High-Performance Graphics (2019) Short Paper
T. Foley and M. Steinberger (Editors)

Stochastic Lightcuts

Cem Yuksel ©

University of Utah, UT, USA

Lightcuts Lightcuts Stochastic Lightcuts
Max Lights: 10 Max Lights: 1000 Max Lights: 10
g
g
El —‘— ‘ _‘-
g -
&

12 minutes Time: 43 seconds
|]

Path Tracing

Time: 87 minutes

Time: 4 hours

Virtual Lights

Time: 6 minutes

Time: 3 minutes

Figure 1: Comparison of lightcuts and our stochastic lightcuts for direct illumination estimation with different rendering methods: (top)
direct illumination only from 1400 light sources, (middle) path tracing up to 5 bounces with 1644 light sources, and (bottom) one million
virtual lights, using 64 samples per pixel. Notice that limiting lightcuts to 10 light samples produces a substantial amount of error and
correlation artifacts. Using up to 1000 light samples reduces the error, but still leads to visible flickering and substantially increases the
render time. Our stochastic lightcuts method can produce a fast, temporally-stable, and low-noise lighting estimation with only 10 samples.

Abstract

We introduce stochastic lightcuts by combining the lighting approximation of lightcuts with stochastic sampling for efficiently
rendering scenes with a large number of light sources. Our stochastic lightcuts method entirely eliminates the sampling cor-
relation of lightcuts and replaces it with noise. To minimize this noise, we present a robust hierarchical sampling strategy,
combining the benefits of importance sampling, adaptive sampling, and stratified sampling. Our approach also provides tem-
porally stable results and lifts any restrictions on the light types that can be approximated with lightcuts. We present examples
of using stochastic lightcuts with path tracing as well as indirect illumination with virtual lights, achieving more than an order
of magnitude faster render times than lightcuts by effectively approximating direct illumination using a small number of light
samples, in addition to providing temporal stability. Our comparisons to other stochastic sampling techniques demonstrate that
we provide superior sampling quality that matches and improves the excellent convergence rates of the lightcuts approach.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

https://orcid.org/0000-0001-7756-0901

Cem Yuksel / Stochastic Lightcuts

1. Introduction

The problem of rendering with a large number of light sources
(ak.a. the many-lights problem) is often considered in the con-
text of global illumination computation with many virtual light
sources [DKH™ 14]. Yet, the many-lights problem has growing ap-
plicability in computer graphics, as we continue to render more
complex scenes with more actual light sources in them.

Lightcuts [WFA*05] is one of the first methods introduced for
efficiently handling many lights, and it is still a preferred method.
On the other hand, lightcuts, like most other scalable lighting so-
lutions, is temporally unstable due to sampling correlation, which
leads to flickering and hinders its use in practice.

In this paper, we introduce stochastic lightcuts that incorporates
stochastic sampling into the illumination estimation framework of
lightcuts to eliminate the sampling correlation. To minimize the
sampling noise, we introduce a robust hierarchical sampling strat-
egy that combines the benefits of importance sampling, adaptive
sampling (provided by lightcuts), and stratified sampling (using
a light tree). Our method only modifies the light sampling order
of lightcuts, so it does not hinder its flexibility, applicability, or
its impressive convergence rate, and it can be easily incorporated
into an existing implementation of lightcuts. On the contrary, our
stochastic sampling solution introduces extra flexibility and allows
using complex light sources that can be difficult to handle using
lightcuts. Furthermore, stochastic lightcuts allows placing a user-
defined small upper bound on the number of light evaluations per
shading computation, which can significantly improve the render-
ing performance (Figure 1). With these properties, the stochastic
lightcuts approach offers the most efficient scalable lighting solu-
tion and without the stability problems of existing alternatives.

2. Background

Efficient solutions to the many-lights problem using lightcuts
[WFA*05] or matrix row-column sampling [HPB07] suffer from
sampling correlation that lead to temporal instabilities. The lighting
grid hierarchy method [YY17] provides a temporally-stable solu-
tion at the cost of sampling more lights, the cost of which can be
amortized by precomputing shadows or approximating them with
a few samples [LY19]. The recent adaptive tree splitting method
provides a hierarchical sampling approach, similar to our stochas-
tic lightcuts solution, but cannot provide the adaptivity of lightcuts
and its convergence rate is hindered by its importance formulation.

