp)
22.1 ms

(c) Reference
5 min

Figure 4: Equal sampling time (excluding construction time) com-
parison between (a) a real-time implementation of Adaptive Tree
Splitting (ATS) [Moreau et al. 2019] and (b) our method, using a dy-
namic lighting condition with 100,000 VPLs in the Crytek Sponza
scene.

efficiency of our perfect trees, even it could be optimized to achieve
construction speeds closer to our method.

5.2 Comparison to Prior Work
We compare our method to a real-time implementation of adaptive
tree splitting (ATS) [Moreau et al. 2019]. The light BVH for ATS
is built and updated on the CPU using surface area orientation
heuristic. Our method uses a single-level perfect light tree, which
is rebuilt every frame on the GPU.

One advantage of our method is that by improving the efficiency
of light sampling, we can use more light samples. This is demon-
strated in the example in Figure 4. Using (approximately) the same
light sampling time (excluding the light tree construction time) in
this scene, our method can process 11 light samples during the time
it takes for ATS to process 5 light samples per pixel. As a result, the
noise (prior to filtering) is substantially less with our method.

Another example comparing our method to ATS for equal sam-
pling time (excluding light tree construction time) is shown in
Figure 5. Again, our method is able to process more light samples
within the same sampling time, resulting in lower noise. Figure 6
shows a close-up of the same scene before and after filtering. Notice
that the noise with ATS is not entirely eliminated after filtering and
presents itself as lower-frequency noise.



Symposium on Interactive 3D Graphics and Games (I3D), 2020, Daqi Lin and Cem Yuksel

(a) ATS (4 spp)
18.4 ms

(b) Ours (13 spp)
18.1 ms

(c) Reference
4 min

Figure 5: Equal sampling time (excluding light tree construction
time) comparison between (a) a real-time implementation of Adaptive
Tree Splitting (ATS) [Moreau et al. 2019] and (b) our method, with
dynamic illumination in the Cornell Box scene.

The comparison results are summarized in Table 2, along with
ATS results using equal sample count. Notice that for the Crytek
Sponza scene the light tree update time for ATS on the CPU is orders
of magnitude slower than our light tree construction on the GPU.
For the Cornell Box scene, on the other hand, we use a two-level
light tree with ATS and only the small top-level tree is updated
every frame and the bottom-level trees (one for each mesh light)
remain constant, significantly reducing the light tree update time of
ATS. In comparison, our light tree construction still works multiple
times faster, even though it rebuilds an entire (single-level) light tree
for every frame from scratch on the GPU. The table also includes
mean square error (MSE) and structural similarity index (SSIM)
values. Note that the tree quality of ATS allows it to achieve lower
noise (i.e. lower MSE and SSIM). This advantage of ATS is due to the
fact that we use a perfect tree that delivers lower sampling quality.
On the other hand, ATS requires substantially longer sampling time
to process as many samples as our method.

Table 2: Comparison to real-time Adaptive Tree Splitting (ATS).

Light Tree Samp. Samp. Avrg. Avrg.
Update Time Count MSE SSIM

ATS CPU: 176.6 ms 21.9 ms 5 0.090 0.223
ATS CPU: 176.6 ms 48.1 ms 11 0.058 0.277
Ours GPU: 0.4 ms 22.1 ms 11 0.064 0.254
ATS CPU: 0.6 ms 18.4 ms 4 0.084 0.168
ATS CPU: 0.6 ms 58.9 ms 13 0.033 0.222
Ours GPU: 0.2 ms 18.1 ms 13 0.040 0.200

5.3 Evaluation of Light Sampling Strategies
In Figures 7 & 8 we present (approximately) equal sampling time
comparisons of our real-time stochastic lightcuts method to two
alternatives: uniform random sampling without a light tree and
sampling directly from a light tree with no cuts (i.e. without se-
lecting a cut). Sampling with no cuts uses hierarchical importance
sampling, starting from the root of the tree for each light sample,
using our weight computation scheme. Note that directly sampling

(a) ATS (unfiltered) (b) Ours (unfiltered)

