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Stochastic Lightcuts for Sampling Many Lights

Cem Yuksel

Abstract—We introduce stochastic lightcuts by combining the lighting approximation of lightcuts with stochastic sampling for efficiently
rendering scenes with a large number of light sources. Our stochastic lightcuts method entirely eliminates the sampling correlation of
lightcuts and replaces it with noise. To minimize this noise, we present a robust hierarchical sampling strategy, combining the benefits
of importance sampling, adaptive sampling, and stratified sampling. Our approach also provides temporally stable results and lifts any
restrictions on the light types that can be approximated with lightcuts. We present examples of using stochastic lightcuts with path
tracing and indirect illumination with virtual lights, achieving more than an order of magnitude faster render times than lightcuts by
effectively approximating direct illumination using a small number of light samples, in addition to providing temporal stability. Our
comparisons to other stochastic sampling techniques demonstrate that we provide superior sampling quality that matches and

improves the excellent convergence rates of the lightcuts approach.

Index Terms—Many Lights, Light Sampling, Stochastic Sampling, Lightcuts.

1 INTRODUCTION

HE problem of rendering with a large number of light
Tsources (a.k.a. the many-lights problem) has received
considerable attention in computer graphics. While methods
that provide scalable lighting solutions are often considered
in the context of global illumination computation with many
virtual light sources, the many-lights problem has growing
applicability in computer graphics, as we continue to render
more complex scenes with more actual light sources in them.
Since various real environments are actually illuminated by
a large number of light sources, such as shopping centers,
supermarkets, theaters, and office spaces, just to name a few,
providing a scalable lighting solution for handling many
lights is an important problem in computer graphics.

Lightcuts [1] is one of the first methods introduced for
efficiently handling many lights, and it is still a preferred
method for various applications due to its performance and
flexibility. On the other hand, lightcuts, like most other scal-
able lighting solutions, is temporally unstable, which leads
to flickering and hinders its use in practice. The underlying
cause of this instability for lightcuts is due to the sampling
correlation it inherits in the lighting approximation.

We introduce stochastic lightcuts that incorporates
stochastic sampling into the illumination estimation frame-
work of lightcuts. As a result, we remove the sampling
correlation from the lighting estimation. To minimize the
stochastic sampling noise, we also introduce a robust hi-
erarchical sampling strategy that combines the benefits
of importance sampling, adaptive sampling (provided by
lightcuts), and stratified sampling (using a light tree). Our
method only modifies the light sampling order of lightcuts,
so it does not hinder the flexibility, the applicability, or the
impressive convergence rate of the lightcuts solution, and it
can be easily incorporated into an existing implementation
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of lightcuts. On the contrary, our stochastic sampling solu-
tion introduces extra flexibility and allows using complex
light sources, such as area lights, which can be difficult
to handle using lightcuts. Furthermore, stochastic light-
cuts allows placing a user-defined small upper bound on
the number of light evaluations per shading computation,
which can significantly improve the rendering performance
(Figure 1). We show that our approach can be easily coupled
with path tracing in addition to global illumination compu-
tation with virtual light sources, which are not necessarily
point lights. With these properties, the stochastic lightcuts
approach offers the most efficient scalable lighting solution
and without the stability problems of existing alternatives.

This paper extends our prior work [2] by providing a
more detailed discussions and an explanation of potential
bias issues in light sampling that can be easily avoided. All
our results are regenerated using an unbiased implementa-
tion of stochastic lightcuts.

2 BACKGROUND

Rendering with many light sources has been an important
problem in computer graphics, though it is often investi-
gated in the context of global illumination computation with
virtual light sources [3]. Earlier method use ordering the
lights based on their potential contributions for minimizing
shadow queries [4], importance sampling based on light
intensities [5], light clustering using octrees [6], or precom-
puted visibility culling for selecting lights [7]. The idea of
using many virtual point light sources (VPLs) for computing
global illumination [8] attracted more attention to the many-
lights problem and its more recent versions reinforced the
importance of the many-lights problem [9], [10], [11], [12],
[13], [14], [15], [16]. Yet, the many-lights problem is more
general than virtual light evaluations and a large number
of user-specified light sources appear in various production
scenes. Since brute-force computation of direct lighting from
many lights can easily be the bottleneck of rendering, some
production renderers already provide functionalities for
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(a) Lightcuts
Max. light samples: 10
Render time: 4 minutes

(b) Lightcuts
Max. light samples: 1000
Render time: 92 minutes

(c) Stochastic Lightcuts (Ours)
Max. light samples: 10
Render time: 7 minutes

Fig. 1: Comparison of lightcuts and our stochastic lightcuts for direct illumination estimation from 1644 light sources, rendered using
path tracing with 5 bounces and 64 samples per pixel. (a) Lightcuts with up to 10 light samples produces a substantial amount of error
and correlation artifacts. (b) Using up to 1000 light samples reduces the error, but still leads to visible flickering and takes more than
20x render time. (c) Our stochastic lightcuts method can produce a fast, temporally-stable, and low-noise lighting estimation with up

to 10 samples.

accelerating direct illumination computation from a large
number of light sources in a scene [17], [18].