Our stochastic lightcuts solution extends the lightcuts method
[WFA™*05]. The lightcuts method starts with building a binary tree,
containing the actual light sources at its leaf nodes. Each inter-
nal node is used for approximating the illumination from all light
sources within its subtree. This is typically implemented as picking
one of the lights within the subtree as a representative light. The
light tree is constructed once, prior to rendering. During render-
ing, the light tree is evaluated at each shading point, starting from
the root node and its representative light. After evaluating the rep-
resentative light of a node, a conservative error bound is assigned
to the node using its bounding box, indicating the maximum pos-
sible intensity contribution due to the illumination that can come
from the subtree, assuming full visibility (i.e. no shadows). If this

error bound is below a user-specified percentage (typically 2%) of
the approximated total shading value, the lighting evaluation of the
node is accepted. Otherwise, its child nodes are evaluated. Due to
the construction of the light tree, one of the child nodes shares the
same representative light as the parent node. Therefore, light from
that child node can be quickly evaluated without the need for re-
computing the shadows of the shared representative light.

A common limitation of all these scalable many-lights solu-
tions is that they require a relatively large number of samples for
producing stable/low-noise results. Therefore, simple importance
sampling [SWZ96] is still commonplace in practice. Our stochas-
tic lightcuts method, in comparison, can produce temporally stable
and relatively low noise results with fewer samples. Therefore, it is
highly suitable for rendering algorithms that already rely on multi-
sampling, such as path tracing, and significantly improve their per-
formance by providing a low-cost estimation of lighting.

3. Stochastic Lightcuts

We introduce stochastic sampling into the lighting evaluation of
lightcuts to eliminate its sampling correlation (Section 3.1), replac-
ing the temporal instabilities of lightcuts with noise. For reducing
this noise, we introduce a robust hierarchical importance sampling
method (Section 3.2). Stochastic lightcuts can use the same light
tree as lightcuts with only minor modifications to the information
stored in each node and it can be easily implemented on top of an
existing lightcuts implementation (Section 3.3). Therefore, we only
describe the differences in the lighting approximation introduced
by stochastic light evaluations, as compared to lightcuts.

3.1. Stochastic Sampling with Lightcuts

The sampling correlation of the lightcuts approach is related to the
fact that the same light tree is used for rendering the entire image.
This is unavoidable in general, because the light tree construction
and storage can be expensive. The light tree, containing a repre-
sentative light per node, forms a spatially varying ordering of light
sources. The lighting estimation always begins with the represen-
tative light of the root node. Therefore, this light source is always
included in the lighting estimation of the entire scene. Similarly, the
representative lights at the higher levels of the hierarchy are more
likely to be used for the lighting estimation. This predetermined or-
der prior to rendering introduces sampling correlation. By using a
conservative error bound, the error within a subtree can be limited
to a user-defined percentage of the evaluated pixel color (usually set
to 2%). However, this does not bound the total error of the entire
lighting estimation. Therefore, errors due to sampling correlation
can be substantial and often lead to temporal instability.

This important limitation of lightcuts was also recognized in
prior work. The solution that is proposed as a part of the multidi-
mensional lightcuts method [WABGO06] was simply storing a list of
representative lights per node (such as 32) and randomly selecting
one at render time, using the intensities of these pre-selected lights
for importance sampling. This approach reduces the correlation,
but does not eliminate it. It also inflates the light tree storage. More
importantly, due to the performance advantages of sharing repre-
sentative lights between a node an its parent, this pre-selection is

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Cem Yuksel / Stochastic Lightcuts

not performed independently for each node and the sampling cor-
relation is not completely eliminated.

We eliminate the correlation by simply ignoring the representa-
tive lights during lighting estimation. Instead, we randomly pick
a light source within a given subtree. Any importance sampling
scheme can be used here for determining the probability p; of pick-
ing light source i within a subtree. Let ps be the cumulative proba-
bility of all lights within the subtree s. The estimated illumination
of the light subtree can be computed by simply scaling the illumi-
nation of the light with ps/p;. When the error of a node is above
the user-defined threshold and we need to evaluate the child nodes,
we only need to perform the lighting computation for one of the
child nodes, since the other one must contain the light source that
was randomly selected for evaluating the parent node. Therefore,
just like the original lightcuts method, the light evaluation (includ-
ing shadow computation) for the parent node is not wasted as we
move deeper into the light tree.