(c) ATS (filtered) (d) Ours (filtered)

Figure 6: Equal sampling time (≈18 ms) comparison between (a) a
real-time implementation of Adaptive Tree Splitting (ATS) [Moreau
et al. 2019] and (b) our method in the Cornell Box scene. (c-d) the
bottom row shows the results after filtering with SVGF (α = 0.2) [Schied
et al. 2017]. Noise on the lower part of the torus in the filtered ATS
result is apparent even after temporal accumulation of samples.

a light tree is the approach used in some recent work [Moreau and
Clarberg 2019; Moreau et al. 2019]. In comparison, our method uses
stochastic lightcuts with cut sharing; thus, hierarchical importance
sampling traverses the selected subtrees. In these Figures we also
use two alternatives for light trees: unbalanced tree generated using
agglomerative clustering on the CPU and perfect tree generated
using our method on the GPU. The nodes of the unbalanced trees
contain orientation bounding cones and child index offsets, which
provide better sampling quality but some reduction in sampling
speed (in addition to the extended build time). The examples in
Figure 7 use single-level perfect trees and the example in Figure 8
uses a two-level perfect tree (the bottom-level perfect trees are
built on the CPU in our implementation). The reference images
are generated using stochastic lightcuts results with 65,536 total
samples per pixel.

Notice that in all four scenes the highest light sample count is
achieved by either our stochastic lightcuts method with perfect
tree or random sampling. While uniform random sampling can-
not effectively make use of the relatively high sample count, our
method leads to a relatively low noise solution. The only exception
is the Arnold Buildings scene, where the quality improvement of
using an unbalanced tree makes a significant-enough improvement,
so that our stochastic lightcuts method with an unbalanced tree
provides the best quality, even by using fewer light samples than
our method with a perfect light tree. This shows the performance
gain of using a perfect light tree may not always offset the poten-
tial reduction in the tree quality. However, this comparison does
not include the substantially longer build time of the unbalanced
tree. Notice that our method benefits from the fast sampling speed



Real-Time Stochastic Lightcuts Symposium on Interactive 3D Graphics and Games (I3D), 2020,

Perfect Tree + Filtered Random Unbalanced Tree Perfect Tree
Real-time Stochastic Lightcuts Sampling No Cuts Lightcuts No Cuts Lightcuts Reference

Crytek Sponza Build Time: - - - CPU: 251 ms CPU: 251 ms GPU: 0.4 ms GPU: 0.4 ms
261,798 triangles Sampling Time: 31.3 ms 29.4 ms 29.1 ms 29.3 ms 29.7 ms
100,000 virtual point lights Light Samples: 12 6 9 7 17

MSE: 0.108 0.098 0.078 0.097 0.050
SSIM: 0.181 0.194 0.222 0.195 0.285

Cornell Box Build Time: - - - CPU: 22.4 ms CPU: 22.4 ms GPU: 0.2 ms GPU: 0.2 ms
12,156 triangles Sampling Time: 29.9 ms 29.4 ms 30.8 ms 30.4 ms 30.5 ms
12,146 triangle lights Light Samples: 30 9 14 16 23

MSE: 0.055 0.048 0.028 0.036 0.023
SSIM: 0.181 0.178 0.217 0.193 0.238

Arnold Buildings Build Time: - - - CPU: 8.1 ms CPU: 8.1 ms GPU: 0.1 ms GPU: 0.1 ms
94,206 triangles Sampling Time: 30.4 ms 30.4 ms 29.6 ms 30.7 ms 30.2 ms
4,596 triangle lights Light Samples: 35 12 17 19 29

MSE: 0.046 0.021 0.011 0.033 0.019
SSIM: 0.439 0.484 0.534 0.457 0.503

Figure 7: Visual and quantitative comparison of light sampling methods with (approximately) equal sampling time. The unbalanced trees are
built on the CPU using agglomerative clustering and perfect trees are build using our method on the GPU.

which allows it to use 1.4× - 2.8×more samples than other methods.
On the other hand, methods based on unbalanced light trees have
prohibitively expensive built time (8.1 ms - 251.0 ms) which make
them impractical to use for fully dynamic scenes.