Lightcuts. A general and scalable solution to the many-
lights problem is provided by lightcuts [1]. It starts with
building a binary tree for representing the illumination
from all lights in the scene. The scene lights are placed
at the leaf nodes of this tree. Each internal node is used
for approximating the illumination from all light sources
within its subtree. This is typically implemented as picking
one of the lights within the subtree as a representative
light for the internal node, along with a scaling factor for
its intensity to account for the illumination from the other
lights of the subtree. The light tree is constructed once, prior
to rendering, using a bottom-up approach by iteratively
clustering similar node pairs (using a similarity metric)
to form the internal nodes of the tree. When two nodes
are paired, the representative light for their parent node is
chosen randomly as one of the representative lights of the
child nodes, using the cumulative intensities of the nodes
as weights. During rendering, the light tree is evaluated
at each shading point, starting from the root node and
its representative light. After evaluating the representative
light of a node, a conservative error bound is assigned to
the node using its bounding box, indicating the maximum
possible intensity contribution due to the illumination that
can come from the subtree, assuming full visibility (i.e.
no shadows). If this error bound is below a user-specified
percentage (typically 2%) of the approximated total shading
value, the lighting evaluation of the node is accepted. Other-
wise, its child nodes are evaluated. Due to the construction
of the light tree, one of the child nodes shares the same
representative light as the parent node. Therefore, light from
that child node can be quickly evaluated without the need
for recomputing the shadows of the shared representative
light. The extensions of the lightcuts method include a

multi-dimensional version for handling volume scattering,
depth of field, and motion blur [19]; a progressive GPU-
friendly variant [20]; bidirectional lightcuts for improving
the weighting scheme to support a wider range of materials
[21]; and an out-of-core GPU implementation for rendering
large scenes [22]. Recently, lightcuts was used for learning
the light selection probability distributions for Monte Carlo
sampling of direct illumination through Bayesian regression
at render time [23].

Matrix Row-Column Sampling. A prominent alternative
approach to lightcuts is the matrix row-column sampling
method [24] that provides an approximate evaluation of
the entire lighting matrix for the scene. The rows and
columns of this matrix correspond to the shading points and
light sources, respectively. Instead of computing this entire
matrix, as a brute-force lighting method would, a reduced
matrix is computed, and the rest of the original matrix
is approximated. This approach allows easily handling a
wider range of light types than lightcuts and it can be
accelerated using shadow maps. However, it is less adap-
tive than lightcuts, and it requires determining all shading
points before lighting computation, which makes is less
flexible. Extensions of this approach include an additional
temporal dimension for reducing flickering [25], separation
of local and global illumination components for handling
glossy materials [26], introduction of cuts for adaptively
evaluating a fraction of the lights [27], and a reduced matrix
formulation that approximates the lighting matrix [28].

Lighting Grid Hierarchy. Recently, the lighting grid hi-
erarchy (LGH) method [29] was introduced for rendering
explosions with self-illumination by generating a large num-
ber of VPLs. LGH generates multiple representations of the
entire illumination in the scene, each with a different res-
olution. During evaluation, lights at different distances are
approximated by combining the approximations of different
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resolutions. Its main advantage comes from the fact that it
allows precomputing shadow maps for the entire hierarchy,
which can lead to orders of magnitude faster computation
for explosion rendering, as compared to lightcuts. However,
LGH typically uses significantly more light samples than
lightcuts, its precomputation benefits diminish when the
shadow computation is less expensive than volume tracing,
and it is limited in terms of the light types it can represent.
LGH was also extended to provide a fast global illumination
solution for real-time rendering [30].

Adaptive Tree Splitting. A recent importance sampling
approach for handling the direct illumination of many lights
is adaptive tree splitting [31], which is particularly effective
for handling spot lights with limited field of view. This
approach builds a bounding volume hierarchy for lights,
considering their spatial distributions along with their direc-
tions. Similar to our solution, a hierarchical important sam-
pling scheme is used for picking light samples. Adaptive
tree splitting does not suffer from sampling correlation like
lightcuts, but does not provide the adaptivity of lightcuts
and its convergence rate is hindered by its importance
formulation. This method was recently extended to achieve
real-time rendering with a two-level hierarchy for fast up-
dates in dynamic scenes [32].

A common limitation of all these scalable many-lights
solutions is that they require a relatively large number of
samples for producing stable/low-noise results. Therefore,
traditional importance sampling [5] is still commonplace in
practice. Our stochastic lightcuts method, in comparison,
can produce temporally stable and relatively low noise re-
sults with fewer samples. Therefore, it is highly suitable for
rendering algorithms that already rely on multi-sampling,
such as path tracing, and significantly improve their perfor-
mance by providing a low-cost estimation of lighting.

3 STOCHASTIC LIGHTCUTS

We introduce stochastic sampling into the lighting eval-
uation of lightcuts to eliminate its sampling correlation
(Section 3.1), replacing the temporal instabilities of lightcuts
with noise. For reducing this noise, we introduce a ro-
bust hierarchical importance sampling method (Section 3.2).
Stochastic lightcuts can use the same light tree as lightcuts
with only minor modifications to the information stored in
each node and it can be easily implemented on top of an ex-
isting lightcuts implementation (Section 3.3). Therefore, we
only describe the differences in the lighting approximation
introduced by stochastic light evaluations, as compared to
lightcuts.

3.1 Stochastic Sampling with Lightcuts

The sampling correlation of the lightcuts approach is related
to the fact that the same light tree is used for rendering the
entire image. This is unavoidable in general, because the
light tree construction and storage can be expensive. The
light tree, containing a representative light per node, forms
a spatially varying ordering of light sources. The lighting
estimation always begins with the representative light of
the root node. Therefore, this light source is always included
in the lighting estimation of the entire scene. Similarly, the
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representative lights at the higher levels of the hierarchy
are more likely to be used for the lighting estimation. This
predetermined order prior to rendering introduces sampling
correlation. By using a conservative error bound, the error
within a subtree can be limited to a user-defined percentage
of the evaluated pixel color (usually set to 2%). However,
this does not bound the total error of the entire lighting
estimation. Therefore, errors due to sampling correlation can
be substantial and often lead to temporal instability.