This simple modification provides three important benefits:

1. It replaces the predefined order of lights with a randomized or-
der and thereby completely eliminates the sampling correlation.

2. It allows using any type of light source. Since we do not rely on
representative lights and we use the actual lights for computa-
tion, we impose no restrictions on the light type. The resulting
illumination contribution of each light is merely scaled by the
corresponding probabilities, as explained above.

3. We can limit the number of lights evaluated during lighting ap-
proximation without risking excessive correlation artifacts.

When using representative lights, we must rely on the error
bound and traverse as deep into the light tree as necessary, and ter-
minating “cut” selection prematurely (when a maximum number of
light samples are computed) can have catastrophic results. This is
because the predefined order of representative lights at the higher
levels of the light tree can be pathological for estimating the light-
ing at some points in the scene, and lead to excessive amounts of
correlation artifacts. For example, if only a single light evaluation
is permitted, the same representative light would be used for the
entire scene. Using randomly selected lights, however, we would
simply introduce noise by limiting the number of evaluated lights.
This can be a significant advantage for some rendering algorithms,
such as path tracing, that would ultimately reduce the noise using
multi-sampling. Therefore, using path tracing, a faster and noisy
lighting estimation would typically be preferable over a slower and
more accurate one, and the performance improvements of using
fewer light evaluations per lighting estimation can be substantial
with minimal or no loss in the final image quality.

3.2. Hierarchical Importance Sampling

The optimal probabilities p; that would maximize the convergence
rate depend on the spatial relationship between the lights and the
point where lighting is evaluated. Therefore, the values p; should
ideally vary for each point in the scene. Instead of computing p;
for each light at each shading point, We use a hierarchical sam-
pling strategy. Instead of directly selecting a random light within a
subtree, we traverse the subtree step-by-step until we reach a leaf
node. Starting with the root node of the subtree, at each step we

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

randomly pick one of the child nodes using importance sampling.
The probabilities of picking either child node are assigned based
on the expected cumulative illumination contribution of each child
node. Note that how these probabilities are computed has utmost
importance. Using a poor strategy can result in a worse conver-
gence behavior than the simplest importance sampling scheme that
randomly selects a light purely based on its intensity [SWZ96].

3.2.1. Computing Child Node Probabilities

Let p; and p; represent the probabilities of selecting either one of
the child nodes for estimating the lighting at a scene point x. Fol-
lowing the error estimation mechanism of lightcuts, a naive choice
for determining the importance weights w; and w; for picking the
child nodes would be using the maximum possible illumination
that can come from each child node. The corresponding probabil-
ities are defined as p; =wji /(w1 +wp) and py = wy/(w) +wy).
These weights can be calculated for each node j using a con-
servative estimate for the maximum geometry term G (x), com-
puted using the node’s bounding box and its light direction boundsb
[WFA™*05, EK18]; another conservative estimate for bounding the
BRDF (Bidirectional Reflectance Distribution Function) of the ma-
terial M ;(x,m) [WFA*05], where o is the view direction; the total
intensity of the lights within the node I;; and the minimum distance

to the node’s bounding box d}mn(x). Thus, we can write

F;(x, I;
wj=](X‘Cl))H /2H , (1)

)
where Fj(x,®) = G;(x)M;(x,) is the reflectance bound, com-
bining the geometry and material terms. Note that out notation
slightly differs from the notation of the original lightcuts method
[WFA*05], as the inverse-square attenuation factor 1/ (d;nln ()c))2 is
not hidden in G;(x). Also note that in this notation we do not con-
sider directional light sources, which would not have the inverse-
square attenuation factor, so they need to be treated differently.

While the formulation in Equation 1 might appear reasonable at
first glance, it would lead to unacceptable weights for importance
sampling. This is because when x is within the bounding box of a
child node, d}"" (x) becomes zero and the weight becomes infinity.
When x is outside of the bounding box of the other child node, the
probability of selecting this other child node becomes zero, regard-
less of how much illumination it represents. Therefore, this sam-
pling scheme would not necessarily converge to the correct result.