We provide numerical comparisons using equal sample count (8
light samples per pixel) in Table 3, showing total frame render time,

sampling time (including cut selection), mean square error (MSE),
and structural similarity index (SSIM). Notice that our method
with a perfect tree is faster in both total frame time and sampling
time than all alternatives, except for random sampling. In fact, our
method delivers a higher sampling speed than random sampling
in the Crytek Sponza scene, which is likely due to more coherent



Symposium on Interactive 3D Graphics and Games (I3D), 2020, Daqi Lin and Cem Yuksel

Two-Level Perfect Trees + Filtered Random Unbalanced Tree Two-Level Perfect Trees
Real-time Stochastic Lightcuts Sampling No Cuts Lightcuts No Cuts Lightcuts Reference

Lumberyard Bistro Build Time: - - - CPU: 44.4 ms CPU: 44.4 ms GPU: 3.2 ms GPU: 3.2 ms
2,837,137 triangles Sampling Time: 29.5 ms 30.7 ms 30.0 ms 29.2 ms 30.7 ms
200 mesh lights Light Samples: 13 6 9 8 16
24,782 emissive triangles MSE: 0.033 0.025 0.023 0.028 0.022

SSIM: 0.160 0.210 0.222 0.194 0.235

Figure 8: Visual and quantitative comparison of light sampling methods with (approximately) equal sampling time. The unbalanced trees are
built on the CPU using agglomerative clustering and perfect trees are build using our method on the GPU.

Table 3: Comparisons using 8 light samples per pixel.

Random Unbalanced Tree Perfect Tree
Sampling No Cuts Lightcuts No Cuts Lightcuts

Frame Time
Crytek Sponza 29.9 ms 300.1 ms 287.9 ms 43.7 ms 27.4 ms
Cornell Box 13.8 ms 53.1 ms 44.7 ms 22.3 ms 19.1 ms
Arnold Buildings 12.7 ms 26.5 ms 21.5 ms 18.9 ms 15.9 ms
Lumberyard Bistro 28.1 ms 52.0 ms 36.9 ms 39.9 ms 28.7 ms
Sampling Time
Crytek Sponza 20.8 ms 39.3 ms 26.1 ms 33.4 ms 17.4 ms
Cornell Box 7.7 ms 25.7 ms 18.6 ms 14.8 ms 11.8 ms
Arnold Buildings 6.4 ms 19.9 ms 15.1 ms 12.4 ms 9.8 ms
Lumberyard Bistro 18.1 ms 41.0 ms 26.9 ms 29.2 ms 18.7 ms
MSE
Crytek Sponza 0.119 0.088 0.093 0.092 0.085
Cornell Box 0.123 0.053 0.048 0.070 0.065
Arnold Buildings 0.107 0.030 0.039 0.063 0.065
Lumberyard Bistro 0.035 0.022 0.025 0.028 0.028
SSIM
Crytek Sponza 0.170 0.208 0.205 0.201 0.214
Cornell Box 0.155 0.173 0.179 0.162 0.165
Arnold Buildings 0.369 0.451 0.436 0.403 0.401
Lumberyard Bistro 0.149 0.232 0.208 0.195 0.188

shadow rays. However, the quality improvement over random sam-
pling (as can be seen by the MSE and SSIM numbers) is substantial,
as expected.

Also notice that, using 8 light samples per pixel, there is little
numerical difference in quality between using lightcuts and directly
sampling the light tree with no cuts. Indeed, in the Arnold Buildings
scene, using no cuts actually provides slightly better quality. This
is mainly because, when using relatively few light samples, the
selected cut may not always provide a good clustering of lights and
some light trees may have substantially stronger illumination than
others. Therefore, using one light sample per subtree, as we use in
our stochastic lightcuts approach, does not always provide the best
sample distribution. Nonetheless, the performance improvement

due to cut sharing allows usingmore light samples per pixel, thereby
improving the final result within the same render time.