This important limitation of lightcuts was also recog-
nized in prior work. The solution that is proposed as a
part of the multidimensional lightcuts method [19] was
simply storing a list of representative lights per node (such
as 32) and randomly selecting one at render time, using
the intensities of these pre-selected lights for importance
sampling. This approach reduces the correlation, but does
not eliminate it. It also inflates the light tree storage. More
importantly, due to the performance advantages of sharing
representative lights between a node an its parent, this pre-
selection is not performed independently for each node and
the sampling correlation is not completely eliminated.

We eliminate the correlation by simply ignoring the
representative lights during lighting estimation. Instead, we
randomly pick a light source within a given subtree. Any
importance sampling scheme can be used here for deter-
mining the probability p; of picking light source 7 within
a subtree. Let ps be the cumulative probability of all lights
within the subtree s. The estimated illumination of the light
subtree can be computed by simply scaling the illumination
of the light with p; /p;. When the error of a node is above the
user-defined threshold and we need to evaluate the child
nodes, we only need to perform the lighting computation
for one of the child nodes, since the other one must contain
the light source that was randomly selected for evaluating
the parent node. Therefore, just like the original lightcuts
method, the light evaluation (including shadow computa-
tion) for the parent node is not wasted as we move deeper
into the light tree.

This simple modification provides three important ben-
efits:

1 It replaces the predefined order of lights with a ran-
domized order and thereby completely eliminates
the sampling correlation.

2 It allows using any type of light source. Since we
do not rely on representative lights and we use the
actual lights for computation, we impose no restric-
tions on the light type. The resulting illumination
contribution of each light is merely scaled by the
corresponding probabilities, as explained above.

3 We can limit the number of lights evaluated during
lighting approximation without risking excessive
correlation artifacts.

When using representative lights, we must rely on the
error bound and traverse as deep into the light tree as nec-
essary, and terminating “cut” selection prematurely (when a
maximum number of light samples are computed) can have
catastrophic results. This is because the predefined order of
representative lights at the higher levels of the light tree can
be pathological for estimating the lighting at some points
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in the scene, and lead to excessive amounts of correlation
artifacts. For example, if only a single light evaluation is
permitted, the same representative light would be used for
the entire scene. Using randomly selected lights, however,
we would simply introduce noise by limiting the number
of evaluated lights. This can be a significant advantage
for some rendering algorithms, such as path tracing, that
would ultimately reduce the noise using multi-sampling.
Therefore, using path tracing, a faster and noisy lighting
estimation would typically be preferable over a slower and
more accurate one, and the performance improvements of
using fewer light evaluations per lighting estimation can
be substantial with minimal or no loss in the final image
quality.

3.2 Hierarchical Importance Sampling

The stochastic sampling scheme mentioned above solves
the sampling correlation problem of lightcuts. Regardless of
how the probabilities are defined for randomly selecting the
sampled light sources (assuming non-zero probabilities for
lights with non-zero illumination), the solution is consistent
and converges to the expected result with multi-sampling.
However, if the probabilities are not good representations
of the illumination contributions of each light source, the
convergence rate can be slow, leading to excessive noise in
lighting estimation.

Unfortunately, the optimal probabilities that would max-
imize the convergence are not constant for all points in the
scene and they depend on the spatial relationship between
the lights and the point where lighting is evaluated. Precom-
puting the probabilities for all points in the scene would be
prohibitively expensive, so they must be computed at render
time. To address this problem, we describe a robust hierar-
chical importance sampling scheme that only computes a
fraction of the light probabilities using the light tree during
the lighting evaluation at a given point.

Instead of directly selecting a random light within a
subtree, we traverse the subtree step-by-step until we reach
a leaf node. Starting with the root node of the subtree, at
each step we randomly pick one of the child nodes using
importance sampling. The probabilities of picking either
child node are assigned based on the expected cumulative
illumination contribution of each child node.

Note that how these probabilities are computed has
utmost importance. Using a poor strategy can result in a
worse convergence behavior than the simplest importance
sampling scheme that randomly selects a light purely based
on its intensity [5].

3.2.1 Computing Child Node Probabilities

Let p; and py represent the probabilities of selecting either
one of the child nodes for estimating the lighting at a
scene point x. Following the error estimation mechanism
of lightcuts, a naive choice for determining the importance
weights w; and wy for picking the child nodes would be
using the maximum possible illumination that can come
from each child node. The corresponding probabilities are
defined as p1 = wy /(w1 + w2) and ps = wa/ (w1 + wa).
These weights can be calculated for each node j using a con-
servative estimate for the maximum geometry term G;(x),
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computed using the node’s bounding box and its light
direction bounds [1], [31]; another conservative estimate for
bounding the BRDF (Bidirectional Reflectance Distribution
Function) of the material M, (x,w) [1], where w is the view
direction; the total intensity of the lights within the node
I;; and the minimum distance to the node’s bounding box
d'"(x). Thus, we can write
Fi(x,w) ||I;
w] — J( : )H .72” ’ (1)
(360)

where Fj(x,w) = G;(x)M;(x,w) is the reflectance bound,
combining the geometry and material terms. Note that our
notation slightly differs from the notation of the original
lightcuts method [1], as the inverse-square attenuation fac-
tor 1/(d"™(x))? is not hidden in G;(x). Also note that in
this notation we do not consider directional light sources,
which would not have the inverse-square attenuation factor,
so they need to be treated differently.