A typical solution to this problem would be replacing the clos-
est distance ;" (x) with the distance to a point within the bound-
ing box of a node. Indeed, this is the approach used by adaptive
tree splitting [EK18] by computing the distance to the centroid of
the bounding box. However, regardless of how this point is cho-
sen, the singularity of inverse-square distance to a point, where the
weight would go to infinity, would not be entirely avoided. Also,
picking a particular point within the bounding box may lead to a
weight that can be a poor estimator of the incoming illumination
from within the entire bounding box, resulting in high noise and
low convergence. In effect, this solution reduces the singularity in
Equation 1 from an entire bounding box to a point, but does not
always improve the convergence of importance sampling, as com-
pared to merely considering the total light intensities [SWZ96].

Cem Yuksel / Stochastic Lightcuts

On the other hand, we cannot completely ignore the inverse-
square attenuation term, as it can be a significant factor in bounding
the illumination contribution of distant lights. Therefore, simply
considering the total light intensity I; or its modulation with the
reflectance bound F;(x, ®) are not ideal solutions either.

Our solution is simply combining the weights computed using
the minimum distance term d;""(x) and weights computed with-
out a distance term. At the higher levels of the hierarchy, where
the node bounding boxes are large and the minimum distance term
can be a poor indicator of the expected illumination coming from
a node, we simply ignore the distance term. For lower levels of the
hierarchy, where the node bounding boxes are sufficiently far from
X, we include the distance term. More precisely, we decide whether
to include the distance term by comparing the minimum distance
d""(x) to the size of the bounding box /; (i.e. the length of its

diagonal). The distance term is included only if d;-ni“(x) > ol for
both child nodes, where a is a user-defined scaling coefficient. We
use o0 = 1 for all examples in this paper. Let j and k indicate two
child nodes of an internal node. We compute the weights using

wj = Fj(x,0) [Ajx(x) @
where the attenuation term A ¢ (x) is
1 ¢ gmin min
———— ifdj"(x) > ol and " (x) > oy
Ajp(x) = § (@)’ . 3)
1 otherwise.

For incorporating directional lights with no attenuation factor,
we slightly modify the weight computation, such that

wj = Fj(x,0) ((HIJH - HI?‘DAJ*"(XH HI?H) @

where HI/D H is the total intensity of directional lights within the

node. Thus, the attenuation term does not impact the importance of
directional lights.

3.2.2. Dead Branches

We use the term dead branch to refer to the subtree under a node
that can contribute no illumination purely due to the reflectance
bounds of all lights within the subtree (not considering visibility/
shadows). We call all nodes within a dead branch dead nodes.

When the reflectance bound F;(x, ®) for the root node of a dead
branch is zero, the node is assigned zero probability and the dead
branch is automatically avoided during our hierarchical importance
sampling traversal. However, this behavior is not guaranteed. This
is because a typical computation of the reflectance bound would be
based on a conservative estimate, using the bounding box of the
light node [WFA*05, EK18], so a dead branch can be assigned a
non-zero probability.

Including dead branches in lighting estimation does not break
the lightcuts algorithm, especially when it is permitted to converge
using as many light samples as necessary to satisfy the error thresh-
old, but it introduces unnecessary computation cost. More impor-
tantly, when the maximum light sample count is limited, selecting
a dead branch can effectively waste a light sample and negatively
impact the quality of the lighting estimation. This is particularly im-
portant for fast lighting estimation with a small number of samples

using algorithms that rely on multi-sampling, such as path tracing.
Therefore, dead branches should be avoided when detected.

A dead branch is automatically detected and avoided when
F;(x,0) = 0 at its root node. Otherwise, we detect a dead branch
further down its subtree, where the importance weights wy and wyp
of the two child nodes of a node are both zero. Note that testing
whether wy +wy is zero is sufficient for detecting a dead branch,
because all possible subtrees within a dead branch include a node
with wi +wp = 0, since all leaf nodes of a dead branch contain
lights i with F;(x,®) = 0. However, the node that satisfies this con-
dition does not have to be the root node of the dead branch.