Moreover, using an unbalanced tree often improves the sampling
quality with the same number of samples. On the other hand, the
cost of building an unbalanced tree and sampling it leads to using
fewer light samples within the same render time.

5.4 Light Sampling Improvements
Our cut sharing method (Section 3.3) can provide substantial re-
duction in sampling time. An example of this is shown in Figure 9,
comparing sampling quality and performance with and without
cut sharing. Notice that images with cut sharing can include visual
artifacts prior to filtering, particularly near depth discontinuities
(Figure 9a). Yet, after applying spatiotemporal filtering, it produces
indistinguishable filtered results (Figure 9c). In terms of perfor-
mance, cut sharing provides about 20% speedup in sampling time
in this example, including the overhead of the cut selection compu-
tation, which takes less than 2% of the light sampling time.

As we explain in Section 3.1 our method permits using two-level
light trees. Using a two-level light tree introduces some additional
cost, both in light tree construction and light sampling. On the
other hand, depending on the scene, the improvement over using
a single perfect tree can be substantial. We demonstrate this in
Figure 10 using the Amazon Lumberyard Bistro scene. In this case,
using a two-level light tree slightly increases the light sampling
time from 17.4 ms to 18.7 ms, but it also reduces the noise. A two-
level tree is expected to provide some improvement in quality and
some reduction in performance, but whether a two-level tree would
be beneficial over a single-level perfect tree depends on the scene.

As we explain in Section 3.4, our cut sharing approach allows
using interleaved sampling for further reducing the sampling cost
or increasing the effective sample count. The example in Figure 11
shows the Amazon Lumberyard Bistro scene rendered with and
without interleaved sampling, using 8 samples per pixel. In this
case, interleaved sampling uses a sub-block size of 2 × 2. There-
fore, each cut for each sub-block contains 32 light samples. As a



Real-Time Stochastic Lightcuts Symposium on Interactive 3D Graphics and Games (I3D), 2020,

(a) (b)

(c) (d)

Figure 9: Images rendered with and without cut sharing using 32
light samples per pixel: (a) cut sharing with k = 8 (sampling time:
31.3 ms) before filtering, (b) no cut sharing (sampling time: 37.8 ms)
before filtering, (c) cut sharing after filtering, and (d) no cut sharing
after filtering. The filtered results are generated using an SVGF filter
[Schied et al. 2017] with α = 0.2 and accumulation of 5 frames.

(a) Single-Level (b) Two-Level (c) Reference
Figure 10: The quality improvement of using a two-level tree: images
for both (a) single-level and (b) two-level trees are rendered using
stochastic lightcuts with 8 light samples per pixel.

result, interleaved sampling can approximate the quality of using
32 light samples by computing 8 light samples per pixel. Note that
interleaved sampling is particularly effective when combined with
spatiotemporal filtering.

Figure 12 compares the performance of hierarchical importance
sampling using the new weight computation method we introduced
in Section 3.2 to the weight computation scheme in the stochastic
lightcuts paper [Yuksel 2019]. Notice that in all our test scenes our
newweights computation provides aminor but visible improvement
in sampling quality.

6 LIMITATIONS
While our perfect binary trees can be built extremely fast on the
GPU using Morton codes, the resulting light trees lead to more
noise as compared to unbalanced light trees generated with ag-
glomerative clustering. This is because using a balanced tree and
only considering spatial proximity when partitioning the nodes

(a) No Inter. Samp.
8 spp
18.7 ms

(b) Interleaved Samp.
8 spp (2 × 2)
21.0 ms

(c) No Inter. Samp.
32 spp
56.1 ms

Figure 11: Interleaved sampling: (a) no interleaved sampling with 8
samples per pixel, (b) interleaved sampling within a 2 × 2 sub-block
with 8 samples per pixel, approximating 32 samples per pixel, and
(c) no interleaved sampling with 32 samples per pixel. The images
on the bottom row show results filtered results with SVGF [Schied
et al. 2017] without temporal accumulation (to amplify the difference
of quality). The images are rendered using the screen and camera
configuration of Lumberyard Bistro in Figure 8.

limits the quality of the light tree. Although the improvement in
sampling speed with perfect trees can compensate for the loss in
tree quality in our tests, they might be less effective in some scenes.