While the formulation in Equation 1 might appear rea-
sonable at first glance, it would lead to unacceptable weights
for importance sampling. This is because when x is within
the bounding box of a child node, d;“in(x) becomes zero and
the weight becomes infinity. When x is outside of the bound-
ing box of the other child node, the probability of selecting
this other child node becomes zero, regardless of how much
illumination it represents. Therefore, this sampling scheme
would not necessarily converge to the correct result.

A typical solution to this problem would be replacing
the closest distance d"™(x) with the distance to a point
within the bounding box of a node. Indeed, this is the
approach used by adaptive tree splitting [31] by computing
the distance to the centroid of the bounding box. However,
regardless of how this point is chosen, the singularity of
inverse-square distance to a point, where the weight would
go to infinity, would not be entirely avoided. Also, picking
a particular point within the bounding box may lead to
a weight that can be a poor estimator of the incoming
illumination from within the entire bounding box, resulting
in high noise and low convergence. In effect, this solution re-
duces the singularity in Equation 1 from an entire bounding
box to a point, but does not always improve the convergence
of importance sampling, as compared to merely considering
the total light intensities [5].

On the other hand, we cannot completely ignore the
inverse-square attenuation term, as it can be a significant
factor in bounding the illumination contribution of distant
lights. Therefore, simply considering the total light intensity
I; or its modulation with the reflectance bound Fj(x,w) are
not ideal solutions either.

Our solution is simply combining the weights computed
using the minimum distance term d"(x) and weights
computed without a distance term. At the higher levels
of the hierarchy, where the node bounding boxes are large
and the minimum distance term can be a poor indicator of
the expected illumination coming from a node, we simply
ignore the distance term. For lower levels of the hierarchy,
where the node bounding boxes are sufficiently far from
x, we include the distance term. More precisely, we decide
whether to include the distance term by comparing the
minimum distance d}""(x) to the size of the bounding box
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¢; (ie. the length of its diagonal). The distance term is
included only if di"™(x) > a/; for both child nodes, where
a is a user-defined scaling coefficient. We use o = 1 for all
examples in this paper. Let j and k indicate two child nodes
of an internal node. We compute the weights using

wj = Fj(x,w) L] Ajr(x), 2)

where the attenuation term A; ;(x) is

1 if Jmin min

M) = Tk if dj""(x) > ol and djP(x) > aly
1 otherwise.

@)

This simple solution completely avoids the singularity. The

distance to the node bounding box is only included when

it is expected to improve the importance estimator, that is

when the node is sufficiently far, which is determined by

the size of a node’s bounding box, so it is independent of

the numerical scale of the scene.
For incorporating directional lights with no attenuation
factor, we slightly modify the weight computation, such that

wy = Fyw) (L1 = IEP1) Ajuo) +1T20) © - @)

where HI;j || is the total intensity of directional lights within
the node. Thus, the attenuation term does not impact the
importance of directional lights.

3.2.2 Dead Branches

We use the term dead branch to refer to the subtree under
a node that can contribute no illumination purely due to
the reflectance bounds of all lights within the subtree (not
considering visibility /shadows). We call all nodes within a
dead branch dead nodes.

When the reflectance bound F;(x,w) for the root node
of a dead branch is zero, the node is assigned zero proba-
bility and the dead branch is automatically avoided during
our hierarchical importance sampling traversal. However,
this behavior is not guaranteed. This is because a typical
computation of the reflectance bound would be based on
a conservative estimate, using the bounding box of the
light node [1], [31]. This avoids the potentially-enormous
cost of considering each individual light within a subtree.
On the other hand, the conservative bound Fj(x,w) of an
internal node can be non-zero even when it is zero for all
individual lights within the subtree. Thus, a dead branch
can be assigned a non-zero probability.

Including dead branches in lighting estimation does not
break the lightcuts algorithm, especially when it is permit-
ted to converge using as many light samples as necessary
to satisfy the error threshold, but it introduces unnecessary
computation cost. More importantly, when the maximum
light sample count is limited, selecting a dead branch can
effectively waste a light sample and negatively impact the
quality of the lighting estimation. This is particularly im-
portant for fast lighting estimation with a small number of
samples using algorithms that rely on multi-sampling, such
as path tracing. Therefore, dead branches should be avoided
when detected.

A dead branch is automatically detected and avoided
when Fj(x,w) = 0 at its root node. Otherwise, we detect a
dead branch further down its subtree, where the importance
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weights w; and ws of the two child nodes of a node are both
zero. Note that testing whether w; + wy is zero is sufficient
for detecting a dead branch, because all possible subtrees
within a dead branch include a node with w; +ws =0,
since all leaf nodes of a dead branch contain lights 7 with
F;(x,w) = 0. However, the node that satisfies this condition
does not have to be the root node of the dead branch.

Once a dead branch is detected, we can simply terminate
the hierarchical traversal by returning any light within the
subtree. The selection of a light within a dead branch is in-
consequential, since none of them should have any effective
illumination. Therefore, we can simply return the represen-
tative light of an internal node and skip the evaluation of
the light source to save computation.