Once a dead branch is detected, we can simply terminate the
hierarchical traversal by returning any light within the subtree. The
selection of a light within a dead branch is inconsequential, since
none of them should have any effective illumination. Therefore, we
can simply return the representative light of an internal node and
skip the evaluation of the light source to save computation.

Yet, simply terminating the traversal and returning an arbitrary
light within the subtree of a dead branch would still waste a light
sample. Therefore, our solution is backtracking the hierarchical
traversal and making sure that we do not select a light within a dead
branch. This can be done by moving back up the light tree, skipping
the detected dead node by updating its probability to zero, and con-
tinuing the traversal using a different path down the light tree. Note
that in some cases the entire light tree can be a dead branch (i.e. a
dead tree) if the point X, where the illumination is computed, cannot
be illuminated by any light in the scene (based on the reflectance
bound alone, not considering visibility). Note that backtracking to
avoid dead branches introduces bias in light sampling.

3.3. Implementation

The lightcuts algorithm determines a “cut” through the light tree by
evaluating it starting from its root node. Each evaluated light tree
node is added to a light sample list (typically implemented using a
heap) to be returned. The nodes in the light sample list with an error
bound greater than the error threshold are replaced by their child
nodes (in the order of the largest error bound). When replacing a
node with its child nodes, only one of the child nodes requires a
full evaluation, while the other one (containing the light sample of
the parent node) uses the parent node’s data and only updates its
error bound and cluster intensity.

The implementation of the stochastic lightcuts algorithm in-
volves only two relatively minor changes. First, instead of simply
using the representative light of a light tree node, we use hierar-
chical importance sampling to select a light within the subtree of
the node. If the node is determined to be a dead node, we simply
skip adding the node to the light sample list. If the root node is a
dead node, we return an empty light sample list. Second, each light
sample returned must also be accompanied by the probability of
selecting the light sample within the subtree of the selected node.
Therefore, the light selection probabilities must be updated when
replacing a node in the light sample list with its child nodes.

4. Results

We evaluate our stochastic lightcuts method by first comparing
it to lightcuts and then comparing its sampling quality to other

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Cem Yuksel / Stochastic Lightcuts

Importance Sampling
T p—

Adaptive Tree Splitting
Pt St -}

Stochastic Lightcuts

Multidim. Lightcuts

1 sample

10 samples

100 samples

Figure 2: Comparison of the sampling quality of our stochastic lightcuts method to other related sampling techniques, rendered with a
single sample per pixel using 1, 10, and 100 light samples for lighting estimation. Traditional importance sampling [SWZ96] produces a
relatively low-noise image in well-lit areas (left column), but the noise increases in darker areas (right column). Adaptive tree splitting [EK1S8]
provides improved sampling quality for darker regions (right column), but introduces more noise in well-lit areas (left column), as compared
to traditional importance sampling. Multidimensional lightcuts [WABGO6] produces low noise in well-lit areas (left column), but sampling
quality degrades substantially in darker regions (right column) and the results are temporally unstable. Our stochastic lightcuts method

produces the best sampling quality in all cases.

related stochastic sampling techniques. The results are generated
with a custom renderer using Intel’s Embree ray tracing kernels
[WWB™14]. The error threshold for lightcuts and stochastic light-
cuts is set to 2%. All timing results are measured on a computer
with dual Intel Xeon CPUs running at 2.4 GHz (16 total cores).

4.1. Comparison to Lightcuts

We compare the results of lightcuts and stochastic lightcuts using
three different scenes. Figure 1 shows three different scenes with
three different rendering methods: direct illumination only, path
tracing, and virtual spherical lights [HKWBO09].

We show two different settings for lightcuts. The first one lim-
its the maximum number of light samples to 10. This causes the
lightcuts algorithm to produce a fast estimate of lighting, but this
relatively small limit on light samples does not allow lightcuts to
converge using its error threshold parameter. Therefore, the result-
ing images contain large blocks of dark areas, randomized shadow
patterns, and inconsistent illumination throughout the scenes with
sharp illumination variations.