While our cut sharing technique has been effective in our tests, it
might lead to visual artifacts in some scenes. In particular, specular
highlights on highly glossy surfaces near cut sharing block bound-
aries may form discontinuities that would be difficult to detect with
a geometry-aware filter. Furthermore, since our cut sharing method
uses screen-space blocks, the chosen cut for a block may not be
ideal for all pixels of the block, particularly near depth discontinu-
ities, and it is not suitable for more general applications, like path
tracing or ray traced reflections.

7 CONCLUSION
We have presented a real-time light sampling technique for scene
with many lights. Our method extends stochastic lightcuts by using
a perfect binary light tree with a novel weight computation scheme
and cut sharing. By minimizing the cost of light sampling, our
method allows using more light samples within the same render
time for achieving higher sampling quality. Since our method does
not restrict the types of lights that can be sampled and the light tree
can be constructed efficiently every frame, we can accommodate
fully dynamic scenes with a variety of light types.

ACKNOWLEDGMENTS
We thank Morgan McGuire [2017] for providing the remastered
version of Amazon Lumberyard Bistro we used in our tests and the
anonymous reviewers for their helpful feedback.



Symposium on Interactive 3D Graphics and Games (I3D), 2020, Daqi Lin and Cem Yuksel

[Yuksel 2019]

MSE: 0.085

Ours

MSE: 0.085

Reference

MSE: 0

MSE: 0.071 MSE: 0.065 MSE: 0

MSE: 0.072 MSE: 0.065 MSE: 0

MSE: 0.032 MSE: 0.028 MSE: 0

Figure 12: Hierarchical importance sampling using the weight com-
putation scheme of Yuksel [2019] and our new weight computation
method (Section 3.2).

REFERENCES
Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings of

the April 30–May 2, 1968, spring joint computer conference. ACM, 307–314.
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, BruceWalter, and

Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer
Graphics Forum 33, 1 (2014), 88–104.

Tomáš Davidovič, Iliyan Georgiev, and Philipp Slusallek. 2012. Progressive lightcuts
for GPU. In ACM SIGGRAPH 2012 Talks. ACM, 1.

T Davidovic, J Krivnek, M Hasan, P Slusallek, and K Bala. 2010. Combining global and
local lights for high-rank illumination effects. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia) 29, 5 (2010).

Alejandro Conty Estevez and Christopher Kulla. 2018. Importance sampling of many
lights with adaptive tree splitting. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 1, 2 (2018), 25.

Sebastian Fernandez, Kavita Bala, and Donald P Greenberg. 2002. Local Illumination
Environments for Direct Lighting Acceleration. Rendering Techniques 2002 (2002),
13th.

Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix row-column sampling for
the many-light problem. ACM Transactions on Graphics (TOG) 26, 3 (2007), 26.

Miloš Hašan, Edgar Velázquez-Armendariz, Fabio Pellacini, and Kavita Bala. 2008. Ten-
sor Clustering for Rendering Many-light Animations. In Proceedings of Eurographics
Workshop on Rendering. 1105–1114.

Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hujun Bao. 2015. A matrix sampling-
and-recovery approach for many-lights rendering. ACM Transactions on Graphics

(TOG) 34, 6 (2015), 210.
Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th annual confer-

ence on Computer graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 49–56.

Alexander Keller, Carsten Wächter, Matthias Raab, Daniel Seibert, Dietger van Antwer-
pen, Johann Korndörfer, and Lutz Kettner. 2017. The iray light transport simulation
and rendering system. In ACM SIGGRAPH 2017 Talks. ACM, 34.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and
Dinesh Manocha. 2009. Fast BVH construction on GPUs. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 375–384.

Daqi Lin and Cem Yuksel. 2019. Real-Time Rendering with Lighting Grid Hierarchy.
Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of I3D 2019) 2, 1, Article 8
(2019), 17 pages.