Yet, simply terminating the traversal and returning an ar-
bitrary light within the subtree of a dead branch would still
waste a light sample. Therefore, the solution we presented in
our prior work [2] is backtracking the hierarchical traversal
and making sure that we do not select a light within a dead
branch. This can be done by moving back up the light tree,
skipping the detected dead node by updating its probability
to zero, and continuing the traversal using a different path
down the light tree. Note that in some cases the entire light
tree can be a dead branch (i.e. a dead tree) if the point x,
where the illumination is computed, cannot be illuminated
by any light in the scene (based on the reflectance bound
alone, not considering visibility).

While this solution is effective in avoiding dead
branches, it does not form an unbiased estimator. For ex-
ample, consider an internal node of the light tree with two
child nodes, one of which is a dead branch. Let p be the
probability of picking the dead branch when evaluating the
parent node during hierarchical importance sampling, and
I be the expected illumination under the other child node.
Since one of the child nodes is a dead branch, the expected
illumination of the parent node is also I. However, the
backtracking approach detects the dead branch with only p
probability. If it is detected, the expected illumination of the
parent node can be computed from the other child node as
I; otherwise, it is taken as I/(1 — p). Indeed, backtracking,
when a dead branch is detected, provides a more accurate
lighting estimation, but it is detected with only p proba-
bility. Thus, the expected illumination of the parent node
is overestimated as pI + (1 — p)I/(1 — p). Note that simply
returning an arbitrary light from the dead branch instead
would produce no light with p probability and I/(1 — p)
with 1 — p probability, resulting in a correct estimation of
I. Therefore, even though dead branches do waste light
samples, we cannot simply avoid them by stochastically
altering the probabilities without introducing bias to the
lighting estimation.

For unbiased lighting estimation, when a dead branch is
detected, we simply return a null light. There is no need to
evaluate this light (or compute shadows for it), since we
know that it cannot contribute any illumination. Yet, we
must still count it as a light sample to avoid introducing
bias.

3.3 Implementation

The lightcuts algorithm determines a “cut” through the
light tree by evaluating it starting from its root node. Each
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(a) Lightcuts
Max. light samples: 10
Render time: 27 seconds

(b) Lightcuts
Max. light samples: 1000
Render time: 14 minutes

(c) Stochastic Lightcuts (Ours)
Max. light samples: 10
Render time: 58 seconds

Fig. 2: Comparison of our stochastic lightcuts method to lightcuts for direct illumination computation from 14 light fixtures (on the
ceiling), each containing 100 light sources, rendered using 64 samples per pixel. (a) Lightcuts with up to 10 light samples produces
prominent stripes on the table, on the floor, and in the background, due to the shadows of the light fixture details. (b) When up to 1000
light samples are permitted with lightcuts, the stripes become less noticeable in a still frame, but such artifacts still persist and lead to
substantial flickering in animations, and it also takes almost 30 x longer time to render. (c) Our stochastic lightcuts method achieves a

low-noise solution with no visible artifacts using only 10 light samples per lighting estimation.

Algorithm 1: Pseudocode of selecting a light within
a subtree using hierarchical importance sampling.

1 function SelectLight (j)

// j is the root node of a light subtree

2 p < 1 // initialize the probability of picking the light

3 | r < arandom valuein [0,1)

4 while j is not leaf do

5 wy < the weight of the first child node of j

6 wy < the weight of the second child node of j
7 if wy + wo > 0 then

8 p1 — wi/ (w1 + we)

9 if r < p; then

10 P < p - p1 // update the probability

11 T / Pp1 // rescale the random value

12 J < the first child node of j

13 else

14 p < p- (1 —p1) // update the probability
15 r < (r—mp1)/(1 —p1) // rescale

16 J < the second child node of j

17 end
18 else

// jis a dead node.

19 return (null light, p) // no light sample found
20 end
21 end
22 | i< the light sample of the leaf node j
23 return (¢, p)

evaluated light tree node is added to a light sample list
(typically implemented using a heap) to be returned. The
nodes in the light sample list with an error bound greater
than the error threshold are replaced by their child nodes
(in the order of the largest error bound). When replacing

a node with its child nodes, only one of the child nodes
requires a full evaluation, while the other one (containing
the light sample of the parent node) uses the parent node’s
data and only updates its error bound and cluster intensity.

The implementation of the stochastic lightcuts algorithm
involves only two relatively minor changes. First, instead of
simply using the representative light of a light tree node,
we use hierarchical importance sampling to select a light
within the subtree of the node. If the node is determined to
be a dead node, we simply skip adding the node to the light
sample list. If the root node is a dead node, we return an
empty light sample list. Second, each light sample returned
must also be accompanied by the probability of selecting
the light sample within the subtree of the selected node.
Therefore, the light selection probabilities must be updated
when replacing a node in the light sample list with its child
nodes.

Algorithm 1 shows the pseudocode of the light selec-
tion algorithm using our hierarchical importance sampling
approach. This algorithm returns the light sample and the
probability of selecting it within the given subtree. Notice
that Algorithm 1 must traverse the given light subtree
down to a leaf node or a detected dead node. Therefore, it
includes additional computation cost, as opposed to simply
returning a pre-selected representative light used by the
original lightcuts algorithm.