The second setting for lightcuts allows the algorithm to converge
using its error threshold. In this case, we limit the maximum light
samples to 1000, which is close to brute-force lighting evaluation
in the first two scenes. However, lightcuts does not come close to
this maximum limit and typically returns an estimation using only
a few hundred light sources. Nonetheless, the performance gain
over brute force computation is limited, as compared to using much
fewer light samples. Moreover, the resulting solution still contains
sampling correlation that leads to visible flickering in animations.

Our stochastic lightcuts solution, in comparison, provides a fast
lighting estimation with low noise, using a maximum of 10 light
samples per lighting estimation. Since there is no sampling cor-
relation with stochastic lightcuts, the results do not contain visual

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

artifacts and it is temporally stable, using a different light tree at
each frame. The stochastic lightcuts algorithm takes considerably
more time than lightcuts with the same number of samples, due to
the cost of hierarchical traversal of the light tree down to leaf nodes.
Also, sampling correlation, while detrimental to quality, improves
performance with better cache utilization and leads to shorter ren-
der times using lightcuts with the same number of light samples.
Nonetheless, using only 10 light samples, we can provide a solu-
tion that is similar to the lightcuts solution with up to 1000 light
samples, and without its temporal instability. The render times are
also about an order of magnitude shorter. It should be noted that
multi-sampling used in these scenes help reduce the resulting noise
with stochastic lightcuts, but does not help lightcuts at all.

4.2. Stochastic Sampling Comparisons

We evaluate the sampling quality of our stochastic lightcuts method
by comparing it to traditional importance sampling [SWZ96],
adaptive tree splitting [EK18], and multidimensional lightcuts
[WABGO6]. We present the results of an experiment in Figure 2,
using a simple scene with 10,000 virtual lights. We use only a
single sample per pixel to clearly show the quality of light sam-
pling. Using multiple samples (i.e. multiple lighting estimations)
per pixel reduces the noise for all methods but multidimensional
lightcuts, which receives a relatively minor improvement from
multi-sampling due to sampling correlation.

In this scene, traditional importance sampling [SWZ96] provides
a good sampling quality, particularly for the top half of the image.
The bottom half, however, receives more noise because of the high
probability of sampling the original light, which is shadowed, and
the approximately equal probability of sampling any virtual light.

Adaptive tree splitting [EK 18] improves the sampling quality for
the darker bottom region of the image, as compared to traditional
importance sampling. On the other hand, the singularity in its im-

Cem Yuksel / Stochastic Lightcuts

portance formulation leads to poor importance estimates for the top
half of the image. As a result, the strong original light source is not
sampled as often and the importance estimates considerably deviate
from the illumination contributions of the selected lights, leading to
even more noise than purely considering light intensities, like tra-
ditional importance sampling [SWZ96].

The multidimensional lightcuts method [WABGO06] augments
lightcuts by storing 32 representative lights per light tree node. One
of these representative lights is randomly selected (using propor-
tional probabilities to light intensities) during the lighting estima-
tion of the node. Thus, it introduces some flavor of stochastic sam-
pling in lightcuts, but the benefits are highly limited. It preserves
the excellent convergence rates of lightcuts, such that the represen-
tative lights, chosen during the light tree construction, are likely to
produce low error. On the other hand, sampling correlation is not
entirely avoided, so the results display a similar temporal instabil-
ity to lightcuts. In this test scene, it provides excellent results for
the top half, but the bottom half is either completely dark (with 1
light sample) or extremely noisy and unstable (with 10 light sam-
ples). Using 100 light samples virtually eliminates the noise, but
the temporal instability persists.

Our stochastic lightcuts method provides the best sampling qual-
ity. Using a single light sample, it slightly improves the sampling
quality of traditional importance sampling in the top half of the im-
age, and it achieves a more significant improvement with more light
samples. This improvement is due to the importance estimation of
stochastic lightcuts, which locally-adaptive and provides improved
accuracy in importance estimation, considering the light distances
from the point where lighting is evaluated. In the bottom half, it
leads to a superior sampling quality than all other methods. Like
multidimensional lightcuts, it preserves the excellent convergence
rate of lightcuts when using a relatively large number of light sam-
ples, but it does not suffer from temporal instabilities.