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
Pierre Moreau and Petrik Clarberg. 2019. Importance Sampling of Many Lights on the

GPU. In Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and
Other APIs, Eric Haines and Tomas Akenine-Möller (Eds.). Apress, Berkeley, CA,
255–283.

Pierre Moreau, Matt Pharr, and Petrik Clarberg. 2019. Dynamic Many-Light Sampling
for Real-Time Ray Tracing. In High-Performance Graphics - Short Papers, Markus
Steinberger and Tim Foley (Eds.). The Eurographics Association.

Ola Olsson and Ulf Assarsson. 2011. Tiled shading. Journal of Graphics, GPU, and
Game Tools 15, 4 (2011), 235–251.

Ola Olsson, Markus Billeter, and Ulf Assarsson. 2012. Clustered deferred and forward
shading. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on
High-Performance Graphics. Eurographics Association, 87–96.

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: matrix slice sampling for the many-
lights problem. ACM Trans. Graph. 30, 6 (2011), 179–1.

Eric Paquette, Pierre Poulin, and George Drettakis. 1998. A Light Hierarchy for Fast
Rendering of Scenes with Many Lights. Computer Graphics Forum 17, 3 (1998),
63–74.

Hauke Rehfeld and Carsten Dachsbacher. 2016. Lightcut interpolation. In Proceedings
of High Performance Graphics. 99–108.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and
Marco Salvi. 2017. Spatiotemporal variance-guided filtering: real-time reconstruc-
tion for path-traced global illumination. In Proceedings of High Performance Graphics.
ACM, 2.

Benjamin Segovia, Jean Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006.
Non-interleaved deferred shading of interleaved sample patterns. In Graphics Hard-
ware. 53–60.

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques
for direct lighting calculations. ACM Transactions on Graphics (TOG) 15, 1 (1996),
1–36.

Yusuke Tokuyoshi and Takahiro Harada. 2016. Stochastic light culling. Journal of
Computer Graphics Techniques Vol 5, 1 (2016).

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression
for adaptive direct illumination sampling. ACM Transactions on Graphics (TOG) 37,
4 (2018), 125.

Petr Vévoda and Jaroslav Křivánek. 2016. Adaptive direct illumination sampling. In
SIGGRAPH ASIA 2016 Posters. ACM, 43.

Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek.
2002. Interactive global illumination. (2002).

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimen-
sional Lightcuts. ACM Transactions on Graphics (Proceedings of SIGGRAPH ’06) 25,
3 (2006), 1081–1088.

Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. 2008. Fast agglomera-
tive clustering for rendering. In 2008 IEEE Symposium on Interactive Ray Tracing.
IEEE, 81–86.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P Greenberg. 2005. Lightcuts: a scalable approach to illumination. ACM
Transactions on graphics (TOG) 24, 3 (2005), 1098–1107.

Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional Lightcuts. ACM
Transactions on Graphics 31, 4, Article 59 (2012), 11 pages.

Gregory J Ward. 1994. Adaptive shadow testing for ray tracing. In Photorealistic
Rendering in Computer Graphics. Springer, 11–20.

Cem Yuksel. 2019. Stochastic Lightcuts. In High-Performance Graphics (HPG 2019). The
Eurographics Association.

Can Yuksel and Cem Yuksel. 2017. Lighting grid hierarchy for self-illuminating
explosions. ACM TOG (Proc. SIGGRAPH) 36, 4 (2017), 110.

Fahad Zafar, Marc Olano, and Aaron Curtis. 2010. GPU random numbers via the
tiny encryption algorithm. In Proceedings of the Conference on High Performance
Graphics. Eurographics Association, 133–141.

https://casual-effects.com/data

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Stochastic Lightcuts

	3 Real-Time Stochastic Lightcuts
	3.1 Perfectly Balanced Light Tree
	3.2 Light Tree Traversal
	3.3 Light Sampling with Cut Sharing
	3.4 Interleaved Sampling

	4 Implementation Details
	5 Results
	5.1 Light Tree Construction
	5.2 Comparison to Prior Work
	5.3 Evaluation of Light Sampling Strategies
	5.4 Light Sampling Improvements

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