4 RESULTS

We evaluate our stochastic lightcuts method by first compar-
ing it to lightcuts and then comparing its sampling quality
to other related stochastic sampling techniques. The results
are generated with a custom renderer using Intel’s Embree
ray tracing kernels [33]. The error threshold for lightcuts
and stochastic lightcuts is set to 2%. All timing results
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(c) Stochastic Lightcuts (Ours)
Max. light samples: 10
Render time: 1.8 minutes

(b) Lightcuts
Max. light samples: 1000
Render time: 2 hours

(a) Lightcuts
Max. light samples: 10
Render time: 1 minute

Fig. 3: Comparison of our stochastic lightcuts method to lightcuts in a scene illuminated by one million virtual spherical lights,
generated with up to 8 bounces from 120 light sources near the top of the dome, rendered using 64 samples per pixel. (a) Lightcuts
with up to 10 light samples produces severe visual artifact in the form of sharp shadow lines. (b) Using up to 1000 light samples with
lightcuts makes these artifacts less prominent, but the result still flickers in animation and the render time becomes about 80x longer.

(c) Our stochastic lightcuts method produces a temporally-stable solution with only 10 light samples.

are measured on a computer with dual Intel Xeon CPUs
running at 2.4 GHz (16 total cores). Some render times we
report in this paper are different than our prior work [2],
since we are using a more optimized implementation of
lightcuts and a newer version of Embree.

4.1 Comparison to Lightcuts

We compare the results of lightcuts and stochastic lightcuts
using three different scenes. Figure 1 shows path tracing in a
scene with 1644 light sources. Note that modern production
scenes can include significantly more lights. Figure 2 shows
direct illumination from light fixtures that not only illumi-
nate the scene but also cast shadows. Finally, Figure 3 shows
a scene illuminated by one million virtual spherical lights
(VSLs) [34] generated from 120 original lights. All lights in
each scene are placed in a single light tree. We use simple
materials and an optimized ray tracing implementation on
the CPU, so a significant portion of the render times are
spent in lighting estimation.

In these three figures, we show two different settings
for lightcuts. The first one limits the maximum number of
light samples to 10 (Figures 1a, 2a, and 3a). This causes the
lightcuts algorithm to produce a fast estimate of lighting, but
this relatively small limit on light samples does not allow
lightcuts to converge using its error threshold parameter.
Therefore, the resulting images contain large blocks of dark
areas (Figure 1a), randomized shadow patterns (Figure 2a),
and inconsistent illumination throughout the scenes with
sharp illumination variations (Figure 3a). This is because
lightcuts with a small limit on the light sample count cannot
traverse deep enough into the light tree and the resulting
lighting estimation is produced using the few representative
lights near the root of the light tree. The dark regions with
sharp shadow boundaries appear where these representa-
tive lights are shadowed. Since lightcuts generates the light
tree stochastically (to avoid bias in light tree construction), a

different tree is built for each frame, resulting in extreme
amounts of temporal flickering. Forcing lightcuts to use
the same light tree for each frame on an animation would
eliminate the flickering when the illumination in the scene
is static, but visual artifacts of the poor lighting estimation
would remain.

The second setting we show for lightcuts allows the algo-
rithm to converge using its error threshold (Figures 1b, 2b,
and 3b). In this case, we limit the maximum light samples
to 1000, which is close to brute-force lighting evaluation in
Figure 1, as it contains only 1644 lights. However, lightcuts
does not come close to this maximum limit and returns
an estimate when all light subtrees under the chosen “cut”
satisfy the error bound. In fact, using an error threshold of
2%, lightcuts typically returns an estimation using only a
few hundred light sources, regardless of the total number
of lights in the scene. This allows lightcuts to provide an
efficient lighting estimation with fast convergence rates.
On the other hand, always using hundreds of lights in
lighting estimation limits the performance gain, as com-
pared to brute-force rendering (as in Figures 1 and 2). More
importantly, the resulting solution still contains sampling
correlation that leads to visible flickering in animations. This
flickering is substantial even in the scene in Figure 3, where
the majority of the lighting is indirect illumination with
gradual variations over the image. This temporal instability
can be reduced by choosing a smaller error threshold, but
this would also inflate the render time. Indeed, letting light-
cuts to converge using its error threshold (Figures 1b, 2b,
and 3b) leads to render times that are already 20x to 120x
slower than using a relatively small limit on the maximum
number of light samples in our test (Figures 1a, 2a, and 3a).

Our stochastic lightcuts solution, in comparison, pro-
vides a fast lighting estimation with low noise, using a maxi-
mum of 10 light samples per lighting estimation (Figures 1c,
2¢, and 3c). Since there is no sampling correlation with
stochastic lightcuts, the results do not contain visual artifacts
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and it is temporally stable, using a different light tree at each
frame. The stochastic lightcuts algorithm takes considerably
more time than lightcuts with the same number of samples,
due to the cost of hierarchical traversal of the light tree down
to leaf nodes. Also, sampling correlation, while detrimental
to quality, improves performance with better cache utiliza-
tion and leads to shorter render times using lightcuts with
the same number of light samples. Nonetheless, using only
10 light samples, we can provide a solution that is similar
to the lightcuts solution with up to 1000 light samples, and
without its temporal instability. The render times are also
about an order of magnitude shorter. It should be noted
that multi-sampling used in these scenes help reduce the
resulting noise with stochastic lightcuts, but does not help
the lightcuts solutions at all.