5. Discussion and Future Work

While algorithmically similar to lightcuts, our stochastic lightcuts
solution is conceptually closer to traditional importance sampling
[SWZ96]. The light tree is mainly used for efficiently computing
importance sampling weights for lights. Therefore, stochastic light-
cuts is safe to use with an arbitrarily small number of maximum
light samples (such as one), though adding more light samples re-
duces the noise faster than traditional importance sampling.

Since the light tree is mainly used for computing the importance
weights, the construction of the light tree impacts the quality of
the sampling scheme. Our experiments with stochastic lightcuts re-
vealed that using the same set of light sources, different light trees
lead to different convergence rates at different parts of the image.
Indeed, a poorly constructed light tree means poor importance sam-
pling weights. In all our tests, we use the light tree construction al-
gorithm of the original lightcuts method [WFA*05], which consis-
tently provides superior sampling quality for stochastic lightcuts,
as compared to prior methods [SWZ96, WABGO06, EK18]. How-
ever, we have also noticed a more significant variation in sampling
noise with our method, depending on the construction of the light
tree. This suggests that the results of stochastic lightcuts can be

further improved by a specialized light tree construction algorithm,
which would be an interesting direction for future work. Note that
unlike the original lightcuts method that must use a stochastic light
tree construction algorithm to avoid introducing bias during its de-
terministic lighting estimation, stochastic lightcuts can use a deter-
ministic light tree construction algorithm, as it would not introduce
bias during rendering with its stochastic lighting estimation.

An important advantage of stochastic lightcuts is that it allows
achieving a fast lighting estimation using a very small number of
light samples. This is unlike any prior scalable lighting solution
[WFA™*05, WABGO06, HPB07, YY 17, EK 18], all of which require a
large number of samples in practice.

6. Conclusion

We have presented the stochastic lightcuts method, which intro-
duces stochastic sampling into the lighting estimation of lightcuts.
We have also presented a robust hierarchical importance sampling
approach for improving the estimation, especially when used with
a small number of light samples. Our approach eliminates the sam-
pling correlation problems of lightcuts that lead to temporal insta-
bilities and allows incorporating different light types, making our
solution suitable for a much wider range of applications. Further-
more, because we can effectively estimate the illumination using
a small number of light evaluations, we can achieve more than an
order of magnitude faster lighting estimation than lightcuts.

References

[DKH*14] DACHSBACHER C., KRIVANEK J., HASAN M., ARBREE A.,
WALTER B., NOVAK J.: Scalable realistic rendering with many-light
methods. Computer Graphics Forum 33, 1 (2014), 88-104. 2

[EK18] ESTEVEZ A. C., KULLA C.: Importance sampling of many lights
with adaptive tree splitting. Proc. ACM Comput. Graph. Interact. Tech.
(Proceedings of HPG 2018) 1,2 (2018), 25:1-25:17. 3,4,5,6

[HKWB09] HASAN M., KRIVANEK J., WALTER B., BALA K.: Virtual
spherical lights for many-light rendering of glossy scenes. ACM Trans.
Graph. (Proc. of SSIGGRAPH Asia 2009) 28, 5 (2009), 143:1-143:6. 5

[HPBO7] HASAN M., PELLACINI F., BALA K.: Matrix row-column
sampling for the many-light problem. ACM Trans. Graph. (Proceedings
of SIGGRAPH 2007) 26, 3 (2007). 2, 6

[LY19] LIN D., YUKSEL C.: Real-time rendering with lighting grid hi-
erarchy. Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of 13D
2019) 2,1(2019), 8:1-8:17. 2

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo tech-
niques for direct lighting calculations. ACM Transactions on Graphics
15,1 (1996), 1-36. 2,3,5,6

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG D. P.:
Multidimensional lightcuts. ACM Transactions on Graphics (Proceed-
ings of SSIGGRAPH 2006) 25, 3 (2006), 1081-1088. 2, 5, 6

[WFA*05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable approach
to illumination. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2005) 24, 3 (2005), 1098-1107. 2, 3,4, 6

[WWB*14] WALD 1., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics 33,4 (2014), 143:1-143:8. 5

[YY17] YUKSEL C., YUKSEL C.: Lighting grid hierarchy for self-
illuminating explosions. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2017) 36, 4 (2017), 110:1-110:10. 2, 6

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