4.2 Stochastic Sampling Comparisons

We evaluate the sampling quality of our stochastic lightcuts
method by comparing it to traditional importance sam-
pling [5], adaptive tree splitting [31], and multidimensional
lightcuts that stores up to 32 representative lights per light
tree node [19]. For our tests, we use a deceptively simple
scene shown in Figure 4. This scene includes 10,000 virtual
lights generated from a single point light source with no
bounce. A horizontally-placed divider occludes the original
light source and forms darker regions in the bottom half of
the image, where only a small portion of the virtual lights
provide non-zero illumination. The walls in the top half of
the image are illuminated by almost all lights in the scene.
What makes this scene interesting for testing sampling
is this duality in the overall illumination, the substantial
variation in intensities between the virtual lights and the
original light source, and the fact that the illumination from
the lights are not limited to a local region. Our results
with different stochastic sampling techniques are shown in
Figure 5 and the root mean square errors are provided in
Table 1 as averages of 10+ renders (the standard deviations
in RMSE of different renders are shown in parentheses). We
use only a single sample per pixel in the test in Figure 5 to
clearly show the quality of light sampling. Using multiple
samples (i.e. multiple lighting estimations) per pixel reduces
the noise for all methods but multidimensional lightcuts,
which receives a relatively minor improvement from multi-
sampling due to sampling correlation.

In this scene, traditional importance sampling
(Figure 5a) provides a good sampling quality, particularly
for the top half of the image. The bottom half of the
image, however, receives more noise because of the
high probability of sampling the original light, which is
shadowed, and the approximately equal probability of
sampling any virtual light.

Adaptive tree splitting (Figure 5b) improves the sam-
pling quality for the darker bottom region of the image, as
compared to traditional importance sampling. On the other
hand, the singularity in its importance formulation leads
to poor importance estimates for the top half of the image.
As a result, the strong original light source is not sampled
as often and the importance estimates considerably deviate
from the illumination contributions of the selected lights,
leading to even more noise than purely considering light
intensities, like traditional importance sampling.

Fig. 4: The test scene used for comparing different stochastic
sampling algorithms in Figure 5. The scene contains 10,000
virtual lights generated from a single point light with no bounces.

The multidimensional lightcuts method (Figure 5c) aug-
ments lightcuts by storing 32 representative lights per light
tree node. One of these representative lights is randomly
selected (using proportional probabilities to light intensi-
ties) during the lighting estimation of the node. Thus, it
introduces some flavor of stochastic sampling in lightcuts,
but the benefits are highly limited. It preserves the excellent
convergence rates of lightcuts, such that the representative
lights, chosen during the light tree construction, are likely to
produce low error. On the other hand, sampling correlation
is not entirely avoided, so the results display a similar tem-
poral instability to lightcuts. In this test scene, it provides
excellent results for the top half, but the bottom half is
either completely dark (with 1 light sample) or extremely
noisy and unstable (with 10 light samples). Using 100 light
samples virtually eliminates the noise, but the temporal
instability persists. While the results provide relatively low
root mean square error (see Table 1), sampling correlation
leads to excessive degradation in visual quality, especially
with relatively few light samples.

Our stochastic lightcuts method (Figure 5d) provides the
best sampling quality. Using a single light sample, it slightly
improves the sampling quality of traditional importance
sampling in the top half of the image, and it achieves a more
significant improvement with more light samples. This im-
provement is due to the importance estimation of stochastic
lightcuts, which is locally-adaptive and provides improved
accuracy in importance estimation, considering the light
distances from the point where lighting is evaluated. In the
bottom half, it leads to a superior sampling quality than all
other methods. Like multidimensional lightcuts, it preserves
the excellent convergence rate of lightcuts when using a
relatively large number of light samples, but it does not
suffer from temporal instabilities.
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1 light sample

10 light samples

100 light samples

(c) Multidimensional
Lightcuts

(a) Importance Sampling

(b) Adaptive Tree Splitting

(d) Stochastic Lightcuts
(Ours)

Fig. 5: Comparison of the sampling quality of our stochastic lightcuts method to other related sampling techniques using the test
scene in Figure 4, rendered with a single sample per pixel using 1, 10, and 100 light samples for lighting estimation. (a) Traditional
importance sampling produces a relatively low-noise image in well-lit areas (left column), but the noise increases in darker areas (right
column). (b) Adaptive tree splitting provides improved sampling quality for darker regions (right column), but introduces more noise
in well-lit areas (left column), as compared to traditional importance sampling. (c¢) Multidimensional lightcuts produces low noise in
well-lit areas (left column), but sampling quality degrades substantially in darker regions (right column) and the results are temporally

unstable. (d) Our stochastic lightcuts method produces the best sampling quality in all cases.

TABLE 1: Root mean square error (RMSE) for Figure 5. The
standard deviations in RMSE of 10+ renders are in parentheses.

1 light 10 light 100 light

sample samples samples
Importance Sampling 70.86 (0.13) | 22.41 (0.03)| 10.11 (0.01)
Adaptive Tree Splitting 91.99 (0.09) | 20.24 (0.03)| 8.31 (0.01)
Multidimensional Lightcuts | 34.37 (0.14) | 17.31 (2.39)| 5.35 (0.48)
Stochastic Lightcuts (Ours) | 64.86 (2.17)| 17.13 (1.45)| 5.10 (0.39)

5 DiscussiON AND FUTURE WORK

While algorithmically similar to lightcuts, our stochastic
lightcuts solution is conceptually closer to traditional im-
portance sampling [5]. The light tree is mainly used for effi-
ciently computing importance sampling weights for lights.
Therefore, stochastic lightcuts is safe to use with an ar-
bitrarily small number of maximum light samples (such
as one), though adding more light samples reduces the
noise faster than traditional importance sampling. When the
error threshold is set to zero, it merely provides a different
and more efficient way of importance sampling, exceeding
the excellent convergence rates of lightcuts. Using a non-
zero error threshold, it provides an effective mechanism for
adaptive light sampling.

Note that using “cuts” for sampling the light tree does
not introduce bias to light sampling. The cuts effectively
split the light tree into multiple subtrees, each of which is
sampled stochastically. In that respect, cuts merely define
the stratification for sampling. Using an error threshold for
the cut selection does not introduce bias either, since the
error threshold is only used for stratification but not for
sample selection. When a large threshold is used, the cut

more variance

less variance

Fig. 6: The same scene in Figure 4 rendered using stochastic
lightcuts with two different light trees generated from the same
light sources, showing that different trees can result in different
distribution of variance over the image. Both images use 10 light
samples.

selection produces fewer light subtrees (and therefore fewer
light samples), but does not bias the light selection process.

Since the light tree is mainly used for computing the
importance weights, the construction of the light tree im-
pacts the quality of the sampling scheme. Our experi-
ments with stochastic lightcuts revealed that using the same
set of light sources, different light trees lead to different
convergence rates at different parts of the image. Indeed,
a poorly constructed light tree means poor importance
sampling weights. In all our tests, we use the light tree
construction algorithm of the original lightcuts method [1],
which consistently provides superior sampling quality for
stochastic lightcuts, as compared to prior methods [5], [19],
[31]. However, we have also noticed a more significant
variation in sampling noise with our method, depending on
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the construction of the light tree. This can be seen in Table 1,
which includes the standard deviation of root mean square
error (RMSE) measured for 10+ rendered images with each
method. Notice that our method (and multidimensional
lightcuts) has significantly larger standard deviation, mean-
ing RMSE varies depending on the quality of the tree.

In fact, the quality of the tree can also vary locally.
Figure 6 shows two different light trees used for rendering
the same scene. Notice that, as compared to the image on
the left, the image on the right has more variance at some
parts and less variance at others, showing that the variance
distribution over the image depends on the light tree. This
suggests that the results of stochastic lightcuts can be further
improved by a specialized light tree construction algorithm,
which would be an interesting direction for future work.
Note that unlike the original lightcuts method that must
use a stochastic light tree construction algorithm to avoid
introducing bias during its deterministic lighting estimation,
stochastic lightcuts can use a deterministic light tree con-
struction algorithm, as it would not introduce bias during
rendering with its stochastic lighting estimation.

An important advantage of stochastic lightcuts is that
it allows achieving a fast lighting estimation using a very
small number of light samples. This is unlike any prior
scalable lighting solution [1], [19], [24], [29], [31], all of
which require a large number of samples in practice. For
example, adaptive tree splitting [31] often needs a user-
specified split threshold to force it to skip the top levels
of the light tree, thereby requiring more light samples.
This is because the importance estimation of adaptive tree
splitting is less reliable closer to the top of the tree where
the bounding boxes are large. In that respect, stochastic
lightcuts offers the most efficient solution to the many lights
problem, especially when combined with multi-sampling or
noise reduction techniques, which are commonplace with
path tracing.

While stochastic lightcuts provides a good approxima-
tion with a few light samples, adding more light samples
quickly reduces the error. Therefore, instead of using n
light samples for lighting estimation and an average of m
evaluations (which would mean n x m total light samples),
it is more favorable to use n x m light samples within a
single lighting estimation. This allows stochastic lightcuts
to pick a deeper cut and thereby reduce the sampling error
accordingly.

The weight function for importance sampling we present
in Equations 2 and 3 is effectively equivalent to traditional
importance sampling for the upper levels of the light tree,
where the bounding boxes are large. That is why, our
formulation does not perform worse than traditional impor-
tance sampling [5]. However, our importance formulation
is not optimal and it is possible to use other weight func-
tions with stochastic lightcuts that could outperform our
weight function. For example, in the scene in Figure 1 our
weight function leads to about 34% lower RMSE than the
weight function of traditional importance sampling (using
w; = ||I;||) and about 50% lower RMSE than random
sampling (using p; = 3). Yet, future research may develop
more effective weight functions for stochastic lightcuts.

Another interesting future direction would be coupling
stochastic lightcuts with Bayesian online regression [23],
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which has been shown to reduce the sampling noise by
relying on lightcuts to provide the initial estimation and
learning the lighting pattern in the scene. Replacing light-
cuts with stochastic lightcuts in this context might introduce
superior performance in terms of both computation time
and sampling quality. It would also be interesting to evalu-
ate how much of an improvement one could expect achieve
on top of stochastic lightcuts by introducing a on-the-fly
learning method. Furthermore, a similar learning approach
can be used for guiding the light tree construction algorithm
for either updating the light tree at render time or improving
its construction for the next frame.

6 CONCLUSION

We have presented the stochastic lightcuts method, which
introduces stochastic sampling concepts into the lighting
estimation of lightcuts. We have also presented a robust hi-
erarchical importance sampling approach that uses the exist-
ing light tree for improving the estimation, especially when
used with a small number of light samples. Our approach
eliminates the sampling correlation problems of lightcuts
that lead to temporal instabilities and allows incorporating
different light types, making our solution suitable for a
much wider range of applications. Furthermore, because we
can effectively estimate the illumination using a small num-
ber of light evaluations, we can achieve more than an order
of magnitude faster lighting estimation than lightcuts. When
more light evaluations are needed, our approach provides
(and improves) the excellent convergence rates of lightcuts.
Our tests also show that the stochastic lightcuts method can
robustly handle substantial variations in light properties,
such as light intensity. Furthermore, it is extremely easy to
implement on top of an existing lightcuts implementation.
Therefore, we expect our method to be quickly adopted
by production renderers, particularly because robustly and
efficiently handling a large number of light sources has been
an important practical problem.
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